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Organization

• Lectures every week, Thursday 11.15am
• Exercises every other week, Tuesday or Wednesday

10.15am
• Oral exam at the end of the lecture
• Topics:

• necessary basics in measure theory and statistics
• density estimation and sampling methods
• subspace methods (PCA, ICA, LDA)
• learning and classification approaches (SVM, NN)
• optimization (MRF, PDE)
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Randomized Experiment

Randomized Experiment

A randomized experiment is a process with unknown result,
which can be arbitrarily often repeated.

Example: tossing two dice.

State Space

The state space Ω is the set of all possible outcomes of a
randomized experiment.

Example: Ω = {(i , j) : 1 ≤ i , j ≤ 6}.

Event

An event is a property which can be observed either to hold or
not to hold after the experiment is done. It is a subset of Ω.

Example: A = {(i , j) ∈ Ω : i + j < 9}
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Discrete Probability Space

A triple (Ω,A,P) is called a discrete probability space if
• the state space Ω is not empty and countable.
• A is the power set P(Ω).
• P : A → R is a mapping with the following properties

• P(A) ≥ 0 (A ∈ A)
• P(Ω) = 1
• for each sequence of pairwise distinct sets from A the

σ-additivity holds: P(
∑

n∈N An) =
∑

n∈N P(An)

P is called a probability measure.

Dice Example:
• Ω = {(i , j) : 1 ≤ i , j ≤ 6}
• A = P(Ω) =
{{(1,1)}, {(1,1)(1,2)}, {(1,1)(1,2)(1,3)}, ...}

• P(A) = number of elements in A
36
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Probability Space

σ-Algebra

A σ-algebra A is a system of subsets of Ω if
• A ∈ A ⇒ Ac ∈ A, where Ac = Ω− A = {x ∈ Ω : x /∈ A}

means the complement of A.
• For each sequence (An) of sets from A ∪n∈NAn lies in A.

The elements of A are called events or measurable sets.

A σ-algebra is closed under finite set operations

• A,B ∈ A ⇒ A ∩ B ∈ A
• A,B ∈ A ⇒ A− B ∈ A
• ∅ ∈ A,Ω ∈ A
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Borel σ algebra

The Borel σ algebra Bn consists of all finite unions of In, which
is the set of right half-open intervals in Rn.
Bn = {

∑k
i=1 Ai |k ∈ N,Ai ∈ In}.

Bn is very often used in probability theory, since it contains
almost any element in P(Rn).
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Probability Space

Probability Space

A triple (Ω,A,P) is called a probability space if
• the state space Ω is not empty.
• A is a σ-algebra over Ω.
• P : A → R is a mapping with the following properties

1 P(A) ≥ 0 (A ∈ A) (non-negative)
2 P(Ω) = 1 (normed)
3 for each sequence of pairwise disjoint sets from A the

σ-additivity holds: P(
∑

n∈N An) =
∑

n∈N P(An)

P is a probability measure over the σ algebra A.

In the definition of the discrete probability space the σ algebra
was specified as the power set over Ω.

If instead of condition 2, P(∅) = 0 holds and A is a system of
subsets over Ω, then P is called a measure, (Ω,A) is called a
measurable space and the triple (Ω,A,P) a measure space.

Every probability measure is a measure.
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Example of a Probability Measure

Point Probability Measure

Let (Ω,A) be a state space Ω with σ-algebra A and ω ∈ Ω.
Then µω : A → {0,1},

µω(A) =

{
1, ω ∈ A
0, ω /∈ A

defines a probability measure.

Proof:

• µω(A) ≥ 0
• µω(Ω) = 1
• Let A1, ..,Ak , ... be pairwise disjoint sets in A, then

µω(
∞∑
i=1

Ai ) =

{
1, ∃i : ω ∈ Ai

0, otherwise
=
∞∑
i=1

µω(Ai )
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Summary

• Probability Space (Ω,A,P), A σ-algebra, P probability
measure.

