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Richard A. Neher,† Mišo Mitkovski,‡§§ Frank Kirchhoff,§ §§ Erwin Neher,{§§ Fabian J. Theis,††k
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ABSTRACT Methods of blind source separation are used in many contexts to separate composite data sets according to their
sources. Multiply labeled fluorescence microscopy images represent such sets, in which the sources are the individual labels.
Their distributions are the quantities of interest and have to be extracted from the images. This is often challenging, since the
recorded emission spectra of fluorescent dyes are environment- and instrument-specific. We have developed a nonnegative
matrix factorization (NMF) algorithm to detect and separate spectrally distinct components of multiply labeled fluorescence
images. It operates on spectrally resolved images and delivers both the emission spectra of the identified components and
images of their abundance. We tested the proposed method using biological samples labeled with up to four spectrally overlap-
ping fluorescent labels. In most cases, NMF accurately decomposed the images into contributions of individual dyes. However,
the solutions are not unique when spectra overlap strongly or when images are diffuse in their structure. To arrive at satisfactory
results in such cases, we extended NMF to incorporate preexisting qualitative knowledge about spectra and label distributions.
We show how data acquired through excitations at two or three different wavelengths can be integrated and that multiple exci-
tations greatly facilitate the decomposition. By allowing reliable decomposition in cases where the spectra of the individual labels
are not known or are known only inaccurately, the proposed algorithms greatly extend the range of questions that can be
addressed with quantitative microscopy.
INTRODUCTION

Multiple fluorescent labeling has become a key tool for the

elucidation of signaling networks in cells and tissues (1,2).

To understand a system’s properties, it is essential to label

and monitor simultaneously as many components as

possible. Modern laser-scanning and wide-field microscopes

allow rapid acquisition of spectrally resolved images, from

which the separate contributions of simultaneously present

labels can be obtained.

Traditionally, this task is solved by choosing narrow emis-

sion bands where only one dye contributes significantly, but

this approach discards the majority of the photons and

severely limits the choice of available dyes to those with

well-separated emissions. If the emission spectra of the

dyes are known, these drawbacks can be overcome by linear

unmixing or spectral fingerprinting (3). However, the rele-

vant emission spectra of the fluorophores depend on the

instrumentation and the chemical environment, and there-

fore, their acquisition requires extensive calibration efforts.

One way to overcome these difficulties is to use fluorescence

lifetime information or modulated excitation schemes (4–6).
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On the other hand, several attempts have been made to use

blind source separation (BSS) techniques that estimate

spectra and concentrations simultaneously (7–10). However,

the decompositions are often ambiguous. Furthermore, most

algorithms do not account for the noise characteristics of

fluorescence data and thereby put undue emphasis on some

parts of the data. Here, we present an algorithm adapted to

fluorescence microscopy and test it on various samples to

systematically investigate its reliability. We discuss tech-

niques for incorporating additional qualitative knowledge

about spectra and spatial features of images to reduce ambi-

guity in the decomposition. We conclude with a method for

integrating data acquired at different excitation wavelengths,

which further facilitates the decomposition (8,11). Our

benchmark examples include the separation of the most

commonly used fluorescent proteins, including enhanced

cyan (ECFP), green (EGFP), and yellow (EYFP) variants,

as well as three or four subcellular structures labeled with

the common Alexa Fluor dyes, fluorescein isothiocyanate

(FITC), and ethidium bromide (EtBr).

Nonnegative matrix factorization for fluorescence
microscopy

Modern laser-scanning and wide-field microscopes allow for

rapid acquisition of the fluorescence emissions in several

spectral channels at each pixel of an image. In the absence
doi: 10.1016/j.bpj.2008.10.068
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of nonlinear effects, the recorded signal yij at pixel j in

channel i is the sum of the contributions of the different

labels. The contribution of label k is proportional to its

concentration xkj at pixel j and the fraction aik of its emission

that falls into channel i. This is summarized in the equation

yij ¼
XM

k¼ 1

aikxkj; (1)

where the sum extends over all labels k¼ 1.M. Viewing yij,

xkj, and aik as matrices Y, X, and A, Eq. 1 can be written,

apart from noise, as Y¼ AX. Typically, a researcher is inter-

ested in the concentration distributions, X, of the labels. If

the spectra, A, are known, then X can be calculated from

Y by ‘‘linear unmixing’’ (3,12). If A is not known, Y can

be factorized into a pair of A* and X* in many different

ways and additional assumptions have to be made to arrive

at a unique solution. We will show that the trivial constraint,

whereby all concentration and spectra have to be nonnega-

tive, suffices in many cases to achieve a reliable decomposi-

tion of the image. Such a factorization into nonnegative A*

and X* is efficiently achieved by an algorithm known as

nonnegative matrix factorization (NMF) (13,14). NMF

decomposes Y by an iterative minimization of a cost func-

tion, which reflects the deviation between the measured

intensities and those predicted by the matrix product. The

condition of nonnegativity is imposed by choosing nonneg-

ative starting values and by choosing the update rules, such

that no zero-crossings can occur. A detailed discussion of the

estimation of matrices A* and X* from shot-noise-domi-

nated microscopy data and a derivation of suitable update

rules is presented in the Appendix.

