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Image Segmentation II:
Variational Approaches
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Variational Image Segmentation

We already studied a number of algorithms for image segmentation.
These were based on two complementary concepts:

■ Detection of discontinuities of the brighness function, or

■ Grouping pixels of similar brightness (color, texture, etc.)

Most of the approaches discussed so far lack a clear optimization
criterion: Edge regions are heuristically fused to connected lines
(Perkins, Canny), or pixels are iteratively merged to regions (region
merging, region growing). Toward the end of the 1980s, the first
variational formulations for image segmentation emerged. The two
most prominent ones are:

■ the Snakes (Kass, Witkin, Terzopoulos, Int. J. of Comp. Vision ’88),

■ the Mumford-Shah Functional (Mumford, Shah, J. Appl. Math. ’89).
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Snakes

In 1988, Kass, Witkin and Terzopoulos proposed to minimize the
following functional:

E(C) = Eext(C) + Eint(C)

with an external energy:

Eext(C) = −

1
∫

0

|∇I(C(s))|2 ds

and an internal energy

Eint(C) =

1
∫

0

{

α

2

∣

∣Cs(s)
∣

∣

2
+

β

2

∣

∣Css(s)
∣

∣

2
}

ds

Here, I : Ω ⊂ R
2 → R denotes the input grayvalue image, and

C : [0, 1] → Ω denotes a parametric curve. Cs and Css denote the first
and second derivative of the curve C with respect to its parameter s.



Image Segmentation II

● Variational Image

Segmentation

● Snakes

● Snakes: External Energy

● Snakes: Internal Energy

● Snakes: Gradient Descent

● Some Comments on the

Snakes
● Problem with Initialization

● Possible solutions

● The Mumford-Shah Approach

● The Piecewise Constant

Mumford-Shah
● Discrete Approximation

● Solution via Graph Cuts

● Ernst Ising

● The Piecewise Constant

Mumford-Shah
● Mathematical Insights

● Euler-Lagrange Equations

● Euler-Lagrange Equations

● Euler-Lagrange Equations

● Minimizing the Mumford-Shah

Functional
● Gradient Descent

● Gradient Descent with Length

Regularity
● Implementations

● 2-normal Segmentations

● 2-normal Segmentations

● 2-normal Segmentations

● Multiscale Implementation

● Multiscale Implementation

● Multiscale Implementation

● Diffusion Snakes

● Diffusion Snakes

Prof. Dr. Daniel Cremers, TU München Variational Methods for Computer Vision - p. 4/32

Snakes: External Energy

The external energy:

Eext(C) = −

1
∫

0

|∇I(C)|2 ds

measures for any given curve C how well it coincides with the maxima
of the brightness gradient |∇I|. Thus rather than first searching for
these maxima and then grouping them to a curve one defines a cost
function which measures the “edge strength” along any conceivable
curve. Subsequently, the optimal curve Ĉ is determined by minimizing
the total energy:

Ĉ = arg min
C

E(C)

Gradient descent on this energy induces an evolution of the curve
toward locations of large image gradient.
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Snakes: Internal Energy

The internal energy corresponds to a regularizer which induces some
smoothness on the computed curves:

Eint(C) =

1
∫

0

{

α

2

∣

∣Cs(s)
∣

∣

2
+

β

2

∣

∣Css(s)
∣

∣

2
}

ds

It consists of two components, weighted by parameters α ≥ 0 and
β ≥ 0, which penalize the elastic length and stiffness of the curve.
Therefore, minimizing the total energy

E(C) = Eext(C) + Eint(C)

leads to curves which are both short/smooth and pass through
locations of large gradient.
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Snakes: Gradient Descent

The snakes energy

E(C) = −

1
∫

0

|∇I(C)|2 ds +

1
∫

0

{

α

2

∣

∣Cs(s)
∣

∣

2
+

β

2

∣

∣Css(s)
∣

∣

2
}

ds

is of the canonical form

E(C) =

∫

L(C, Cs, Css)ds

Therefore the corresponding Euler-Lagrange equation is given by:

dE

dC
=

∂L

∂C
−

d

ds

∂L

∂Cs

+
d2

ds2

∂L

∂Css

= −∇|∇I(C)|2 − αCss + βCssss = 0.

