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Objective

Task: Prediction of successive states of one or several objects
given some kind of control input and measurements for each
state.

For example: We want to automatically park a car. We only
approximately know its initial location. We have sensor
information (measurements) indicating the distance to the
nearest obstacles and control commands which move the car.
The sensor information contain errors. The location of the car
after moving is not exactly known. So we have uncertainties in
the measurements and in the actions. We want to estimate a
probability distribution over all possible locations (states) of the
car.
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Objective

We have:

• A system whose state cannot be measured directly (the
car’s location)

• Measurements of the system (obstacle distances)
• Control commands which influence the system (steering

commands)
• Uncertainty in mesurements and actions

We search for:
The current state of the system (the location of the car) if all
measurements and actions in previous time steps are known.
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Defitions

• State: xk
State of the system at time step k

• Measurement zk
Measurement of specific aspects of the system at time
step k

• Control commands uk
Actions or control commands given to the system at time
step k
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Measurement Model

Motion Model
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Dynamic systems can be described by two equations.

State Transition Equation

The system is a Markov Process, which means that the
probability of the current state of the system is defined only by
its previous state xk−1, the last motion control command uk−1
and state noise vk−1. f is called the evolution equation, which
describes the transition from state xk−1 to xk under uncertainty.

xk = fk (xk−1,uk−1, vk−1)

Measurement Equation

The measurement zk which we obtain at a state xk depends on
this state, the control command uk and measurement noise nk
under uncertainty.

zk = hk (xk ,uk ,nk )
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Two Assumptions

We assume a first order Markov Process, which means that
the current state only depends on the previous state instead of
all previous states. For a given P(x0) that means:

P(xk |x1, ..., xk−1) = P(xk |xk−1)

We assume that the observations zk are conditionally
independent given the state

P(zk |zk−1, xk ) = P(zk |xk )

Bayesian Approaches

A Bayesian Approach constructs the posterior probability
density function of a state given all measurements.

P(xk |z1, ..., zk )

Based on this posterior, we can compute expectation values,
MAP-estimates, mean values, the modes of the posterior,... to
estimate the state of the system.
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State Transition Equations
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The Posterior Distribution

P(xk |z1, ..., zk ) =
P(zk |xk ) P(xk |z1, ..., zk−1)

P(zk |z1, ..., zk−1)

By the Chapman-Kolmogorov equation we obtain for the prior

P(xk |z1, ..., zk−1) =

∫
P(xk |xk−1) P(xk−1|z1, ..., zk−1) dxk−1

We finally obtain the posterior probability

P(xk |z1, ..., zk ) =
P(zk |xk )

∫
P(xk |xk−1) P(xk−1|z1, ..., zk−1) dxk−1

P(zk |z1, ..., zk−1)

The posterior probability consists of

• P(zk |xk ) : given by measurement model

• P(xk |xk−1) : given by motion model

• P(xk−1|z1, ..., zk−1) : posterior distribution from previous
time step
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Representing the Probability Distribution

P(xk |z1, ..., zk ) =
P(zk |xk )

∫
P(xk |xk−1) P(xk−1|z1, ..., zk−1) dxk−1

P(zk |z1, ..., zk−1)

This is only a theoretical solution, the integrals are not tractable!

Two different concepts:

• Make restricted assumptions on the posterior distribution:
Kalman Filter

• Represent the posterior distribution by a set of randomly
chosen weighted samples: Particle Filter
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Bayes Filters

The different implementations of Bayes Filters strongly differ in
their representation of the posterior probability P(xk |z1, ..., zk ).
Continuous Representation

• Kalman Filter (approximates posterior by a single
Gaussian, assumes linear system dynamics)

• Extended Kalman Filter (approximates posterior by a
single Gaussian, assumes non-linear system dynamics)

Discrete Representation
• Particle Filter (approximates posterior by a set of particles

whose density represents the posterior)
• Grid Representation (approximates posterior by a grid with

piecewise constant patches)
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Kalman Filters

• Most widely used variant of Bayes Filters
• Approximate posterior by Gaussian (which is fully

described by its mean and covariance matrix)
• Optimal under the following assumptions

• Initial pdf P(x0) is unimodal Gaussian
• Measurement equation (zk = hk (xk , uk , nk )) and state

transition equation (xk = fk (xk−1, uk−1, vk−1)) are linear with
independent Gaussian noise

Advantages
Efficiency: complexity is polynomial in the dimensionality of
state space and observations

Disadvantages
Allows to represent unimodal posteriors only→ restriction to
single-object tracking
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Particle Filter

• Represent posterior by a set of particles - the more
densely distributed the higher the posterior at this location

• Converge to the true posterior even in non-Gaussian,
non-linear systems

Advantages

• Ability to represent arbitrary posteriors→ multi-object
tracking

• Very efficient since they focus their particles in regions of
space with high likelihood

• Much faster than Kalman Filters (near realtime)
• Much simpler than Kalman Filters

Disadvantages
Complexity grows exponentially in the dimension of the state
space
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Kalman Filter Idea

Kalman filters yield optimal solutions to the state estimation
problem, but only if strong assumptions hold.