MATERIALS AND METHODS

Implementation and data processing

All algorithms were implemented as MATLAB functions (The MathWorks,

Natick, MA). The image data were preprocessed by subtracting the constant

background signal, which was measured from a dark region of the image or

with the laser shut off. Subsequently, all pixels below a background

threshold (typically 100 counts) and above a saturation threshold of 4000

counts (4096 is the maximal range of the analog-to-digital converter) were

excluded from the analysis. The iterative algorithm was initialized by

Gaussian spectra peaked at the wavelength of the reference spectra (Molec-

ular Probes, Eugene, OR). The concentrations were initialized randomly and

adjusted to the start spectra by 10 rounds of concentration updates only. The

algorithm was run for 1000 iterations, which took ~2 min for a typical data

set in the case of NMF. Eventually, the concentrations at the excluded pixels

were calculated by nonnegative linear unmixing using the estimated spectra

and included in the image. A more complete account of our experience with

different initial conditions, dependence on signal/noise ratio, and possible

pitfalls is given in the Supporting Material.

Summary of sample preparation and microscopy

Reagents were obtained from Sigma Aldrich (St. Louis, MO) unless stated

otherwise. Stress-fiber formation was facilitated by growing HeLa SS6

(kindly provided by Prof. Lührmann, Max Planck Institute for Biophysical
Biophysical Journal 96(9) 3791–3800
Chemistry, Göttingen, Germany) and NIH-3T3 cells (DSMZ, Braunsch-

weig, Germany) on fibronectin-coated coverslips. In the appropriate cases,

cells were incubated with A555-conjugated transferrin (Invitrogen, Carls-

bad, CA). The ensuing acrolein-paraformaldehyde fixation and Triton

X-100 permeabilization allowed for simultaneous tubulin and F-actin

(Sigma Aldrich and Invitrogen, respectively) stains. Finally, cells were

mounted in EtBr-containing medium after RNase treatment.

Heterozygous, triple transgenic mice were generated by interbreeding the

mouse lines TgN(Thy1-ECFP) (15), TgH(CX3CR1-EGFP) (16), and

TgN(GFAP-EYFP) (15). These mice are characterized by selective expression

of EGFP, EYFP, and ECFP, respectively, in microglia, subpopulations of

neurons, and astroglia. Bright fluorescence can be detected in microglia, Berg-

mann glia, and mossy fiber terminals in the cerebellum. For imaging, transgenic

mice (4 weeks old) were anesthetized and perfused transcardially with Hank’s

balanced salt solution (HBSS, Gibco, Gaithersburg, MD), followed by perfu-

sion with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) for

15 min. The brain was removed and incubated in PFA overnight at 4�C. After

washing twice in PBS, the cerebellum was dissected and 50-mm sagittal vibra-

tome sections (VT 1000S, Leica Instruments, Nussloch, Germany) were

prepared and mounted with Immu-Mount (Shandon, Pittsburgh, PA).

Images were acquired with an Axiovert 200M equipped with an LSM510-

Meta confocal microscope (Carl Zeiss, Jena, Germany) using a 63�/1.2 NA

water-immersion objective. The 458-, 477-, and 488-nm lines of a 40-mW

argon laser were used at 100, 50, and 10% power, respectively. The

HFT458 and HFT488 dichroic mirrors were used for the mouse tissue

sections and cultured cell samples, respectively. Channel settings are

different for the specific samples and are mentioned in the text and appro-

priate figure captions. Reasonable detector gains were used between 550

and 650 a.u. in the Zeiss AIM software. The raw data provided by the micro-

scope software was used in the NMF algorithm, as described above.

RESULTS

Single-exposure measurements

We first tested the NMF algorithm on an image stack gener-

ated from adherent NIH-3T3 fibroblast cells. Herein, nucleic

acids (mainly ribosomal RNA and nuclear DNA) were

labeled with EtBr (17,18); filamentous actin (F-actin) was

stained with Alexa Fluor 532 (A532)-conjugated phalloidin,

whereas tubulin was labeled with an Alexa Fluor 488

(A488)-linked antibody. The sample was imaged with a Zeiss

LSM Meta 510 using eight evenly spaced spectral emission

channels from 508 to 657 nm (width 21.4 nm) and excited

with a 488-nm laser. Fig. 1 shows the measured images in

the eight spectral channels on the left, and the estimated

concentrations (X*) on the right. The label distributions,

X*, of the three dyes were consistent with the known

morphology of the sample. Closer inspection, however,

shows that a faint replica of the tubulin structure is superim-

posed onto the image of F-actin stain, and similarly for the

F-actin stain in the image of the DNA stain. This is a conse-

quence of small deviations of the estimated spectra from the

reference spectra, which we measured independently on

singly stained samples (see Fig. 1, lower left). The spectrum

of A488, for example, is too narrow. To compensate for this

deviation, the algorithm assigns ~10% of the photons origi-

nating from A488 to the F-actin image. The sum of 90% esti-

mated A488 and 10% A532 yields precisely the true A488

spectrum.
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FIGURE 1 NMF estimation of spectra and label distributions of three spectrally and spatially overlapping labels; panel size 60� 60 mm. (Left) The emission

in eight spectral channels, ranging in wavelength from 508 to 657 nm, of NIH-3T3 fibroblasts, where tubulin is labeled with A488, F-actin with A532, and

nucleic acids with EtBr. (Right) The estimated concentration maps for tubulin, F-actin, and nucleic acids. Images are rescaled by the inverse maximum, with

relative scaling factors of 1, 0.51, and 0.18 for A488, A532, and EtBr, respectively. The F-actin image contains a faint replica of the tubulin structure, best

visible in the lower-right nucleus region. Similarly, the nucleic acid stain was assigned a fraction of the emission of A532 (F-actin). The RGB false color

representation of the individual concentration maps, with blue for tubulin, green for F-actin, and red for nucleic acids. (Lower left) Spectra plot from blue

to red according to A488, A532, and EtBr. The estimated spectra (solid lines) are slightly narrower than the spectra measured in singly labeled specimens

(dotted). (Lower right) The eight dimensional data vectors can be projected into a simplex plane (see text). The NMF run was initialized with Gaussian spectra

with 524-, 558-, and 617-nm center positions and a full width at half-maximum (FWHM) of 75 nm.
Such problems in the decomposition are expected on theo-

retical grounds. They are due to the fact that any linear

combination A* ¼ AB of the true spectra, A, such that A*
and X* ¼ B�1X are nonnegative, is a valid solution of the

matrix equation (Eq. 1) (B is a full rank M-by-M matrix).

