
Combinatorial Optimization in 
Computer Vision 

WS 2011/12 
 

Ulrich Schlickewei 
Computer Vision and Pattern Recognition Group 

Technische Universität München 

Chapter 7: Multilabel Problems with 
Arbitrary Label Space: The Fast-PD 

Algorithm 



Plan for Today 

Introduction 
 
Primal-Dual Principle 
 
Overview of Fast-PD Algorithm 
 
Details of Step 1, Step 2 and Step 3 
 
Summary 

Combinatorial Optimization in Computer Vision - The Fast-PD Algorithm 2 



MRFs with Arbitrary Label Set 

Consider a Markov Random Field (MRF)                       on a 
graph                  which takes values in an arbitrary  
label set    . 
 
Assume that the Gibbs potential of      is given by  
 
 
 
Here,                        is a semi-metric, a quasi-metric or a 
metric and               are constants. 
 
Again, we want to find the labelling with the least energy. 
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Fast PD versus Expansion Algorithm 

•  Today we are studying the Fast PD Algorithm by 
Komodakis, Tziritas and Paragios. 

•  This algorithm solves similar problems as the Expansion 
Algorithm with similar quality guarantees but with some 
advantages: 
–  it is more efficient, 
–  it is more general, 
–  it is conceptually more elegant. 

•  We start by discussing the primal-dual principle in general 
and then we pass to the outline of the Fast-PD algorithm 
which essentially comprises three steps. 
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The Primal-Dual Principle I 

Consider an Integer Linear Program (ILP) 
 
 
 
 
For simplicity we assume that         . The dual LP 
corresponding to the LP relaxation is 
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The Primal-Dual Principle II 

Theorem: Let           be a pair of integral-primal and dual 
feasible solutions satisfying 
 
 
for a constant          . Then      is an     - approximation of the 
global minimum      , that is,   
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The Primal-Dual Principle III 

Typically, primal-dual algorithms work by constructing 
sequences                         of primal and dual solutions such 
that eventually the condition                        is satisfied.  

Combinatorial Optimization in Computer Vision - The Fast-PD Algorithm 8 

8

*0 xc
xc

T

T
=r

yb
xc

T

T
=1r

ybT xcT*xcT

cost of optimal 
integral solution x*

cost of optimal 
integral solution x*

primal cost of 
integral solution x

primal cost of 
integral solution x

dual cost of 
solution y
dual cost of 
solution y

(a) The primal-dual principle

f≤tT

tT

yb
xc

1ybT 1xcT2ybT … tTyb 2xcTtTxc …

sequence of dual costssequence of dual costs sequence of primal costssequence of primal costs

*xcT

(b) The primal-dual schema

Fig. 2: (a) By weak duality, the optimal cost cT
x

§ will lie between the costs b

T
y and c

T
x of any pair (x,y) of

integral-primal and dual feasible solutions. Therefore, if bT
y and c

T
x are close enough (e.g. their ratio r1 is ∑ f ),

so are c

T
x

§ and c

T
x (e.g. their ratio r0 is ∑ f as well), thus proving that x is an f -approximation to x

§. (b)

According to the primal-dual schema, dual and integral-primal feasible solutions make local improvements to each

other, until the final costs b

T
y

t, cT
x

t are close enough (e.g. their ratio is ∑ f ). We can then apply the primal-dual

principle (as in Fig. (a)) and thus conclude that xt is an f -approximation to x

§.

PRIMAL: min c

T

x DUAL: max b

T

y

s.t. Ax = b,x ∏ 0 s.t. A

T

y ∑ c

Here A = [a
ij

] represents an m £ n rectangular matrix, while b, c are column vectors of size

m, n respectively. We would like to find an optimal solution to the primal program under the

additional constraint that its components are integer numbers. Due to this integrality requirement,

this problem is in general NP-hard and so we need to settle with estimating approximate solutions.

A primal-dual f -approximation algorithm achieves that by use of the following principle:

Primal-Dual Principle. If x and y are integral-primal and dual feasible solutions satisfying:

c

T

x ∑ f · bT

y (5)

then x is an f -approximation to the optimal integral solution x

§, i.e. cT

x

§∑ c

T

x ∑ f · cT

x

§

The reason that this principle holds true is rather simple and is illustrated graphically in

Figure 2(a): in particular, due to weak duality it will hold that the cost c

T

x

§ of the optimal

integral solution will always lie between the dual cost b

T

y and the primal cost c

T

x, i.e.

b

T

y ∑ c

T

x

§ ∑ c

T

x. If we therefore manage to bring the two quantities b

T

y and c

T

x close

to each other (e.g. by making their ratio r

1

= c

T

x/b

T

y less or equal to f , as in (5)), then we

will also have succeeded in bringing the costs c

T

x

§ and c

T

x close to each other as well (e.g. the

ratio r

0

= c

T

x/c

T

x

§ will also be less than f ), thus proving that x is indeed an f -approximation

to x

§. Put otherwise, what the above principle does is to make use of the fact that the primal



The Primal-Dual Principle IV 

One possibility for constructing such a sequence  
                       which eventually fulfills the condition  
                      , relies on the complementary slackness 
principle. Let                        be a vector and let                   .  
 
