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Labelling Problems with Ordering Constraint 

Problem: In general, the labelling problem with ordering 
constraint deals with the assignment of a label in     for each 
pixel of an image such that the final labelling  
satisfies certain geometric constraints.  
 
Examples include: 
•       comprises parts of a class of objects. Then one might 

want to impose constraints as: „a car wheel cannot be 
below a car roof“. 

•  „The sky is above the street.“ 
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Geometric Scene Labelling 

Here, we will discuss an approach by Liu, Samarabandu and 
Veksler who consider the specific problem of finding a 
multilabel segmentation                  with  
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Constraints on Geometric Scene Labels 

There are some obvious constraints on these labels like 
•  „left“ cannot appear right from „center“ or „right“ 
•  „top“ cannot appear below „center“ or „bottom“ 
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Order Preserving Moves for Graph Cut based
Optimization

Xiaoqing Liu, Member, IEEE, Olga Veksler, Member, IEEE, and Jagath Samarabandu, Member, IEEE

Abstract— In the last decade, graph-cut optimization has been
popular for a variety of labeling problems. Typically graph-cut
methods are used to incorporate smoothness constraints on a
labeling, encouraging most nearby pixels to have equal or similar
labels. In addition to smoothness, ordering constraints on labels
are also useful. For example, in object segmentation, a pixel
with a “car wheel” label may be prohibited above a pixel with
a “car roof” label. We observe that the commonly used graph-
cut Æ-expansion move algorithm is more likely to get stuck in
a local minimum when ordering constraints are used. For a
certain model with ordering constraints, we develop new graph-
cut moves which we call order-preserving. The advantage of order-
preserving moves is that they act on all labels simultaneously,
unlike Æ-expansion. More importantly, for most labels Æ, the
set of Æ-expansion moves is strictly smaller than the set of
order-preserving moves. This helps to explain why in practice
optimization with order-preserving moves performs significantly
better than Æ-expansion in presence of ordering constraints. We
evaluate order-preserving moves for the geometric class scene
labeling (introduced by Hoiem et al.) where the goal is to assign
each pixel a label such as “sky”, “ground”, etc., so ordering
constraints arise naturally. In addition, we use order-preserving
moves for certain simple shape priors in graph-cut segmentation,
which is a novel contribution in itself.

Index Terms— Energy minimization, graph cuts, max-flow,
SVM, geometric class labeling, shape prior.

I. INTRODUCTION

P IXEL labeling problems involve assigning a label from a
finite set of possibilities to each image pixel. Many problems

in computer vision can be formulated as pixel labeling problems.
Some examples are image restoration, stereo correspondence,
background subtraction, interactive segmentation, video editing,
etc. [1]. While pixel labeling problems can be solved with local
methods, global optimization framework gives better results [1].
In global optimization framework, the constraints on the solution
that come from prior knowledge and data can be explicitly
incorporated into an energy function, which is then optimized,
either exactly or approximately.

A frequent constraint in an energy function is the smoothness
of the labeling, that is most nearby pixels are expected to have
similar labels. A useful special case is Potts model [2], which
corresponds to assuming that the majority of nearby pixels have
exactly the same label. For Potts model, the graph-cut based Æ-
expansion [2] performs best in terms of speed and accuracy [1]
when compared to other popular minimization methods such as
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Fig. 1. An illustration of the five-part model. Color scheme for labels:
“bottom” is green, “left” is yellow, “center” is cyan, “right” is magenta, and
“top” is blue. This color scheme is consistent throughout the paper.

TRW [3] and BP [4]. For this reason, we restrict our attention to
graph-cut optimization.

In addition to coherence constraints, ordering constraints are
also useful in practice. For example, in [5] ordering constraints
handle occlusions in stereo reconstruction. In [6], [7], ordering
constraints are used for object segmentation. The object is divided
into several parts: roof, wheels, etc. Each part corresponds to a
label. Ordering constraints prohibit the “car wheel” to be above
the “car roof” label, etc. This rules out improbable segmentations
and therefore improves results. However Æ-expansion, the com-
monly used algorithm for optimization, is more likely to get stuck
in a local minimum when ordering constraints are used.