The cost functions for X and X* are identical and therefore
Biophysical Journal 96(9) 3791–3800
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the minimization of the cost function may result in any such

eligible linear combinations. This ambiguity is the basic

problem of NMF. The main objective of our study is to

explore its extent and to identify procedures for minimizing

its consequences. To illustrate this issue in more detail, we

consider a graphical representation of the fitting results. The

high-dimensional vectors yj representing the measured inten-

sities at pixel j lie, up to fluctuations, in the three-dimensional

subspace spanned by the three spectra of the dyes. In other

words, yj can be described by three scalars corresponding to

the abundances of the labels, rather than by the intensities

in each spectral channel. This subspace can be further reduced

to two dimensions if absolute values are not relevant, as is the

case for the ambiguity discussion. We therefore normalized

all data points and spectra. A projection of this 2D space is

shown in Fig. 1 (lower right) (see Supporting Material for

details). We will refer to this representation henceforth as

the ‘‘simplex’’. The spectra returned by NMF are shown as

red dots connected by red lines forming a triangle (the

‘‘NMF triangle’’). As argued above, the NMF spectra are

a linear combination of the reference spectra. The latter there-

fore can be represented in the same 2D subspace and are

shown in blue as the reference triangle (Fig. 1, lower right).
The density of the data points is represented in the diagram

by color and contour lines. A pixel containing contributions

from two of the three spectra will lie on the side of the refer-

ence triangle connecting the two dyes, whereas a pixel con-

taining all three dyes will be located in the bulk of the triangle.

Points outside the triangle correspond to negative contribu-

tions of one or several spectra. This observation highlights

one central constraint to the possible decompositions: for all

concentrations to be nonnegative, the NMF triangle has to

include the cloud of data in the two-dimensional representa-

tions (apart from some scatter due to noise fluctuations). In

the examples we studied, vertices of NMF triangles (repre-

senting the estimated spectra) often were located outside the

reference triangle. NMF favors such decompositions, since

they result in nonnegative coefficients even for many data

points that lie outside the reference triangle. Spectra outside

the reference triangle are narrower than the correct spectra

and have reduced spectral overlap. Such spectra are allowed

in NMF as long as all their individual values remain nonneg-

ative. This restriction sets bounds to the decomposition errors.

It also defines conditions under which the decomposition is

unique. These are readily appreciated in the case of two over-

lapping dyes: subtracting fractions of one spectrum from

another is only allowed if the spectrum to be subtracted

vanishes at all wavelengths at which the other dye does not

emit. This condition, termed condition 1 below, ‘‘protects’’

dyes emitting predominantly at long wavelengths (and not

at short ones) against distortions by short-wavelength dyes.

In the more general case of several dyes, the domain of all

nonnegative spectra can be defined algebraically (see Sup-

porting Material). A mapping for the case of three dyes

into the 2D diagram is shown by the dashed red polygon
Biophysical Journal 96(9) 3791–3800
in Fig. 1 (lower right). Although these constraints strongly

limit the set of possible solutions, it is obvious from the

diagram that significant freedom remains and many solutions

are equivalent from the NMF perspective. The outcome,

therefore, can depend on initial conditions. The run in

Fig. 1 was initialized with broad, heavily overlapping Gauss-

ians centered at emission peaks of the respective dyes. Runs

with narrow or random initial spectra are presented in the

Supporting Material.

If the data points do not fill the reference triangle, NMF

can also return spectra that lie inside the reference triangle.

Such spectra are positive linear combinations of the reference

spectra and therefore too broad. Deviations of this type are

not possible if a sufficient number of data points lie on the

boundary of the reference triangle. These data points repre-

sent pixels at which one dye is absent, whereas others are

present. This condition will be termed condition 2 below.

Note that this condition is much less restrictive than the

requirement of singly labeled regions, which has to be ful-

filled for the traditional acquisition of reference spectra.

Removing the ambiguity by applying constraints

The ambiguity of the NMF-decomposition can be removed

by adding constraints or a bias that favors certain solutions

(19). This is readily achieved during the iterative optimiza-

tion procedure by adding a bias term to the cost function,

derived from additional knowledge about spectra or label

distributions. If it is known, for example, that labels are suffi-

ciently segregated, i.e., condition 2 is fulfilled, the correct set

of spectra is the one with the smallest possible triangle,

which is equivalent to maximally overlapping spectra. To

exploit this knowledge about the label distribution, we modi-

fied the NMF algorithm such that it returns the smallest

possible triangle automatically. This can be achieved either

by maximizing spectral overlap directly, or by favoring

decompositions with segregated label distributions (20).

For maximal label segregation, the data points have to be

as close as possible to the boundary of the triangle, resulting

in a bias toward small triangles. The latter strategy proved

most robust, and we implemented this ‘‘segregation bias’’

by adding the ratio of the 1-norm to the 2-norm of the

concentration vector at each pixel to the cost function. The

implementation of these biases is detailed in the Appendix

(Eqs. A6–A9).