And consequently, the gradient descent equation reads:

∂C(s, t)

dt
= −

dE(C)

dC
= ∇|∇I(C)|2 + αCss − βCssss
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Some Comments on the Snakes

■ The Snakes are among the most groundbreaking publications in
image processing. To date (Dec ’11) they have acquired more than
12000 citations. In 2005, the three authors were awarded an
academy award for realistic simulations of textiles.

■ The Snakes are considered the first variational approach to image
segmentation.

■ In comparison to modern segmentation methods, however, they are
only of limited practical use:

◆ Real images typically have very many gradient maxima which give
rise to respective local minima in the cost function E. As a
consequence, the curve must be initialized sufficiently close to the
desired solution. Alternatively one can presmooth the input image
(to remove spurious local minima). Yet, the smoothing also
removes possibly important edge information.

◆ The evolution of parametric curves is a numerically challenging
problem as one needs to avoid self-intersections and instabilities.
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Problem with Initialization

Input (square) and
initial curve

smoothed input image final segmentation

Presmoothing makes the edge information “visible” from a larger
distance. Yet it removes finer structures like the corners of the square.

(Author: D. Cremers)
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Possible solutions

Local minima of the snakes can be avoided in various ways:

■ One extends the cost functional by an additional balloon energy

Eballoon(C) = γ

∫

Ωint(C)

d2x

(L. Cohen & I. Cohen, Balloons, 1991), which induces the curve to
contract (for γ > 0), or to expand (for γ < 0), because the balloon
energy simply measures the area of the region Ωint inside the curve
C.

■ On minimizes the snakes energy in a coarse-to-fine manner, starting
with a coarse (smoothed image) and iteratively reducing the
smoothness starting from the previously estimated curve. (See for
example Blake & Zisserman, Graduated Non-Convexity, 1987).

■ One reformulates the optimization problem in a way which allows to
compute globally optimal solutions (using graph cut methods or
convex relaxation methods).
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The Mumford-Shah Approach

In 1989, D. Mumford and J. Shah proposed to segment an input image
I : Ω ⊂ R

2 → R by minimizing the functional:

E(u, C) =

∫

Ω

(

I(x) − u(x)
)2

dx + λ

∫

Ω\C

|∇u(x)|2 dx + ν|C|,

jointly with respect to an approximation u : Ω → R and a
one-dimensional discontinuity set C ⊂ Ω. The three terms have the
following meaning:

■ The data term assures that u is a faithful approximation of the input
I.

■ The smoothness term, weighted by λ > 0, assures that u is smooth
everywhere except for the discontinuity set.

■ A further regularizer, weighted by ν > 0, assures that this
discontinuity set has minimal length |C|.

The minimizer of the Mumford-Shah functional is a piecewise smooth
approximation of the input image I.
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The Piecewise Constant Mumford-Shah

For increasing values of the weight λ, the approximation u is forced to
be smoother and smoother outside of C. In the limit λ → ∞ we obtain
a piecewise constant approximation of the image I:

E(u, C) =

∫

Ω

(

I(x) − u(x)
)2

dx + ν0|C|,

where u(x) is constant in each of the regions separated by the
boundary C. If we denote these regions by {Ω1, . . . , Ωn} and the
constants by ui, this can be rewritten as:

E({u1, . . . , un}, C) =

n
∑

i=1

∫

Ωi

(

I(x) − ui

)2
dx + ν0|C|,

For the case of two regions, a spatially discrete formulation of this
energy is known as the Ising model (E. Ising 1925, W. Lenz 1920, W.
Heisenberg 1928).
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Discrete Approximation

Continuous representation discrete representation

The length of the curve C can be approximated as:

|C| ≈
1

2

∑

i,j

(

ui − uj

2

)2

=
1

8

∑

i,j

(ui)2+(uj)2−2uiuj = const.−
1

4

∑

i,j

uiuj ,

where summation is done over all neighboring pixels i and j. This
leads to:

E(u) =
∑

i

(Ii − ui)2 −
ν

4

∑

i,j

uiuj .