We propose new order-preserving moves for graph cut op-
timization. These moves are developed for a specific model
suitable for our applications. We assume that an image is to be
segmented into five parts, namely “center”, “left”, “right”, “top”,
and “bottom”, see Fig. 1. The ordering constraints can be read
from the names: a pixel labeled as “left” cannot be to the right
of a pixel labeled as “center”, a pixel labeled as “top” cannot be
below a pixel labeled as “center”, etc. In addition, we can enforce
more stringent constraints: if a pixel p labeled as “center” has a
neighbor q with a different label, then q must have label “left”,
“right”, “top”, “bottom” if it is to the left, right, above, or below p,
respectively. These additional constraints imply that the “center”
region is rectangular, see Fig. 1. Not all parts have to be present.

Order-preserving moves are strictly larger than expansion
moves for all labels except the “center”. However “center”
expansions are hardly useful because their number is severely
limited by ordering constraints. Another advantage is that unlike
the expansion, order-preserving moves act on all labels simulta-
neously, giving each pixel a larger choice of labels.

First we evaluate order-preserving moves on the application of
geometric class scene labeling, inspired by Hoiem et al. [8], [9].
The goal in [8] is a rough 3D reconstruction of a scene. Our five
part model is applicable to a variety of (mostly indoor) scenes.
Our only essential difference from [8] is a global optimization



MRF Model 

The resulting problem is formulated using an MRF model 
                     where       is the set of pixels and the        take 
values in    . 
 
The corresponding Gibbs potential is given by 
 
 
 
 
Here, the data term is learned from a database of images and 
the Potts model is used for the regularizer. 
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Constraints in the Gibbs Potential 

The constraints are incorporated into the Gibbs potential by 
penalizing two neighboring label assignments, which violate a 
constraint, with penalty       
 
For example, if      is the left neighbor pixel of     , then the 
table for              looks like (the label of     is indicated in the 
row) 
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Minimization of Gibbs Potential 

The Gibbs potential 
 
 
 
 
can be approximately minimized using the expansion 
algorithm. 
 
However, in this case, there is no quality guarantee (because 
the pairwise potential is not a metric).  
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Order-Preserving Moves 

It turns out that the expansion algorithm converges to bad 
local minima in this example. Thus, a new class of moves is 
introduced, the so-called order-preserving moves. 
 
Horizontal Moves: Region      can change in horizontal but 
not in vertical direction. 
 
Vertical Moves: Region      can change in vertical but not in 
horizontal direction. 
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Horizontal Moves 
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(a) Data terms for T (b) Data terms for C (c) Data terms for B

(d) initial labeling (e) T -expansion from (d)

(f) B-expansion from (e) (g) Optimal labeling and also
the result of our algorithm

Fig. 2. Illustration of local minimum problems with Æ-expansion. The
numbers in (a-c) specify data costs for labels T , C, and B. Discontinuity
cost is 1. Initial labeling, which is all pixels labeled C, is in (d). After T -
expansion and B-expansion, shown in (e) and (f), respectively, the expansion
algorithm gets stuck in a local minimum, shown in (f). The optimum labeling
is in (g), and our algorithm would give the same result, starting from the same
initial labeling as Æ-expansion, in (d).

B. Definition of Order Preserving Moves

Our intuition is that to improve on Æ-expansion moves in
presence of ordering constraints, we have to act on more than
one label at the same time. We should allow a pixel to have a
choice of labels to switch to as opposed to just a single label Æ.
Let L

p

be a subset of labels that p is allowed to switch to in
one move. Typically, graph-cut algorithms use the same rule for
choosing L

p

for every pixel. For Æ-expansion, L

p

consists of Æ

and the old label of p. For Æ-Ø swap [2], L

p

= {Æ, Ø}. For global
optimization methods in [15], [16], L

p

= L, but they can handle
only a restricted type of energies, and ours is not of that type.

