Variational Image Restoration

- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super **Resolution**
- Image [Restoration:](#page-13-0) Super **Resolution**

Variational Image Restoration

Image Restoration: Denoising

Variational Image [Restoration](#page-0-0)

● Image Restoration: Denoising

- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

Image restoration is ^a classical inverse problem: Given an observedimage $f:\Omega\to\mathbb{R}$ and a (typically stochastic) model of the image
formation process, we want to restore the original image $u:\Omega=$ formation process, we want to restore the original image $u:\Omega\to\mathbb{R}.$ A prototypical poise model is given by: A prototypical noise model is given by:

$$
f = u + \eta, \qquad \eta \sim \mathcal{N}(0, \sigma),
$$

which means that the observed image f is equal to the original u plus additive zero-mean Gaussian noise. Given some prior that the trueimage u is spatially smooth, one can estimate the true image by minimizing the ROF model (Rudin, Osher, Fatemi '92):

$$
\min_{u} \frac{1}{2} \int |u - f|^2 dx + \int |\nabla u| dx.
$$

It gives rise to the Euler-Lagrange equation

$$
u - f - \mathsf{div}\left(\frac{\nabla u}{|\nabla u|}\right) = 0.
$$

Of course one can consider other noise models and other regularizers.

Image Restoration: Denoising

Variational Image [Restoration](#page-0-0)

● Image Restoration: [Denoising](#page-1-0)

● Image Restoration: Denoising

- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0) ● Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

Original **noisy** noisy all denoised

(Source: Goldluecke, Cremers, CVPR 2010)

Image Restoration: Deblurring

A prototypical blur model is given by

Variational Image [Restoration](#page-0-0)

● Image Restoration: [Denoising](#page-1-0)

● Image Restoration: [Denoising](#page-2-0)

● Image Restoration: Deblurring

● Image Restoration: [Deblurring](#page-4-0)

● Inverse Problems and [Bayesian](#page-5-0) Inference

- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

 $f = A * u + \eta \qquad \eta \sim \mathcal{N}(0, \sigma),$

where the observed image f arises by convolving the original u with a blur kernel A and adding Gaussian noise. This process can be inverted
in a veristional actting by minimizing the TV debluring functional: in ^a variational setting by minimizing the TV deblurring functional:

$$
\min_{u} \frac{1}{2} \int |A * u - f|^2 dx + \int |\nabla u| dx.
$$

For symmetric kernels A the corresponding Euler-Lagrange equation
is sives by: is given by:

$$
A * (A * u - f) - \text{div}\left(\frac{\nabla u}{|\nabla u|}\right) = 0,
$$

and the gradient descent equation

$$
\frac{\partial u}{\partial t} = -A * (A * u - f) + \text{div}\left(\frac{\nabla u}{|\nabla u|}\right).
$$

Image Restoration: Deblurring

- Variational Image [Restoration](#page-0-0)
- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- **Olmage Restoration: [Deblurring](#page-3-0)**
- Image Restoration: Deblurring
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

Original blurred and noisy deblurred(Source: Goldluecke, Cremers, ICCV 2011)

Inverse Problems and Bayesian Inference

How can one systematically derive functionals associated with different image formation models?

 A systematic approach to this question is given by the framework of Bayesian inference. Let u be the unknown true image and f the observed one, then we can write the joint probability for u and f as:

$$
\mathcal{P}(u,f) = \mathcal{P}(u|f)\,\mathcal{P}(f) = \mathcal{P}(f|u)\mathcal{P}(u).
$$

Rewriting this expression we obtain the Bayesian formula (Thomas Bayes 1887):

$$
\mathcal{P}(u|f) = \frac{\mathcal{P}(f|u)\,\mathcal{P}(u)}{\mathcal{P}(f)}.
$$

Using this formula, we can now aim at computing the most likelysolution \hat{u} given f by maximizing the posterior probability $\mathcal{P}(u|f)$

$$
\hat{u} = \arg\max_{u} \mathcal{P}(u|f) = \arg\max_{u} \mathcal{P}(f|u)\mathcal{P}(u).
$$

In this setting $\mathcal{P}(f|u)$ is called the likelihood and $\mathcal{P}(u)$ the prior. This method is referred to as Maximum Aposteriori (MAP) estimation.