As a test sample with segregated labels, we imaged vibra-

tome sections of the cerebellum obtained from triple trans-

genic mice with cell-type-specific visible fluorescent protein

expression (Bergmann glia, ECFP; microglia, EGFP; and

neuronal mossy fibers, EYFP). Without the segregation

bias, NMF estimated too narrow spectra, i.e., the NMF

triangle was larger than the reference triangle, and the label

distributions exhibited some cross talk (Fig. 2, upper row).

When we increased the relative weight of the segregation

bias, the spectra changed gradually and approached the
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FIGURE 2 A segregation bias is necessary to find correct decomposition if spectra are overlapping strongly. A brain slice of a mouse expressing ECFP,

EGFP, and EYFP in different cell types is imaged in eight spectral channels from 470 to 550 nm (z-stack image size 146 � 146 � 20 mm, z-projection pre-

sented). (Upper row) A bare NMF run returns concentration maps that exhibit some cross talk between the images. This corresponds to too-narrow spectra

(dotted lines in spectra plot) and an NMF triangle much larger than the reference triangle (light red triangle in the simplex projection). (Middle row) When

applying the segregation bias as described in the text, the NMF triangle gradually approaches the reference triangle (see Appendix, Segregation bias). For

l ¼ 0.3, the different labels are well separated. The RGB panels show an overlay of ECFP (blue), (EGFP (green), and EYFP (red) (all channels are oversa-

turated by 1.5 for better visibility). (Lower row, left) Schematic drawing of the different cell types; (center) spectra plot of bare NMF (dotted lines), NMF with

segregation bias (solid lines), and reference spectra from singly labeled specimens (dashed lines); (right) simplex projection with red triangles of resulting

spectra with increasing segregation bias from light to dark red. The spectra change very little for l > 0.2 and l < 0.01, such that the result is independent

of the precise value of l. In all cases, the NMF run was initialized with Gaussian spectra with FWHM of 50 nm and centered between the half-maximum

values of the literature spectra.
actual spectra of the individual labels. At the same time, the

three labels expressed in different cell types became

perfectly separated (Fig. 2, middle row). One typically finds

that spectra and concentrations change very little after l

exceeds a certain value, until eventually—upon further

increase of l—the additional term overwhelms the primary

requirement to describe the data accurately. This is consis-

tent with the interpretation that a variety of permissible solu-

tions have almost identical cost functions and a small bias is

sufficient to favor one over the others. Only a large bias will

lead to spectra, which violate the nonnegativity requirement.

Within an intermediate regime, the results are fairly indepen-

dent of the choice of l.
Although the segregation bias works well in many cases, it is

not applicable if label distributions are not sufficiently segre-

gated and the data leave large parts of the reference triangle

empty, violating criterion 2. In this case, the bias will result

in too small triangles and spectra that exhibit secondary peaks

(see Supporting Material). However, even images with

strongly overlapping label distribution often show sufficient

signal modulation and fulfill criterion 2 approximately. The

sample in Fig. 1 represents such a case. When we subjected it

to a segregation bias, the tubulin pattern in the F-actin stain dis-

appeared and the estimated spectra approached the true spectra.

However, with such a bias, EtBr can develop a secondary peak

at small wavelengths (see below and Supporting Material).
Biophysical Journal 96(9) 3791–3800
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Furthermore, if colocalization versus segregation is the

basis of the scientific question to be addressed, a segregation

bias is certainly not an appropriate method, even if criterion 2

is fulfilled. In this case, a bias should be used that targets the

spectral overlap directly.

Including prior knowledge about spectra

We have shown above that the ambiguity of NMF can be

reduced by biases, based on qualitative knowledge about

the distribution of labels (segregation). An alternative way

of invoking prior knowledge is to determine the spectra of

some of the components separately, estimating only the re-

maining spectra. This is especially valuable for dyes, which

are faint and therefore hard to estimate. To explore this possi-

bility, we labeled F-actin with FITC-conjugated phalloidin,

tubulin with Alexa Fluor 514 (A514), allowed cells to import

Alexa Fluor 555 (A555)-labeled transferrin, and stained for

nucleic acids with EtBr in adherent HeLa SS6 cells. The

transferrin stain was comparatively weak, and we fixed its

spectrum to that provided by Molecular Probes (www.

invitrogen.com). With a slight segregation bias as described

above, NMF estimated the other three spectra with good accu-

racy and delivered satisfactory concentration maps for all four

dyes (Fig. 3). In fact, the precise shape of the spectrum of a faint

dye is not important, as long as it captures the peak. The re-
Biophysical Journal 96(9) 3791–3800
maining part of the emission is then assigned to other dyes,

which does not make a big difference if such dyes are strong.

Post-NMF data processing

The strategies to reduce the ambiguity in NMF discussed so

far involved the selection of a suitable bias, followed by an

unsupervised run of the decomposition algorithm. For three

dyes, there is an alternative strategy: The true spectra are

(unknown) points in the 2D representation of the decompo-

sition by NMF, and one can attempt to identify the appro-

priate spectra interactively. To this end, we created a software

tool. After an initial NMF run, the tool presents the user with

a 2D representation of the data density and the NMF triangle

(similar to the simplex projections in Figs. 1 and 2). It also

displays the NMF spectra and the label distributions. The

user can now explore the set of possible spectra by moving

the mouse cursor within the domain of nonnegative spectra.

The tool calculates and displays the spectrum that corre-

sponds to the position of the mouse cursor in real time.