Our insight is that by using different rules when selecting L

p

for different pixels, we can have a larger L

p

for each pixel, as
compared to Æ-expansion, that is there are more labels to choose
from for each pixel in a single move. Notice that the choice of
L

p

precisely defines the allowed moves. That is a move from
f to f

0 is allowed if f

0
p

2 L

p

. We must, therefore, select L

p

’s
in such a way that the allowed move of smallest energy can be
computed efficiently. In addition, L

p

must have the old label of
pixel p, so that the set of allowed moves contains the old labeling.
This ensures that the best allowed move is not worse than the

(a) Vertical move f ! f

v (b) Horizontal move f ! f

h

Fig. 3. Illustration of order-preserving moves.

old labeling. We found two such moves and call them horizontal
order-preserving and vertical order-preserving.

First we give an informal illustration of a vertical move from
f to f

v . The first requirement is that both f and f

v have a finite
energy, i.e. they obey the ordering constraints. Consider Fig. 3(a).
Divide f into three rectangles with two vertical lines, one passing
through the border of the L and C regions (yellow and cyan)
and the other passing through the border of C and R (cyan and
magenta) regions. In f

v , pixels in the left rectangle can have
labels to T , L or B, pixels in the middle rectangle can have
labels to T , C or B, and, finally, pixels in the right rectangle can
have labels T , R or B. Notice that the C region can disappear
after a vertical move, for example, a labeling can consist of only
T ’s. However if the C region remains, its width is not changed,
whereas its height can change arbitrarily. The name “vertical”
reflects the fact that C region, if present after the move, can
change in the vertical, but not in the horizontal direction.

A horizontal order preserving move from f to f

h is illustrated
in Fig. 3(b). Labeling f is divided into three rectangles with
two horizontal lines, one passing through the border of the T

and C regions (blue and cyan) and the other passing through
the border of C and B (cyan and green) regions. In a horizontal
order-preserving move, pixels in the top rectangle can switch their
labels to L, T or R. Pixels in the middle rectangle can switch their
labels to L, C or R, and finally pixels in the bottom rectangle can
switch their labels to L, B or R. The name “horizontal” reflects
that the C region, if present after the move, can change in the
horizontal, but not in the vertical direction.

We now give a formal definition of a vertical order-preserving
move f ! f

v . First requirement is that f, f

v have finite energy.
Let x

p

and y

p

be the coordinates of pixel p. Let x be the smallest
x coordinate of any pixel that has label C in f , that is x =

min{x
p

|f
p

= C}. Similarly, let x be the largest x coordinate of
any pixel that has label C in f , that is x = max{x

p

|f
p

= C}.
Let L

v

p

is the set of allowed labels that p can switch to in a
single vertical move, defined as follows. If x

p

< x, then L

v

p

=

{T, L, B}. If x ∑ x

p

∑ x, then L

v

p

= {T, C, B}. Finally, if x

p

>

x, then L

v

p

= {T, R, B}. Note that a vertical move finds the global
minimum for the example in Fig. 2.

We now give a formal definition of a horizontal order-
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Vertical Moves 
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TABLE I
SMOOTHNESS TERMS V
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(a) Data terms for T (b) Data terms for C (c) Data terms for B

(d) initial labeling (e) T -expansion from (d)

(f) B-expansion from (e) (g) Optimal labeling and also
the result of our algorithm

Fig. 2. Illustration of local minimum problems with Æ-expansion. The
numbers in (a-c) specify data costs for labels T , C, and B. Discontinuity
cost is 1. Initial labeling, which is all pixels labeled C, is in (d). After T -
expansion and B-expansion, shown in (e) and (f), respectively, the expansion
algorithm gets stuck in a local minimum, shown in (f). The optimum labeling
is in (g), and our algorithm would give the same result, starting from the same
initial labeling as Æ-expansion, in (d).

B. Definition of Order Preserving Moves

Our intuition is that to improve on Æ-expansion moves in
presence of ordering constraints, we have to act on more than
one label at the same time. We should allow a pixel to have a
choice of labels to switch to as opposed to just a single label Æ.
Let L

p

be a subset of labels that p is allowed to switch to in
one move. Typically, graph-cut algorithms use the same rule for
choosing L

p

for every pixel. For Æ-expansion, L

p

consists of Æ

and the old label of p. For Æ-Ø swap [2], L

p

= {Æ, Ø}. For global
optimization methods in [15], [16], L

p

= L, but they can handle
only a restricted type of energies, and ours is not of that type.