Ernst Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift f.
Physik 1925.
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Solution via Graph Cuts

Original f noisy: I = f + η

thresholding: I > θ opt. reconstr.: arg min E(u)

Minimization of the discrete two-region model using graph cuts

(Author: Thomas Schoenemann)
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Ernst Ising

1925 1995

Ernst Ising ∗ 1900 in Cologne, † 1998 in Peoria, Illinois)

Doctoral thesis with Wilhelm Lenz in Hamburg, important contributions
to the theory of ferromagnetism, phase transitions, etc.
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The Piecewise Constant Mumford-Shah

For λ → ∞ one obtains a special case of the Mumford-Shah functional
known as the piecewise constant approximation:

E({u1, . . . , un}, C) =

n
∑

i=1

∫

Ωi

(

I(x) − ui

)2
dx + ν|C|,

This functional is of interest for several reasons:

■ It is the spatialy continuous generalization of the discrete spin
glas models (Lenz 1920, Ising 1925, Potts 1956, ...).

■ It is quite powerful, yet mathematically well understood.

In the following, we will therefore discuss several aspects of this
functional in more detail:

■ Some important mathematical results.

■ Euler-Lagrange equations and possible implementations.

■ A statistical interpretation.
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Mathematical Insights

■ For a given boundary C, the minimizing constants ui are uniquely
determined. The are given by the average brightness of each region:

∂E

∂ui

= 2

∫

Ωi

(

I(x) − ui

)

dx = 0 ⇒ ui =

∫

Ωi
I(x)dx

∫

Ωi
dx

As a result, the cost function is then merely a function of the
boundary C: E(C) ≡ minu E(C, u). In particular, the segmentation
has the same average gray value as the input image I.

■ Existence of minima: There exist minima of the functional E(C). The
minimizing boundaries C are closed and differentiable up to
discontinuities of the following type:

◆ Three boundary segments meet at equal angles (120◦).

◆ The boundary meets the domain boundary at a 90◦ angle.

■ Minimia of E(C) are generally not unique.
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Euler-Lagrange Equations

■ Unfortunately, the Mumford-Shah functional in its original formulation
is not in a canonical form, since the variable of interest (the
boundary C) appears in the integrand.

■ There exists an entire research community dedicated to such
optimization problems known as shape optimization or shape
sensitivity analysis.

■ In the following we will derive the Euler-Lagrange equation using
Green’s theorem (following S.C. Zhu ’95). Assume we are given a
general energy of the form

E(C) =

∫

R

f(x, y)dxdy,

where R denotes the region inside a curve C. Let C : [0, 1] → R
2 be

a parametric closed curve, with C(s) =
(

x(s), y(s)
)

.
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Euler-Lagrange Equations

Green’s Theorem: For a vector field of the form
~v = (a(x, y), b(x, y)) ∈ R

2 and a region R ⊂ R
2 with boundary ∂R ≡ C

we have:
∫

R

(∇× ~v)d2x =

∫

∂R

~vds,

where the rotation of v is defined as ∇× ~v ≡ ∂xb − ∂ya. Thus:
∫

R

(bx − ay)dxdy =

∫

∂R

adx + bdy

Chosing a vector field ~v such that f = (bx − ay), we can rewrite the
energy as:

E(C) =

∫

R

f(x, y)dxdy =

∫

∂R

adx+bdy =

1
∫

0

(aẋ+bẏ)ds ≡

1
∫

0

L(x, ẋ, y, ẏ)ds.

where ẋ ≡ dx(s)
ds

and ẏ ≡ dy(s)
ds

.
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Euler-Lagrange Equations

The functional

E(C) =

∫

R

f(x, y)dxdy =

∫

∂R

adx+bdy =

1
∫

0

(aẋ+bẏ)ds ≡

1
∫

0

L(x, ẋ, y, ẏ)ds.