• Probability measure
• P(A) ≥ 0 (A ∈ A)
• P(Ω) = 1
• for each sequence of pairwise distinct sets from A the

σ-additivity holds: P(
∑

n∈N An) =
∑

n∈N P(An)

• For a measure, condition 2 is replaced by P(∅) = 0 and A
does not have to be a σ-algebra.

• Every probability measure is a measure.
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Random Variables

We now aim at transferring a probability measure from one
σ-algebra to another.

Dice Example:
We have the state space Ω = {(k , l) : 1 ≤ k , l ≤ 6} with event
system P(Ω) and the uniform probability measure
P : P{(k , l)} = 1

36 , which make up the probability space
(Ω,P(Ω),P).

We are interested in the sum of the dice defined by the
mapping T : Ω→ Ω′ with T (k , l) = k + l and Ω′ = {2, ..,12}.

The mapping leads to the probability space (Ω′,P(Ω′),P ′). We
are interested in the probability measure P ′.
For A′ ∈ P(Ω′), P ′(A′) is understood as the probability of
P({(k , l) : T (k , l) ∈ A′}) ∈ P(Ω).

For example: P ′({11,12}) = P{(5,6), (6,5), (6,6)} =
P{(5,6)}+ P{(6,5)}+ P{(6,6)} = 3

36 .
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Random Variables

Preimage Mapping

Let T : Ω→ Ω′ be an arbitrary mapping. Then the preimage
mapping T−1 : P(Ω′)→ P(Ω) is defined by

T−1(A′) = {ω ∈ Ω : T (ω) ∈ A′},A′ ∈ P(Ω′)

The preimage of a σ-algebra is a σ-algebra.

T

T−1

(Ω,P(Ω),P)
(Ω′,P(Ω′),P ′)

{7, 9, 11}

{2, 5}

{(1, 1), (2, 3), (3, 2)}

Ω

{(6, 6)}

{(2, 2), (4, 4), (6, 6)}

Ω′

{4, 5, 8}

{12}
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Random Variable

Let (Ω,A) and (Ω′,A′) be measurable spaces. A mapping
X : (Ω,A)→ (Ω′,A′) is called A−A′ measurable if

X−1(A′) = {ω ∈ Ω : X (ω) ∈ A′} ∈ A

Such a measurable mapping X is called a random variable.

Image Measure

Let X : (Ω,A)→ (Ω′,A′) be a random variable and P a
measure over A. Then

P ′(A′) := PX (A′) := P(X−1(A′)), A′ ∈ A

defines a measure over A′. Is P a probability measure then PX
is a probability measure over A′. PX is called the image
measure of P by X.

X

Ω Ω′

A
A′

X−1
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Example

Dice Example:
State spaces Ω = {(k , l) : 1 ≤ k , l ≤ 6} and Ω′ = {2, ..,12} with
power sets as event system and the uniform probability
measure on (Ω,P(Ω)).

Define the mapping X : (Ω,P(Ω))→ (Ω′,P(Ω′)),
X ((k , l)) = k + l . Is X a random variable?
It holds that X−1(A′) = {ω ∈ Ω : X (ω) ∈ A′} ∈ P(Ω) since for
every value in Ω′ we can find two dice results which sum up to
this value. It follows that X is P(Ω)− P(Ω′)-measurable and,
thus, a random variable.
Furthermore, P is a probability measure. Hence, the image
measure PX under X which is defined by PX (A′) = P(X−1(A′))
is a probability measure on (Ω′,P(Ω′)).

For example
PX{2,4,5} = P(X−1{2,4,5}) = P{(k , l) : X (k , l) ∈ {2,4,5}} =
P{(1,1), (2,2), (1,3), (3,1), (2,3), (3,2)} = 6

36 = 1
6 .
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Probability Distribution

The notion ’random variable’ is just a name. It is neither a
variable nor is it random, but a measurable mapping. By
means of a random variable measures can be transferred from
one σ-algebra to another.