Our insight is that by using different rules when selecting L

p

for different pixels, we can have a larger L

p

for each pixel, as
compared to Æ-expansion, that is there are more labels to choose
from for each pixel in a single move. Notice that the choice of
L

p

precisely defines the allowed moves. That is a move from
f to f

0 is allowed if f

0
p

2 L

p

. We must, therefore, select L

p

’s
in such a way that the allowed move of smallest energy can be
computed efficiently. In addition, L

p

must have the old label of
pixel p, so that the set of allowed moves contains the old labeling.
This ensures that the best allowed move is not worse than the

(a) Vertical move f ! f

v (b) Horizontal move f ! f

h

Fig. 3. Illustration of order-preserving moves.

old labeling. We found two such moves and call them horizontal
order-preserving and vertical order-preserving.

First we give an informal illustration of a vertical move from
f to f

v . The first requirement is that both f and f

v have a finite
energy, i.e. they obey the ordering constraints. Consider Fig. 3(a).
Divide f into three rectangles with two vertical lines, one passing
through the border of the L and C regions (yellow and cyan)
and the other passing through the border of C and R (cyan and
magenta) regions. In f

v , pixels in the left rectangle can have
labels to T , L or B, pixels in the middle rectangle can have
labels to T , C or B, and, finally, pixels in the right rectangle can
have labels T , R or B. Notice that the C region can disappear
after a vertical move, for example, a labeling can consist of only
T ’s. However if the C region remains, its width is not changed,
whereas its height can change arbitrarily. The name “vertical”
reflects the fact that C region, if present after the move, can
change in the vertical, but not in the horizontal direction.

A horizontal order preserving move from f to f

h is illustrated
in Fig. 3(b). Labeling f is divided into three rectangles with
two horizontal lines, one passing through the border of the T

and C regions (blue and cyan) and the other passing through
the border of C and B (cyan and green) regions. In a horizontal
order-preserving move, pixels in the top rectangle can switch their
labels to L, T or R. Pixels in the middle rectangle can switch their
labels to L, C or R, and finally pixels in the bottom rectangle can
switch their labels to L, B or R. The name “horizontal” reflects
that the C region, if present after the move, can change in the
horizontal, but not in the vertical direction.

We now give a formal definition of a vertical order-preserving
move f ! f

v . First requirement is that f, f

v have finite energy.
Let x

p

and y

p

be the coordinates of pixel p. Let x be the smallest
x coordinate of any pixel that has label C in f , that is x =

min{x
p

|f
p

= C}. Similarly, let x be the largest x coordinate of
any pixel that has label C in f , that is x = max{x

p

|f
p

= C}.
Let L

v

p

is the set of allowed labels that p can switch to in a
single vertical move, defined as follows. If x

p

< x, then L

v

p

=

{T, L, B}. If x ∑ x

p

∑ x, then L

v

p

= {T, C, B}. Finally, if x
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>

x, then L

v

p

= {T, R, B}. Note that a vertical move finds the global
minimum for the example in Fig. 2.

We now give a formal definition of a horizontal order-



Order-Preserving Move Algorithm 

1.  Initialize 

2.     
 
 

3.  If                       , set             , else             . 

4.  Repeat    
 
 
 
until          stops decreasing. 
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Comments 

•  Similarly to the expansion algorithm, this method produces 
a local optimum.  

•  Unfortunately, no quality guarantee is available. 

•  The core step is the search for the optimal horizontal or 
vertical move. In each of these, a multilabel problem over 
more than 2 labels has to be solved. A result by 
Schlesinger and Flach shows that this can be done in 
polynomial time by computing a cut in an appropriate 
graph. 
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Results: Indoor Images 
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(a) (b) (a) (b) (a) (b)

Figure 9. Some results on indoor images (a) original images, (b) order-preserving moves.

(a) (b) (a) (b) (a) (b)

Figure 10. Some results on outdoor images (a) original images, (b) order-preserving moves.