is equal to an integral along the curve C and we can compute the
functional derivative with respect to C(s) = (x(s), y(s)):

∂L

∂x
−

d

ds

∂L

∂ẋ
=

∂a

∂x
ẋ +

∂b

∂x
ẏ −

d

ds
a =

(

∂b

∂x
−

∂a

∂y

)

ẏ = fẏ

∂L

∂y
−

d

ds

∂L

∂ẏ
=

∂a

∂y
ẋ +

∂b

∂y
ẏ −

d

ds
b =

(

−
∂b

∂x
+

∂a

∂y

)

ẋ = −fẋ

Geometrically this means:

dE

dC
= f(x, y)

(

ẏ

−ẋ

)

= f(x, y)~nC wobei ~nC = normal vector
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Minimizing the Mumford-Shah Functional

■ The above calculation shows that functionals of the form
E(C) =

∫

R(C)
f(x, y)dxdy have the following functional derivative:

∂E

∂C
= f(x, y)~nC .

■ For the piecewise constant Mumford-Shah functional (without
boundary length term) and only two regions separated by a curve C

we have:

E(C) =

∫

Ri

(I(x) − ui)
2dxdy +

∫

Rj

(I(x) − uj)
2dxdy,

so the functional derivative is given by:

∂E

∂C
=

(

(I(x) − ui)
2 − (I(x) − uj)

2
)

~nC ,

because both regions contribute to the gradient and the normal
vector of the outside region is given by −~nC .
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Gradient Descent

The gradient descent equation is therefore:

∂C(s, t)

∂t
= −

dE(C)

dC
=

(

(I − uj)
2 − (I − ui)

2
)

~nC .

At each boundary point:

Displace the curve

■ toward outside region, if
|I − ui| < |I − uj |

■ inwards, if |I − ui| > |I − uj |

Intuitive explanation: If the local brightness I(x) at point x is more
similar to the average brightness of the interior then x is assigned to
the interior and vice versa. (S.-C. Zhu und A. Yuille, Region
Competition, PAMI 1996)
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Gradient Descent with Length Regularity

For the two-region piecewise constant Mumford-Shah with length
regularity we get:

E(C) =

∫

Ri

(I(x) − ui)
2dxdy +

∫

Rj

(I(x) − uj)
2dxdy + ν|C|

and the gradient descent reads:

∂C(s, t)

∂t
= −

dE(C)

dC
=

(

(I − uj)
2 − (I − ui)

2 − νκC

)

~nC ,

where κC denotes the local curvature of the curve C. This means that
in addition to separating bright and dark areas, the evolution aims at
suppressing large curvature of the curve. This is what leads to a local
minimization of the boundary length |C|.
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Implementations

■ The paper of Mumford and Shah is focused on aspects of existence
and uniqueness of solutions and the study of properties of solutions.
For example, it is shown that triple junctions can only exist in the
minimizer if the contours meet at equal (120◦) angles.

■ The paper of Mumford and Shah does not propose a numerical
implementation for finding minimizers.

■ There now exist a number of alternative methods, for example:

◆ G. Koepfler et al., Multiscale Algorithm: an implementation of the
piecewise constant model in the spirit of region merging.

◆ D. Cremers et al., Diffusion Snakes: Implementation of the
piecewise smooth and piecewise constant models using closed
parametric spline curves (hybrid of Mumford-Shah and snakes).
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2-normal Segmentations

■ Koepfler et al. define: A 2-normal segmentation is a partitioning of
the image plane Ω into pairwise disjoint regions Ω1, . . . , Ωn, such that
each segmentation obtained by merging two neighboring regions
has a larger or equal energy (in the sense of the piecewise constant
Mumford-Shah energy).

■ The algorithm of Koepfler et al. allows to compute 2-normal
segmentations. To this end it iteratively merges neighboring regions
until convergence.