Probability Distribution

Let X : (Ω,A,P)→ (Ω′,A′) be a random variable. Then the
image measure PX of P by X is called probability distribution.

Every probability measure can be understood as a distribution,
since there is always a random variable having P as its image
measure: the identical mapping Id : Ω→ Ω. Hence, the notions
probability distribution and probability measure are often used
equivalently.
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Summary

• A random variable is a measurable mapping, which
transfers probability measures from one space to another

• The image measure of a random variable is called
probability distribution

• Every probability measure is a probability distribution by
means of the random variable defined by the identity
mapping.
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Cumulative Distribution Function

Let P be a probability measure on the Borel σ-algebra B. Then
FP : R→ R is called cumulative distribution function of P if

FP(x) = P((−∞, x)), x ∈ R

Example:
Point Measure on B Cumulative Distribution Fct.

µω(A) =

{
0, ω /∈ A
1, ω ∈ A 6

1

Fω

ω
0

Fω(x) =

{
0, x ≤ ω
1, x > ω

Note: a probability distribution is a probability measure defined
on a specific system of sets (a σ-algebra). The cumulative
distribution function is defined for points in R.
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Cumulative Distribution Function

FP(x) = P((−∞, x)), x ∈ R

Properties of Cumulative Distribution Functions

The cumulative distribution function FP of a probability
measure P over B has the following properties
• FP is monotonously increasing
• FP is left-continuous
• limx→−∞ FP(x) = 0
• limx→∞ FP(x) = 1

Each function with these properties uniquely describes a
probability measure.
Each probability measure is defined uniquely by its distribution
function.
P([a,b)) = P(−∞,b)− P(−∞,a) = FP(b)− FP(a)
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Summary

• The cumulative distribution function is defined as:
FP(x) = P((−∞, x)), x ∈ R

• The probability of an element of the Borel σ-algebra B can
be determined by P([a,b)) = FP(b)− FP(a)

• A probability measure and its cumulative distribution
function uniquely determine each other.
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Density Function

Let FP : R→ R be the cumulative distribution function of a
probability measure P over B. A measurable function
f : R→ R+ ∪{∞} is called a density function if and only if

FP(t) =

∫ t

−∞
f (x) dx , t ∈ R

Densities are not unique. However, different densities of the
same probability measure differ only over null sets.

Relationship between probability measures, cumulative
distribution functions and density functions:

P([a,b)) = P((−∞,b))− P((−∞,a))

= FP(b)− FP(a)

=

∫ b

−∞
fP(x) dx −

∫ a

−∞
fP(x) dx

=

∫ b

a
fP(x) dx
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Exponential Distribution

Density Function

fλ(x) =

{
λexp−λx x ≥ 0
0 x < 0

Cumulative Distribution Function

Fλ(x) =

∫ x

−∞
fλ(t) dt = 1− exp−λx
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Normal Distribution

Density Function

f (x) =
1√
2π

exp−
x2
2 , x ∈ R

Cumulative Distribution Function

F (t) =
1√
2π

∫ t

−∞
exp−

x2
2 dx , t ∈ R



Statistical Basics

Claudia Nieuwenhuis

Statistical Basiscs

Probability Spaces and
Measures

Random Variables

Cumulative Distribution
Functions

Density Functions

Moments

Test Theory

Parameter Estimation

Test Experiments

updated 12.1.11 1.24/43

Density of the Image Measure
We now want to transfer the density of a probability measure P
from one σ-algebra to another.
Let P be a probability measure over Bn with density f and
T : (Rn,Bn)→ (Rn,Bn) a measurable mapping. When does a
density of the image measure PT exist?

We have

PT (B′) = P(T−1(B′)) =

∫
T−1(B′)

f dx (B′ ∈ Bn)

Does a density g : Rn → R+ of the image measure PT exist
with

P(T−1(B′)) =

∫
T−1(B′)

f dx =

∫
B′

g dx = PT (B′), for B′ ∈ Bn?