Once a satisfactory spectrum is found, the user can drag

the corresponding vertex of the NMF triangle to the new

location. The software then rapidly recalculates the label

abundances. This way, secondary spectral peaks that may

emerge as the consequence of a segregation bias (see above)

can readily be removed. It is our experience that for two to
FIGURE 3 NMF is capable of separating four simultaneously present labels when the spectrum of one label is known. A HeLa SS6 cell labeled with FITC

phalloidin F-actin, A514 tubulin, A555 transferrin, and EtBr DNA was excited at 488 nm and imaged over 16 spectral channels ranging from 503 to 663 nm

(width 10.7 nm, image size 49� 49 mm). A555 transferrin is the weakest label and its spectrum was fixed to the literature spectrum. Running NMF with a slight

segregation bias yielded the label distributions and the spectra from blue to red according to FITC, A514, A555, and EtBr (dotted lines, bare NMF; solid lines,

NMF with segregation bias; dashed lines, reference spectra from singly labeled specimens). Both the label distributions and spectra are estimated to high accu-

racy. The RGB panels show the false color overlay of F-actin (blue), tubulin (green), and nucleic acids (red) (RGB124), and of F-actin (blue), transferrin

(green), and nucleic acids (red) (RGB134). The NMF run was initialized with Gaussian spectra with FWHM of 75 nm and 524-, 558-, and 617-nm center

positions, which represent the FWHM centers of the literature spectra.

http://www.invitrogen.com
http://www.invitrogen.com
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three dyes, it is straightforward to arrive at a unique solution,

which has neither unusual features in the spectra nor cross

talk between images in the form of shadows of characteristic

structures (see Supporting Material for an example). The

successful application of this tool depends critically on

a reasonable starting decomposition, such that each of the

labels dominates one of the decomposed images. NMF

almost always delivers appropriate starting values.

Multiple-exposure measurements

Commonly used dyes differ not only in their emission

spectra but also in their excitation spectra. If the same sample

is imaged with different excitation wavelengths, the relative

strengths of the dyes will vary from excitation to excitation,

whereas the spatial distributions and the emission spectra

remain unchanged. These differences in excitation efficiency

contain very valuable information for decomposing the

image. Furthermore, it is much easier to collect a sufficiently

large number of photons from each dye, since excitation

wavelengths can be chosen such that each dye is strongly

excited at least once. To handle such three-dimensional

data (excitation wavelength, emission channel, and image

pixels), NMF has to be generalized to what is known as

nonnegative tensor factorization (NTF) (21) or parallel factor
analysis (PARAFAC) (8,11). We derived update rules for

NTF that account for the Poisson distribution of photon

counts in fluorescence microscopy (see Appendix, Eq. A12).

We applied NTF to an image of the quadruply labeled

cells of the previous section. The samples were imaged using

the excitation wavelengths 458 nm, 477 nm, and 488 nm.

The emission was recorded in 16 channels from 502 to

663 nm (width 10.7 nm). NTF, initialized with Gaussian

spectra, estimated all four spectra and label distributions

correctly, although the excitation efficiencies of the dyes

chosen do not differ greatly (Fig. 4).

Another example with substantial variation in excitation

efficiency is provided by the brain slice expressing ECFP,

EGFP, and EYFP (see above). We used the same excitation

wavelengths as above and recorded emissions in eight spec-

tral channels ranging from 470 to 545 nm. Channels of wave-

lengths shorter than the respective excitation wavelengths

were excluded from the analysis (NTF seamlessly integrates

overlapping spectral ranges in different excitations

(see Appendix)). The algorithm reliably separated the raw

data into three components that corresponded to ECFP,

EYFP, and EGFP, without invoking any of the additional

constraints required for single-shot measurements.

Care has to be taken that neither the sample nor the appa-

ratus drift between successive illuminations. NTF will fail in
FIGURE 4 Multiple excitations allow the separation of greater numbers of labels. HeLa SS6 cells labeled like the sample in Fig. 3 were excited at 458, 477,

and 488 nm while the emission was being recorded in 16 channels from 503 to 663 nm (image size 73 � 73 mm). NTF delivered the label distributions (FITC

F-actin, A514 tubulin, A555 transferrin, and EtBr DNA); the RGB134 panel shows the false color overlay of F-actin (blue), transferrin (green), and nucleic acids

(red); the spectra (upper right) are colored from blue to red according to FITC, A514, A555, and EtBr (solid lines, NTF; dashed lines, reference spectra from

singly labeled specimen) and the normalized excitation efficiencies of the four labels (absolute values in table) without invoking auxiliary assumptions are

shown in the lower right corner. Only the spectrum of FITC (blue) shows a significant deviation, which is due to cross talk between FITC and A514. Their

excitation efficiencies are exactly collinear, such that multiple excitations do not provide additional information. Hence, we encounter too-narrow spectra, as

already discussed for a single excitation. For the run shown, we used Gaussian waveforms with the width and peak position obtained from literature spectra.
Biophysical Journal 96(9) 3791–3800
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such cases, unless images are brought into register before

processing. NTF is also prone to get stuck in local minima.

The latter, however, is rarely a problem since good initial

guesses for spectra are usually available from the literature.

DISCUSSION

The conventional technique in fluorescence microscopy of

separating fluorescent labels using optical filter cubes limits

the choice of fluorophores to those with well-separated spec-

tral bands. Newer methods to overcome this limitation

include multiepitope-ligand cartography (22), methods using

multiple excitations or fluorescence lifetime information

(4–6), and methods of spectral fingerprinting (3,23). The

latter method can be used on laser-scanning and wide-field

microscopes, which provide spectrally resolved data. Data

sets from such microscopes typically consist of image stacks

of the emissions at up to 32 different wavelengths. We inves-

tigated the potential of BSS techniques to decompose such

data into the contributions by the individual labels, when

emission spectra are not, or are only approximately, known.

Different BSS algorithms use different criteria to deter-

mine the sources. Principal component analysis, for

example, decomposes the data into eigenvectors of the

covariance matrix of the data, yielding orthogonal sources.