Variational Image [Restoration](#page-0-0)

- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)

● Inverse Problems and Bayesian Inference

- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

Let us assume n independent pixels. For each the measured intensity f_i is given by the true intensity u_i plus additive Gaussian noise. This corresponds to the likelihood

$$
\mathcal{P}(f_i|u_i) \propto \exp\left(-\frac{(u_i - f_i)^2}{2\sigma^2}\right).
$$

Since all measurements are mutually independent, we obtain for the entire vector $f=(f_1,\ldots,f_n)$ of pixel intensities:

$$
\mathcal{P}(f|u) = \prod_{i=1}^n \mathcal{P}(f_i|u) = \prod_{i=1}^n \mathcal{P}(f_i|u_i) \propto \prod_{i=1}^n \exp\left(-\frac{(u_i - f_i)^2}{2\sigma^2}\right).
$$

Let us now assume that the apriori probability for each u_i only depends on the neighbor intensities (Markov property):

$$
\mathcal{P}(u) = \mathcal{P}(u_1, \ldots, u_n) = \mathcal{P}(u_1 | u_2 \ldots, u_n) \mathcal{P}(u_2, \ldots, u_n) = \prod_{i=1}^{n-1} \mathcal{P}(u_i | u_{i+1}).
$$

Variational Image [Restoration](#page-0-0)

- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP Estimation in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

MAP Estimation in the Discrete Setting

Assuming ^a simple smoothness prior, we have:

Variational Image [Restoration](#page-0-0)

- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP Estimation in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

$$
\mathcal{P}(u) = \prod_{i=1}^{n-1} \mathcal{P}(u_i|u_{i+1}) \propto \prod_{i=1}^{n-1} \exp(-\lambda |u_i - u_{i+1}|).
$$

With these assumptions, the maximum aposteriori (MAP) probability isgiven by:

$$
\mathcal{P}(u|f) \propto \prod_{i=1}^{n} \exp\left(-\frac{|f_i - u_i|^2}{2\sigma^2}\right) \prod_{i=1}^{n-1} \exp\left(-\lambda |u_i - u_{i+1}|\right)
$$

Rather than maximizing this probability, one can equivalently minimize its negative logarithm (because the logarithm is strictly monotonous). It is given by the energy

$$
E(u) = -\log \mathcal{P}(u|f) = \sum_{i=1}^{n} \frac{|f_i - u_i|^2}{2\sigma^2} + \lambda \sum_{i=1}^{n-1} |u_i - u_{i+1}| + \text{const.}
$$

MAP Estimation in the Continuous Setting

Similarly one can define Bayesian MAP optimization in the continuoussetting, where the likelihood is given by:

$$
\mathcal{P}(f|u) \propto \exp\left(-\int \frac{|f(x) - u(x)|^2}{2\sigma^2} dx\right),\,
$$

```
and the prior is given by
```

$$
\mathcal{P}(u) \propto \exp\left(-\lambda \int |\nabla u(x)| dx\right).
$$

Thus the data term in variational methods corresponds to thelikelihood, whereas the regularizers corresponds to the prior:

$$
E(u) = -\log \mathcal{P}(u|f) = \int \frac{|f(x) - u(x)|^2}{2\sigma^2} dx + \lambda \int |\nabla u(x)| dx + \text{const.}
$$

A systematic derivation of probability distributions on infinite-dimensional spaces requires ^a more formal derivation(introduction of measures etc). This is beyond the scope of this lecture.