T

T−1

(Ω,P(Ω),P)
(Ω′,P(Ω′),P ′)

{7, 9, 11}

{2, 5}

{(1, 1), (2, 3), (3, 2)}

Ω

{(6, 6)}

{(2, 2), (4, 4), (6, 6)}

Ω′

{4, 5, 8}

{12}
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Density of the Image Measure: Density Transformation Theorem

Let P be a probability measure over Bn with a density function
f , and T : Rn → Rn a measurable mapping for which holds
• T is continuously differentiable.
• The functional determinant ∆T (x) = ∂T

∂x 6= 0 for x ∈ Rn.
• T is injective meaning that the inverse mapping

T−1 : T (Rn)→ Rn exists.
Then T−1 is measurable and a density function g of the image
measure PT is given by

g(y) =

{
f (T−1(y))
|∆T (T−1(y))| y ∈ T (Rn)

0 y ∈ Rn−T (Rn)
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Density Transformation Example

Let X be a random variable distributed according to the
standard normal distribution, i.e. PX = N (0,1), meaning that
the density function of X is given by

f (y) =
1√
2π

exp{−y2

2
}

Let µ, σ ∈ R, σ > 0. The mapping

T (x) = σx + µ

is measurable. It is continuously differentiable, ∆T (x) = σ > 0
and the inverse transform exists T−1(y) = y−µ

σ . Hence, a
density of the image measure PT is given by

g(y) =
f (T−1(y))

|∆T (T−1(y))|
=

1√
2πσ

exp
{
− (y − µ)2

2σ2

}
g is the density of a probability measure, namely of the normal
distribution N (µ, σ2).
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The Normal Distribution

The smaller σ2 the steeper rises the density function. It is
centered at µ.
90% of the area under curve lie within the interval µ± 1.6σ.
95% of the area under curve lie within the interval µ± 2σ.
99% of the area under curve lie within the interval µ± 3σ.
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Summary

• The density f of a probability measure P is defined by
FP(t) =

∫ t
−∞ f (x) dx , t ∈ R

• P([a,b)) =
∫ b

a f (x) dx
• A density of an image measure PX under a random

variable X is given by the transformation theorem.
• The density of the normal distribution N (µ, σ) is given as

the transformed standard normal density under the
random variable T (x) = σx + a
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Moments

Expectation Value

Let (Ω,A,P) be a probability space, f a density of PX and
X : (Ω,A)→ (R,B) a random variable. Then the expectation
value of the random variable X is given by

E(X ) =

∫ ∞
−∞

x f (x) dx

Examples

Exponential Distribution: E(X ) =
∫∞
−∞ x λexp−λx dx = 1

λ

Normal Distribution: E(X ) =
∫∞
−∞ x 1√

2πσ
exp{− (x−µ)2

2σ2 }dx = µ
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Moments

Moments

Let (Ω,A,P) be a probability space, f a density of P and
X : (Ω,A)→ (R,B) a random variable. Then the k -th moment
of the random variable X is given by

E(X k ) :=

∫ ∞
−∞

xk f (x) dx .

The k -th centralized moment is given by

E [(X − E(X ))k ] :=

∫ ∞
−∞

(x − E(x))k f (x) dx

The first moment is the expectation value, the 0-th equals 1.
The second centralized moment is called the variance VP(X ).√

VP(X ) is called the standard deviation.
The k -th (centralized) moment of the probability measure P is
understood as that of the identity random variable IdB.
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Properties of the Expectation Value

Let λ ∈ R,A ∈ Rn×n, then

E(c) = c
E(λX ) = λE(X )

E(X + Y ) = E(X ) + E(Y )

E(AX ) = AE(X )

Translation Theorem for the Variance

Let (Ω,A,P) be a probability space and X a random variable:

V (X ) = E(X 2)− [E(X )]2

Proof

V (X ) = E [(X − E(X ))2]

= E [X 2 − 2XE(X ) + E(X )2]

= E(X 2)− 2E(X )E(X ) + E(X )2

= E(X 2)− E(X )2
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The variance measures the expected squared deviation of a
random variable from its expectation value.