Independent component analysis tries to find a representation

of the data in which different sources are as statistically inde-

pendent as possible. However, typical spectra are not orthog-

onal, nor are the label distributions independent. On the other

hand, both spectra and label concentrations are strictly

nonnegative. This is why we suggest NMF and NTF as the

methods of choice. Nonnegativity is a mild constraint and

little prejudice is implicit in the algorithm. The flip side,

however, is that the nonnegativity constraint provides

a unique decomposition only if conditions 1 and 2, formu-

lated above, are fulfilled. In that case, only one nonnegative

solution is possible, for geometrical reasons. Condition 1

states that each label must not emit in at least one spectral

channel where the other labels do, whereas condition 2 states

that the image has to contain pixels in which one dye is

absent and others are present in various concentration ratios.

This ensures that the boundary of the simplex formed by the

data is well defined. Both conditions are much less restrictive

than those required for conventional techniques, where

singly labeled regions of interest or spectral channels with

emissions of only one dye are necessary. In other words,

the conditions are relaxed from ‘‘all absent but one’’ to

‘‘one absent at a time’’. If only one of the conditions is

violated, we nevertheless can retrieve a unique (and correct)

solution by biasing the algorithms toward well-segregated

label distributions (if condition 2 is fulfilled) or else toward

spectra with minimal or maximal overlap (if conditions 1

or 2, respectively, are fulfilled). Even when these conditions

are only approximately fulfilled, the algorithm yields satis-

factory results. However, it has to be stated clearly that the
Biophysical Journal 96(9) 3791–3800
algorithm is not applicable to samples where both conditions

are grossly violated, i.e., where label distributions are similar

and spectra overlap strongly. As fluorescence microscopy

data is often noisy, the two conditions are somewhat soft,

and confidence intervals for the estimated spectra will

depend on the degree to which the conditions are fulfilled.

The problem of ambiguous solutions can be overcome by

using multiple excitations and NTF.

We also created a tool that allows one to interactively

correct for errors in the decomposition provided by the

NMF algorithm. The best way to use this tool is to obtain an

NMF run with a mild segregation bias. This usually provides

decompositions in which the strongly represented labels are

estimated quite accurately. Weakly represented labels may

be contaminated by ‘‘ghost images’’ of the strong ones,

whereas their spectra may show secondary peaks. The shape

of the spectra and possible cross talk between images is then

readily corrected by eliminating such obvious artifacts.

Alternatively, it is straightforward to fix the spectra of

a subset of labels to predetermined ones. This is indicated

for weak labels with broad spectra and also for handling auto-

fluorescence. Such constrained optimization can also be used

to test whether the spectrum of a dye deviates in a given region

from a known spectrum. To this end, one spectrum can be fixed

to the known spectrum in an NMF run with one additional free

spectrum. If the sample contains regions where the spectrum

deviates from the reference spectrum, NMF will yield a new

spectrum localized to those regions, e.g., organelles. In this

sense, NMF can be used as an analytical tool.

We have also shown that combining data from multiple

excitations at different wavelengths greatly facilitates the

decomposition. We anticipate that a large number of labels

can be separated when patching together measurements,

each one exciting a subset of the dyes. The full potential of

NTF is still to be explored.

APPENDIX

The light yij recorded in a particular channel i at a given pixel j is a sum of the

contributions of the labels present at the pixel. The contribution of dye k is

proportional to its concentration, xkj, at this pixel and to the contribution

of its emission, aik, that falls into the spectral range of channel i. Hence,

we have

yij ¼
XM

k¼ 1

aikxkj; (A1)

where the sum runs over all dyes k ¼ 1,.M. This model is conveniently

written as the matrix equation Y ¼AX, which describes all pixels simulta-

neously. This equation, however, is not quite correct, since it equates the

actual signal, yij, with the expected signal,
P

k aikxkj. This distinction is

necessary, since light emission from fluorophores is not a deterministic

process but the number of detected photons is distributed according to a Pois-

son distribution with mean AX, i.e., the recorded signal Y will scatter around

AX. Our aim here is to estimate A and X from a noisy, spectrally resolved

image Y. To this end, we determine matrices A* and X* that maximize the

probability of measuring Y, assuming a Poisson distribution of the data,

which implies minimizing the negative log-likelihood function
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CðA�;X�jYÞ ¼
X

i;j

"X
k

aikxkj � yijln
�X

k

aikxkj

�#

þ const:; (A2)

where i is the index of spectral channels, k that of labels, and j that of pixels

of the image, and const. represents all terms that do not depend on A or X.

To distinguish inferred quantities from the actual one, we mark them with an

asterix (A* and X* versus A and X; for the lower case quantities this is

omitted for clarity). Since spectra and concentrations are nonnegative quan-

tities, the minimization has to be restricted to purely nonnegative values.

This kind of minimization problem, where one matrix Y is approximated

by a product of two nonnegative matrices A* and X*, is known as nonneg-

ative matrix factorization. Such a minimization is efficiently performed by

iterative algorithms with multiplicative update rules that preserve the sign

of the matrix entries (13,14). Following closely the derivation given in

Lee and Seung (14), we derive multiplicative update rules for the cost func-

tion (Eq. A2). One begins by considering an ordinary gradient descent with

step size hrs

ars)ars � hrs

vC

vars

¼ ars � hrs

X
j

2
4xsj �

yrjP
k

arkxkj

xsj

3
5;
(A3)

as shown here for ars, with similar rules for xrs. The step size can now be

chosen to be hrs ¼ arsP
j
xsj

, in which case the update rule becomes multiplica-

tive and preserves nonnegativity. The update rule for concentrations can be

derived analogously, and when alternating the two update steps, we arrive at

ars)
arsP
j

xsj

X
j

yrjP
k

arkxkj

xsj

xrs)
xrsP

i

air

X
i

yisP
k

aikxks

air
:

(A4)

It can be shown that these update rules converge to a local minimum of the

cost function using arguments similar to those of Lee and Seung (14).