Theorem (Relaxed Complementary Slackness Conditions): If 
a pair           of integral-primal and dual feasible solutions 
satisfies  
 
 
then          satisfies                     and     is an     - 
approximation of the global minimum     .   
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The Primal-Dual Principle V 

Proof: Using the fact that     is feasible, we have 
In combination with the condition  
 
 
this yields 
 
 
 
Since           by hypothesis, this implies that 
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Overview of the Fast-PD Algorithm:  
Step 1 

Step 1: Reformulate the labelling problem as an Integer 
Linear Program (ILP) 
 
 
 
 
 
Determine the dual LP to the LP relaxation 
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Overview of the Fast-PD Algorithm:  
Step 2 

Step 2: Determine Relaxed Complementary Slackness 
conditions. 
 
For that sake, fix a vector                           in         and set  
                  .  Then, if we are able to construct a pair 
of integral-primal and dual feasible solutions which satisfy 
 
 
we can infer that      is an     - approximation to the optimal 
solution      . 
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Overview of the Fast-PD Algorithm:  
Step 3 

Step 3: Keep generating pairs of feasible integral-primal and 
of dual solutions  
 
 
until both,       and       are feasible and satisfy the relaxed 
complementary slackness conditions 
 
 
 
Then use        as an     - approximation to the unknown global 
solution.  
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ILP Formulation of Multilabelling Problem 

The multilabel problem 
 
 
can be formulated equivalently as the ILP 
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LP Relaxation 

In the LP relaxation of 
 
 
 
 
 
 
 
the binary constraints                                        are replaced by 
constraints                                 .   
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The Dual LP 

The corresponding dual LP then reads as 
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Parameters for Relaxed Complementary 
Slackness in Fast-PD 

The Fast-PD algorithm as proposed by Komodakis, Tziritas 
and Paragios uses the (family of) relaxation vector(s) 
 
 
 
where                                    and                   is a parameter.  
 
Note that                       so that the Fast-PD algorithm will 
compute solutions with exactly the same quality guarantee as 
the expansion algorithm.  
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Relaxed Complementary Slackness 
Conditions 

The relaxed complementary slackness conditions then read 
as 
 
 
 
and  
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Iterations of Fast-PD 

The Fast-PD algorithm produces in each iteration a pair  
                        of feasible integral-primal and dual solutions 
such that               satisfy the two relaxed complementary 
slackness conditions  
 
 
and 
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Pseudo-Code 

The outline of Fast-PD in Pseudo-Code is as follows: 
 
1.    
2.    
3.    

 
 
 
 

4.    

Combinatorial Optimization in Computer Vision - The Fast-PD Algorithm 24 



Comments 

•  In each iteration (Step 3.), the algorithm generates feasible 
integral-primal solutions and feasible dual solutions which 
satisfy the second slackness condition  
 
 
 
Each iteration leads to pairs          which are closer to 
satisfy the first slackness condition  
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Comments II 

•  The core step in the algorithm is hidden in the function  
                                           . In this method, a max-flow 
through a graph is constructed which is similar to the graph 
used for computing the optimal     - expansion. The main 
difference is that the graph used for evaluating 
                                            admits provably less 
augmenting paths, therefore leading to an improved 
performance. 

•  If the parameter      is set to 1, it can be shown that during 
each    -iteration (one iteration in the loop in step 3.) the 
optimal    - expansion is computed. Thus, in this case the 
algorithm produces the same result as the expansion 
algprotihm.     
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Summary 

•  The Primal-Dual principle is a general principle which is 
widely used in the literature for designing algorithms which 
approximate solutions to NP-hard problems. 

•  For the multilabel problem with pairwise interaction 
potential, the Fast-PD algorithm computes solutions with 
the same quality guarantee as the expansion algorithm. 

•  Each iteration of Fast-PD relies on the computation of a 
max-flow, which can be determined more efficiently than 
the computation of the optimal expansion. 
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