Covariance and Correlation Coefficient

Let X ,Y : (Ω,A,P)→ (R,B) be two random variables with
variance V (X ),V (Y ). Then
• The covariance of X and Y is defined as

Cov(X ,Y ) := E [(X − E(X ))(Y − E(Y ))]

• The correlation coefficient of X and Y is defined as

Cor(X ,Y ) :=
Cov(X ,Y )√
V (X )

√
V (Y )

If the covariance is 0, X and Y are called uncorrelated.
The larger the covariance the more vary X and Y together.
The correlation coefficient is a normalized version of the
covariance and lies between -1 and 1.



Statistical Basics

Claudia Nieuwenhuis

Statistical Basiscs

Probability Spaces and
Measures

Random Variables

Cumulative Distribution
Functions

Density Functions

Moments

Test Theory

Parameter Estimation

Test Experiments

updated 12.1.11 1.33/43

Corollary

• Cov(X ,Y ) = E(XY )− E(X )E(Y )

• Cov(aX + c,bY + d) = abCov(X ,Y )

• Cov(X ,X ) = V (X )

• V (aX + c) = a2V (X )

• V (X + Y ) = V (X ) + V (Y ) + 2Cov(X ,Y )

Uncorrelated Random Variables

For two random variables X and Y the following statements are
equivalent
• Cor(X ,Y ) = 0 (X and Y uncorrelated)
• Cov(X ,Y ) = 0
• E(XY ) = E(X )E(Y )

• V (X + Y ) = V (X ) + V (Y ) (equation by Bienaymé)
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Summary

• EP(X ) =
∫∞
−∞ x f (x) dx

• V (X ) = E(X − E(X ))2 = E(X 2)− E(X )2

• Cov(X ,Y ) := E [(X − E(X ))(Y − E(Y ))]

• Cor(X ,Y ) := Cov(X ,Y )√
V (X)
√

V (Y )

• Cov(X ,Y ) = 0⇔ E(XY ) = E(X )E(Y )⇔ V (X + Y ) =
V (X ) + V (Y )
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Independence

Let (Ω,A,P) be a probability space and (Xi )i∈N a set of
random variables Xi : (Ω,A)→ (Ωi ,Ai ). The random variables
Xi are called stochastically independent, if and only if

P({ω ∈ Ω|X1(ω) ∈ A1, ...,Xn(ω) ∈ An}) =
n∏

i=1

P({ω ∈ Ω|Xi (ω) ∈ Ai}),Ai ∈ Ai

Independent random variables are uncorrelated, but
uncorrelated random variables are not necessarily
independent.
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Marginal Density

Let X = (Y ,Z ) be a random variable and f a density of Px on
R2. Then both PY and PZ have marginal densities on (R,B):

fY (y) =

∫ ∞
−∞

f (y , z) dz fZ (z) =

∫ ∞
−∞

f (y , z) dy

Y and Z are independent if and only if f (y , z) = fY (y)fZ (z).
In general the joint density f cannot be recovered from the
marginal distributions only.

Conditional Density

Let X = (Y ,Z ) be a random variable with density and f a
density of PX on R2 with marginal density fY (y) 6= 0. Then the
density

fc(z|Y = y) =
f (y , z)

fY (y)

is called the conditional density of Z given Y = y .
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Test Theory

Statistical Experiment

Let (H,H) be a measurable space, the sample space, andW a
set of possible probability measures. The set (H,H,W) is
called statistical experiment if there is exactly one among the
probability measures inW which manifests itself through its
sample realizations x ∈ H.

Statistic

Let (H,H) be a sample space and (D,D) a measurable space.
An H-D-measurable mapping T : H→ D is called statistic.