■ Minima of the piecewise constant Mumford-Shah are always
2-normal segmentations. However: Not all 2-normal segmentations
are minimizers of the Mumford-Shah functional.

■ Two questions arise:

◆ In which order should one merge neighboring regions?

◆ How should one select the parameter ν?
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2-normal Segmentations

■ Proposition: The number n of regions of a 2-normal segmentation is
bounded by the following function of the scale parameter ν:

n ≤
|Ω|osc(I)4

c0 ν2
.

|Ω| ≡ image size, and osc(I) ≡ sup(I) − inf(I) is called the
oscillation of the brightness function (difference between largest and
smallest brightness).

■ In particular, this implies: The smaller Ω and the larger ν, the
stronger the constraint on the number of regions.

■ Thus, the scale parameter ν defines the spatial scale on which
segmentation is performed – on a coarse scale for large ν and on a
finer scale for smaller values of ν.
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2-normal Segmentations

■ The individual segments of a 2-normal segmentation have a a
positive minimal size:

|Ωi| ≥ c1(I, ν, Ω) ∀i.

In particular, this implies that the Mumford-Shah segmentation
process (for ν > 0) leads to an elimination of small regions. In
historical approaches this was introduced through a heuristic
post-processing step.

■ For everz individual segment Ωi the length of its boundary ∂Ωi is
bounded by a mutiple of its area |Ωi|:

|∂Ωi| ≤ c2(I, Ω) |Ωi| ∀i.

This implies that minimization of the Mumford-Shah functional (for
ν > 0) also leads to an elimination of elongated regions.
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Multiscale Implementation

The implementation of Koepfler et al. allows to compute a 2-normal
segmentation by the following region merging process:

1. Initialize: every pixel is its own region.

2. For all neighboring pairs of regions, compute the change ∆E in
energy obtained by merging the two regions. Obviously it is of the
form:

∆E = ∆Eregion + ν∆Elength

3. For all pairs of adjacent regions determine the value ν̂, for which
there is an energy decrease (∆E < 0). This value always exists
because ∆Elength < 0 and ∆Eregion ≥ 0.

4. In each step, merge the region pair with the smallest value of ν̂.

5. Repeat steps (2.) - (4.) until the desired number of regions or a
sufficiently large value of ν is reached.
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Multiscale Implementation

Input and segmentation with ν = 2022 (above) and ν = 6173 (below)

G. Koepfler et al., SIAM J. of Numer. Analysis, 1995
http://www.math-info.univ-paris5.fr/~gk/papers/heidelberg95.pdf

http://www.math-info.univ-paris5.fr/~gk/papers/heidelberg95.pdf
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Multiscale Implementation

Original and segmentation with ν = 1024 and ν = 4096

G. Koepfler, J.-M. Morel, S. Solimini
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Diffusion Snakes

The Diffusion Snakes minimize the functional

E(u, C) =

∫

Ω

(

I(x) − u(x)
)2

dx + λ

∫

Ω\C

|∇u(x)|2 dx + ν

1
∫

0

∣

∣C′(s)
∣

∣

2
ds

by alternating two gradient descent evolutions:

∂C(s, t)

∂t
= −

∂E

∂C
=

(

(I − u)2 + λ|∇u|2
)

~n + 2νC′′, ~n = normal

∂u(x, t)

∂t
= −

∂E

∂u
= λ∇(wc∇u) + (I − u), with wc(x) =

{

0, x ∈ C

1, else

We therefore have a curve evolution in alternation with an
inhomogeneous diffiusion process (constant diffusion inside regions,
no diffusion acrosss boundary). Thus the diffusion snakes
simultaneously perform denoising (in each of the separated regions)
and boundary localization.
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Diffusion Snakes

The evolution of the curve C is implemented by evolving a finite
number of control points p1, . . . , pn ∈ R

2:

C(s, t) =

n
∑

i=1

pi(t) Bi(s).

Here Bi(s) are spline basis functions:

spline basis functions Spline & control points
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Diffusion Snakes

ν large ν small

D. Cremers et al., Int. J. of Computer Vision, 2002
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