In the main text, we discuss that the factorization of Y into A* and X* is

not unique in many cases. For any invertible matrix B, an equally valid

decomposition of the data is given by

Y ¼ A�X� ¼ ABB�1X ¼ AX; (A5)

provided A� ¼ AB and X� ¼ B�1X have nonnegative entries only. The

range of permissible matrices B depends on the spectral and spatial overlap

of the sources. To overcome this ambiguity, we suggest the use of several

biases that favor some solution to others.

Segregation bias

When the label distributions are highly modulated, such that all possible

combinations of label concentrations occur, the correct solution is the one

with maximally overlapping spectra and segregated labels. To bias the

NMF algorithm toward such solutions, we add the following term, E , to

the cost function (Eq. A2)

E ¼ �l
X

j

P
k

��xkj

��
ffiffiffiffiffiffiffiffiffiffiffiP

k

x2
kj

r : (A6)

The first sum extends over all pixels, the fraction is the ratio of the 1-norm to

the 2-norm of the concentration vector at pixel j, and l is the weight of the
additional term. The ratio of the 1-norm to the 2-norm is 1 if only one label is

present at the respective pixel, whereas it is equal to
ffiffiffiffiffi
M
p

if M labels are

present in equal amounts. Hence, the term is smaller the better segregated

the labels are. The prefactor l is used to adjust the importance of the bias

relative to the original cost function. This additional term changes the update

rules for the concentrations to

xrs)
xrsP

i

air

2
64X

i

yisP
k

aikxks

air � l

0
B@ 1�P

k

x2
ks

�0:5

�
xrs

P
k

xks�P
k

x2
ks

�1:5

1
CA
3
75: (A7)

Biasing spectral overlap

To control the overlap of the spectra, we propose to maximize or minimize

the overlap between pairs of spectra in certain circumstances. This can be

achieved by adding the term

F ¼
X
v<w

mvw

X
i

aivaiw (A8)

to the cost function. The matrix elements, mvw, specify the weight of the bias

for each pair of dyes v,w, whereas the second sum over i is simply the scalar

product between the spectra of dyes v and w. With this addition, the update

rule for the spectra changes to

ars)
arsP
j

xsj

�X
j

yrjP
k

arkxkj

xsj �
X

v

mvsarv

	
: (A9)

This shows that during one update, a small fraction of the spectrum of one

dye is subtracted or added (depending on the sign of mvw) from another dye.

The update rules including biases can lead to negative values. However,

for reasonably small biases this is rarely the case. If some concentrations or

spectra do become negative during the update, they should be set to small

positive values.

Multiple excitations

The excitation efficiencies of most labels depend on the wavelength of the

excitation light. Hence, the different labels contribute with different intensi-

ties when the same sample is imaged at different wavelengths. This can be

incorporated into our data model by assigning an excitation efficiency qkl to

dye k at excitation wavelength l. The signal expected at the pixel k in the

emission channel i and excitation wavelength l is given by

yijl ¼
X

k

aikxkjqkl; (A10)

where the sum extends over the labels in the sample. The cost function for

a Poisson distribution of light intensities is essentially unchanged and given by

CðA�;X�;Q�jYÞ ¼
X
i;j;l

"X
k

aikxkjqkl � yijl

ln
�X

k

aikxkjqkl

�#
: ðA11Þ

Methods to infer the three matrices A*, X*, and Q* from the three dimen-

sional data, yijl, are known as PARAFAC (11) or nonnegative tensor
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factorization (21). While PARAFAC often resorts to alternating least-square

updates, NTF algorithms are a direct generalization of NMF that naturally

preserves positivity. For the above cost function, we derived the update rules

ars)
arsP

j;l

xsjqsl

X
j;l

yrjlP
k

arkxkjqkl

xsjqsl

xrs)
xrsP

i;l

airqsl

X
i;l

yislP
k

aikxksqkl

airqlr

qrs)
qrsP

i;j

airxsj

X
i;j

yijsP
k

aikxksqkl

airxrj

:
(A12)

The update rules can be derived in very much the same way as those

described for NMF above. If the spectral channels recorded differ for

different excitations, the summations on the righthand side of Eq. A12

have to be restricted to the relevant channels for each excitation.

It can be shown that the decomposition into A*, X*, and Q* is unique if

the sources differ sufficiently in their spectra, A, their concentration distribu-

tion, X, and their excitation spectra, Q. More specifically, the decomposition

is unique if (11,24)

kðAÞ þ kðXÞ þ kðQÞR2M þ 2; (A13)

where k(A) is the k-rank of matrix A and M is the number of dyes. The

k-rank is the maximal k such that any combination of k columns of A has

full rank.

An implementation of the NMF algorithm as an ImageJ plugin can be

obtained at http://www.mh-hannover.de/cellneurophys/poissonNMF.
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gen) for technical assistance.

This work was supported by the Deutsche Forschungsgemeinschaft through

the Research Center Molecular Physiology of the Brain (FZT 103 and EXC

171). Richard A. Neher acknowledges financial support by the National

Science Foundation under grant No. NSF PHY05-51164. Fabian J. Theis

acknowledges financial support by the Helmholtz Alliance on Systems

Biology (project CoReNe).

REFERENCES

1. Giepmans, B. N. G., S. R. Adams, M. H. Ellisman, and R. Y. Tsien.
2006. The fluorescent toolbox for assessing protein location and func-
tion. Science. 3:217–224.