(a) (b) (c)

(d) (e) (f)

Figure 11. Virtual scene walk-through using order-preserving la-

beling (a) spidery mesh overlayed on image (b) walk forward (c)

look left (d) look right (e) look down (f) look up

(a) (b) (c)

Figure 12. Virtual scene walk-through using SVM labeling (a) spi-

dery mesh overlayed on image (b) walk forward (c) look left

in Fig. 3. This is a new approach for shape priors in seg-
mentation. It is the relative order of the parts that enforces

a certain shape for the object. Instead of being a binary (ob-
ject/background) labeling, we have a multi-label problem
now. The ”center” region is the object, and the rest are the
background. We evaluate a rectangular and trapezoid shape,
although other simple shapes can be implemented too.

For a rectangle, we use the same Vpq as in Fig. 1, except
now any Vpq not involving label C is set to 0, since a dis-
continuity between, say L and B labels does not correspond
to the border between the object and the background.

We consider a trapezoid with parallel sides in horizontal
orientation, and the shorter side on top (for other trapezoids,
an image just needs to be rotated). To get a trapezoid, we
relax the following constraints in Fig. 1: for vertical neigh-
bors, we set Vpq(L,C) = Vpq(R,C) = wpq, instead of ∞.
This change allows the borders between the L and C regions
and C and R regions to be diagonals, slanted to the left and
to the right, respectively. This shape prior is not, strictly
speaking, a true trapezoid, since we cannot enforce the bor-
ders between the L and C regions and C and R regions to
be straight lines. We still use ”trapezoid” for the lack of
a better name. We have to slightly change the horizontal
order-preserving move, the details are straightforward, we
omit them for the lack of space.

We can use object-specific data terms based on bright-
ness, user interaction, etc. However here, to study the ef-
fect of the shape prior in isolation from regional influences,
we opted to find regions with strong intensity edges on the
boundary and agreeing with the shape prior. An object-



Results: Outdoor Images 
(a) (b) (a) (b) (a) (b)

Figure 9. Some results on indoor images (a) original images, (b) order-preserving moves.

(a) (b) (a) (b) (a) (b)

Figure 10. Some results on outdoor images (a) original images, (b) order-preserving moves.

(a) (b) (c)

(d) (e) (f)

Figure 11. Virtual scene walk-through using order-preserving la-

beling (a) spidery mesh overlayed on image (b) walk forward (c)

look left (d) look right (e) look down (f) look up

(a) (b) (c)

Figure 12. Virtual scene walk-through using SVM labeling (a) spi-

dery mesh overlayed on image (b) walk forward (c) look left

in Fig. 3. This is a new approach for shape priors in seg-
mentation. It is the relative order of the parts that enforces

a certain shape for the object. Instead of being a binary (ob-
ject/background) labeling, we have a multi-label problem
now. The ”center” region is the object, and the rest are the
background. We evaluate a rectangular and trapezoid shape,
although other simple shapes can be implemented too.

For a rectangle, we use the same Vpq as in Fig. 1, except
now any Vpq not involving label C is set to 0, since a dis-
continuity between, say L and B labels does not correspond
to the border between the object and the background.

We consider a trapezoid with parallel sides in horizontal
orientation, and the shorter side on top (for other trapezoids,
an image just needs to be rotated). To get a trapezoid, we
relax the following constraints in Fig. 1: for vertical neigh-
bors, we set Vpq(L,C) = Vpq(R,C) = wpq, instead of ∞.
This change allows the borders between the L and C regions
and C and R regions to be diagonals, slanted to the left and
to the right, respectively. This shape prior is not, strictly
speaking, a true trapezoid, since we cannot enforce the bor-
ders between the L and C regions and C and R regions to
be straight lines. We still use ”trapezoid” for the lack of
a better name. We have to slightly change the horizontal
order-preserving move, the details are straightforward, we
omit them for the lack of space.

We can use object-specific data terms based on bright-
ness, user interaction, etc. However here, to study the ef-
fect of the shape prior in isolation from regional influences,
we opted to find regions with strong intensity edges on the
boundary and agreeing with the shape prior. An object-
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Scene Walk using the Geometric Scene 
Labels 
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Summary 

•  Frequently we want to impose geometric constraints on 
labellings. 

•  Liu, Samarabandu and Veksler propose a move-make 
algorithm for computing local optima of the corresponding 
MRF energy. 

•  Similarly to the expansion algorithm, the core step consists 
in computing the optimal move from a given labelling. 
Again, this is solved by computing a cut in an appropriate 
graph. 
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