Test Problem

Let (H,H,W) be a statistical experiment. In test theory,W is
partitioned into two subsets: W1 = {P̄} is called the
hypothesis,W2 =W−W1 the alternative. For a given sample
x ∈ H we examine if x is distributed according to the
distribution inW1 or not.
A test is defined as a function ϕ : H→ {0,1} for which
ϕ(x) = 1 if the hypothesis is rejected and ϕ(x) = 0 otherwise.
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Maximum Likelihood Estimation
Let (H,H,W) be a statistical experiment, whereW denotes a
family of probability measures parameterized by Γ,
W = {Pγ |γ ∈ Γ}. We want to find out the parameter describing
the true probability measure behind a given sample realization.
An estimator T is a mapping from the sample space H to the
set of parameters Γ, which assigns to each sample realization
x ∈ H an estimated value of the unknown parameter γ.

Likelihood Function

For x ∈ H the mapping Lx : γ → R+,Lx (γ) =
∏n

i=1 fγ(xi ), γ ∈ Γ
is called the likelihood function for the sample realization x .

Maximum Likelihood Estimator

A maximum likelihood estimator T is an estimator, which for a
given sample realization x ∈ H finds the most likely probability
distribution Pγ by maximizing the likelihood function Lx :

Find T (x) s.t. Lx (T (x)) = sup
γ∈Γ

Lx (γ)
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Maximum A Posteriori

If additionally a prior over the parameters Γ is given, then we
obtain a maximum a posteriori estimator.

Maximum A Posteriori

Maximum Likelihood:

γ̂ML(x) = argmax
γ∈Γ

n∏
i=1

fγ(xi )

Maximum A Posteriori:

γ̂MAP(x) = argmax
γ∈Γ

n∏
i=1

fγ(xi )p(γ)∫
γ∈Γ

fγ(xi )p(γ)dγ
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Test Experiment

Let (H,H,W =W1 ∪W2) be a statistical experiment. A
statistical test proceeds as follows
• Define a test statistic T with known image measure P̄T

under the hypothesis.
• Compute the critical region for values of T under the

hypothesis using the distribution specific quantiles.
• Decide to either fail to reject the hypothesis or reject the

hypothesis.



Statistical Basics

Claudia Nieuwenhuis

Statistical Basiscs

Probability Spaces and
Measures

Random Variables

Cumulative Distribution
Functions

Density Functions

Moments

Test Theory

Parameter Estimation

Test Experiments

updated 12.1.11 1.41/43

χ2-Test

The χ2 test examines if a given sample X = (X1, ...,Xn) is
distributed according to a probability measure P.

χ2-Test

Let (A1, ...,Ak ) be a partition of H into k disjoint subsets. Then
we compute the random vector

Yi =
n∑

j=1

1Ai ◦ Xj ,

which counts the number of samples falling into Ai . The
expected value of Yi under the hypothesis distribution P is

EP(Yi ) =
n∑

j=1

EP(1Ai ◦ Xj ) = nPX (Ai )
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χ2-Test

The Pearson Test Statistic measures the deviation of the
expected value of Yi from the observed value. Small values
support the hypothesis.

T (x) =
n∑

i=1

(Yi (x)− nPX (Ai ))2

nPX (Ai )

The statistic T is asymptotically distributed according to the
χ2(k − 1) distribution. Let t be the (1− α)-quantile of this
distribution. Then

P({x ∈ H : T (x) ≤ t}) = 1− α

If T (x) > t we reject the hypothesis, otherwise we do not reject
the hypothesis.
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P-Values
Sometimes we do not want a binary decision against a
hypothesis.

P-Values

A p-value is the minimum significance level α for which the
null-hypothesis is rejected given the value of the test statistic
T (x).

v(X ) = inf{α ∈ [0,1] : ϕα(T (X )) = 1}

The larger v(X ) the more conform is the value T (X ) with the
assumed probability measure.
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