2. Livet, J., T. A. Weissman, H. Kang, R. W. Draft, J. Lu, et al. 2007.
Transgenic strategies for combinatorial expression of fluorescent
proteins in the nervous system. Nature. 450:56–62.

3. Dickinson, M. E., G. Bearman, S. Tille, R. Lansford, and S. E. Fraser.
2001. Multi-spectral imaging and linear unmixing add a whole new
dimension to laser scanning fluorescence microscopy. Biotechniques.
31:1272–1278.
Biophysical Journal 96(9) 3791–3800
4. Bastiaens, P. I., and A. Squire. 1999. Fluorescence lifetime imaging

microscopy: spatial resolution of biochemical processes in the cell.

Trends Cell Biol. 9:48–52.

5. Carlsson, K., N. Aslund, K. Mossberg, and J. Philip. 1994. Simulta-

neous confocal recording of multiple fluorescent labels with improved

channel separation. J. Microsc. 176:287–299.

6. Carlsson, K., and A. Liljeborg. 1998. Simultaneous confocal lifetime

imaging of multiple fluorophores using the intensity-modulated multiple-

wavelength scanning (IMS) technique. J. Microsc. 191:119–127.

7. Gobinet, C., E. Perrin, and R. Huez. 2004. Application of non-negative

matrix factorization to fluorescence spectroscopy. Proc. Eur. Sig. Proc.
Conf. 1095.

8. Shirakawa, H., and S. Miyazaki. 2004. Blind spectral decomposition of

single-cell fluorescence by parallel factor analysis. Biophys. J. 86:1739–

1752.

9. Sutherland, V. L., J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K.

Chawla, et al. 2007. Advanced imaging of multiple mRNAs in brain

tissue using a custom hyperspectral imager and multivariate curve reso-

lution. J. Neurosci. Methods. 160:144–148.

10. Mansfield, J. R., K. W. Gossage, C. C. Hoyt, and R. M. Levenson. 2005.

Autofluorescence removal, multiplexing, and automated analysis

methods for in-vivo fluorescence imaging. J. Biomed. Opt. 10:41207.

11. Bro, R. 1997. PARAFAC. Tutorial and applications. Chemom. Intell.
Lab. Syst. 38:149–171.

12. Neher, R., and E. Neher. 2004. Optimizing imaging parameters for the

separation of multiple labels in a fluorescence image. J. Microsc.
213:46–62.

13. Lee, D. D., and H. S. Seung. 1999. Learning the parts of objects by non-

negative matrix factorization. Nature. 401:788–791.

14. Lee, D. D., and H. S. Seung. 2000. Algorithms for non-negative matrix

factorization. Proc. Neur. Inf. Proc. Syst. 13:556–562.

15. Hirrlinger, P. G., A. Scheller, C. Braun, M. Quintela-Schneider, B. Fuss,

et al. 2005. Expression of reef coral fluorescent proteins in the central

nervous system of transgenic mice. Mol. Cell. Neurosci. 30:291–303.

16. Jung, S., J. Aliberti, P. Graemmel, M. J. Sunshine, G. W. Kreutzberg,

et al. 2000. Analysis of fractalkine receptor CX(3)CR1 function by tar-

geted deletion and green fluorescent protein reporter gene insertion.

Mol. Cell. Biol. 20:4106–4114.

17. Lepecq, J. B., and C. A. Paoletti. 1966. New fluorometric method for

RNA and DNA determination. Anal. Biochem. 17:100–107.

18. Biggiogera, M., and F. F. Biggiogera. 1989. Ethidium bromide- and

propidium iodide-PTA staining of nucleic acids at the electron micro-

scopic level. J. Histochem. Cytochem. 37:1161–1166.

19. Theis, F., K. Stadlthanner, and T. Tanaka. 2005. First results on unique-

ness of sparse non-negative matrix factorization. Proc. Proc. Eur. Sig.
Proc. Conf.

20. Hoyer, P. 2004. Non-negative matrix factorization with sparseness

constraints. J. Mach. Learn. Res. 5:1457–1469.

21. Shashua, A., and T. Hazan. 2005. Non-negative tensor factorization

with applications to statistics and computer vision. Proc. 22nd Int.
Conf. Machine Learning, New York. 792.

22. Schubert, W., B. Bonnekoh, A. J. Pommer, L. Philipsen, R. Bockel-

mann, et al. 2006. Analyzing proteome topology and function by auto-

mated multidimensional fluorescence microscopy. Nat. Biotechnol.
24:1270–1278.

23. Zimmermann, T., J. Rietdorf, and R. Pepperkok. 2003. Spectral imaging

and its application in live cell microscopy. FEBS Lett. 546:87–92.

24. Kruskal, J. B. 1977. Three-way arrays: rank and uniqueness of tri-linear

decompositions, with applications to arithmetic complexity and statis-

tics. Linear Algebra Appl. 18:95–138.

http://www.mh-hannover.de/cellneurophys/poissonNMF
http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)00092-7
http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)00092-7

	Blind Source Separation Techniques for the Decomposition of Multiply Labeled Fluorescence Images
	Introduction
	Nonnegative matrix factorization for fluorescence microscopy

	Materials and Methods
	Implementation and data processing
	Summary of sample preparation and microscopy

	Results
	Single-exposure measurements
	Removing the ambiguity by applying constraints
	Including prior knowledge about spectra
	Post-NMF data processing
	Multiple-exposure measurements

	Discussion
	Appendix
	Segregation bias
	Biasing spectral overlap
	Multiple excitations

	Supporting Material
	Supporting Material
	References