Variational Image [Restoration](#page-0-0)● Image Restoration: [Denoising](#page-1-0) ● Image Restoration: [Denoising](#page-2-0) ● Image Restoration: [Deblurring](#page-3-0) ● Image Restoration: [Deblurring](#page-4-0)

● Inverse Problems and [Bayesian](#page-5-0) Inference● MAP [Estimation](#page-6-0) in the Discrete Setting● MAP [Estimation](#page-7-0) in the Discrete Setting● MAP Estimation in the Continuous Setting● [Example:](#page-9-0) Motion Blur ● [Example:](#page-10-0) Motion Blur ● [Example:](#page-11-0) Defocus Blur ● Image [Restoration:](#page-12-0) Super

Resolution

Resolution

● Image [Restoration:](#page-13-0) Super

Example: Motion Blur

Assume the camera lens opens instantly and remains open during thetime interval $[0,T]$ in which the camera moves with constant velocity V in x -direction. Then the observed brightness is given by

$$
g(x,y) = \int_0^T f(x - Vt, y)dt.
$$

Inserting $x' \equiv V t$ this expression can be written as a convolution with a
kerpel $k(x, y)$: kernel $h(x,y)\mathpunct:$

$$
g(x,y) = \int_{0}^{VT} f(x - x', y) \frac{1}{V} dx' = \int_{-\infty}^{\infty} f(x - x', y - y') h(x', y') dx' dy',
$$

where:

$$
h(x', y') = \frac{1}{V} \cdot \delta(y') \cdot \chi_{[0, VT]}(x'), \qquad \text{and}
$$

$$
\chi_{[a, b]}(x') = \begin{cases} 1, & \text{if } x' \in [a, b] \\ 0, & \text{else} \end{cases} \qquad \text{(box filter)}
$$

Variational Image [Restoration](#page-0-0)

- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting

● Example: Motion Blur

● [Example:](#page-10-0) Motion Blur

● [Example:](#page-11-0) Defocus Blur

● Image [Restoration:](#page-12-0) Super Resolution

● Image [Restoration:](#page-13-0) Super Resolution

Example: Motion Blur

Variational Image [Restoration](#page-0-0)

- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur

● Example: Motion Blur

- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

Original Motion-blurred

(Author: D. Cremers)

Example: Defocus Blur

Variational Image [Restoration](#page-0-0)

- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0) ● Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur

● Example: Defocus Blur

- Image [Restoration:](#page-12-0) Super Resolution
- Image [Restoration:](#page-13-0) Super Resolution

Scene captured with three different focal settings. Space-varying blur depends on the distance from the focal plane.

(Source: Favaro, Soatto, PAMI 2005)

Image Restoration: Super Resolution

Variational Image [Restoration](#page-0-0)

- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur

● Image Restoration: Super **Resolution**

● Image [Restoration:](#page-13-0) Super Resolution

The key idea of super resolution from video is to exploit the redundancy available in multiple images of ^a video. The assumption isthat each input image f_i is a blurred and downsampled version of the original high-resolution scene. We can try to recover ^a high-resolutionimage u with a variational approach of the form:

$$
\min_{u} \sum_{i=1}^{n} \int |Au(x+w_i(x)) - f_i(x)| dx + \lambda \int |\nabla u| dx.
$$

Here $w_i:\Omega\to\mathbb{R}^2$ are the motion fields which the original scene
undergoes, and A is a linear operator modeling the blurring and undergoes, and A is a linear operator modeling the blurring and
downearmaling. Again, the varietianal approach aims at inverting downsampling. Again, the variational approach aims at inverting animage formation process of the form:

$$
f_i(x) = Au(x + w_i(x)) + \eta,
$$

which states that the observed image is obtained from the "true" image by displacement, blurring and downsampling plus additive Poisson-distributed noise $\eta.$

Image Restoration: Super Resolution

- Variational Image [Restoration](#page-0-0)
- Image Restoration: [Denoising](#page-1-0)
- Image Restoration: [Denoising](#page-2-0)
- Image Restoration: [Deblurring](#page-3-0)
- Image Restoration: [Deblurring](#page-4-0)
- Inverse Problems and [Bayesian](#page-5-0) Inference
- MAP [Estimation](#page-6-0) in the Discrete Setting
- MAP [Estimation](#page-7-0) in the Discrete Setting
- MAP Estimation in the [Continuous](#page-8-0) Setting
- [Example:](#page-9-0) Motion Blur
- [Example:](#page-10-0) Motion Blur
- [Example:](#page-11-0) Defocus Blur
- Image [Restoration:](#page-12-0) Super Resolution
- Image Restoration: Super Resolution

One of several input images Superresolution estimate

(Source: Schoenemann, Cremers, IEEE T. on Image Processing 2012)