• The prior distribution P(xk−1|z1, ..., zk−1) is Gaussian.
• State noise vk and measurement noise nk are Gaussian.
• The transition equations are linear and thus can be

expressed by matrices.

xk = Fxk−1 + vk−1

zk = Hxk + nk



Bayes Filters

Claudia Nieuwenhuis

Bayesian Filters

Kalman Filters

Particle Filter

updated 20.11.12 4.17/30

P(xk |z1, ..., zk ) = η P(zk |xk ) P(xk |z1, ..., zk−1)

Kalman Filter Assumptions

xk = Fxk−1 + vk−1

zk = Hxk + nk

vk ∼ N (0,Q)

nk ∼ N (0,R)

We assume a Gaussian distribution for the prior probability

P(xk−1|z1, ..., zk−1) = N (µk−1,Σk−1)

Then the transition equation effects the mean and covariance
of the distribution and we obtain

P(xk |z1, ..., zk−1) = N (µ̄k , Σ̄k )

µ̄k = Fµk−1 + 0
Σ̄k = FΣk−1F T + Q
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P(xk |z1, ..., zk ) = η P(zk |xk ) P(xk |z1, ..., zk−1)

Kalman Filter Assumptions

xk = Fxk−1 + vk−1

zk = Hxk + nk

vk ∼ N (0,Q)

nk ∼ N (0,R)

P(zk |xk ) = N (Hxk ,R)

P(xk |z1, ..., zk ) = N (µk ,Σk )

µk = µ̄k + K (zk − H µ̄k )︸ ︷︷ ︸
estimation error of zk

Σk = Σ̄k − KHΣ̄k

K = Σ̄k HT (H Σ̄k HT + R︸ ︷︷ ︸
Cov(zk )

)−1
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Particle Filter

P(xk |z1, ..., zk ) = η P(zk |xk )

∫
P(xk |xk−1) P(xk−1|z1, ..., zk−1) dxk−1

We assume again that the measurement model P(zk |xk ) and

the motion model P(xk |xk−1) is given.

Particle Filter Idea

The prior distribution P(xk−1|z1, ..., zk−1) cannot be
computed. For Particle Filtering the idea is to represent it by a
large set of samples, which approximate the true distribution.
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P(xk |z1, ..., zk )︸ ︷︷ ︸
(4)

= η P(zk |xk )︸ ︷︷ ︸
(3)

∫
P(xk |xk−1)︸ ︷︷ ︸

(2)

P(xk−1|z1, ..., zk−1)︸ ︷︷ ︸
(1)

dxk−1

Algorithm

(1) Draw particle x (i)
k−1 from prior distribution

P(xk−1|z1, ..., zk−1) of particles

(2) Predict new particle location x (i)
k from motion model

P(xk |xk−1)

(3) Compute importance factor for each sample x (i)
k from

measurement model P(zk |xk )

(4) Sample from the new particle distribution
(

x (i)
k

)
i=1,...,n

based on the particle’s importance factors to obtain the
posterior distribution P(xk |z1, ..., zk )
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Importance Factor Computation:
The weight of a particle (its importance factor) is computed
according to the measurement model. The higher the
probability P(zk |xk ) of a particle at location xk for producing the
current measurement zk the higher is its importance weight.

Resampling:
Sample (with replacement!) n times (= number of particles,
which stays the same) from the importance factor weighted
particle distribution. A particle is chosen with probability of its
weight (its importance factor). Particles with heigh weights may
be chosen several times as identical copies of the same
sample (giving larger weight to the posterior at this location).
Particles with low weights may not be chosen and disappear
from the distribution. The generated new sample set
represents the posterior distribution, which is the prior for the
time step k + 1.
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Particle Filter Algorithm

(1) Prior distribution
represented by
samples, e.g.
uniform distribution

(2) The particles move
according to the
motion model, e.g.
Gaussian here

(3) Importance factor
computation based
on current
measurement
P(zk |xk )

(4) Resampling
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Multi-Person-Tracking

Typical Motion Models
• if both motion distance and direction are

known
• if motion distance is known, but direction

not
• if motion distance and direction is

unknown
Typical Measurement Models

• Face structure (e.g.Principal Component
Analysis)

• Head-shoulder silhouette
• Skin color detector
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Multi-Person-Tracking

• Shows the projection of the
samples onto the horizontal
translation axis

• Distribution of n = 1000 samples
per time-step is used

• Depicts how the state denstiy
evolves as tracking progresses

• Initialization with Gaussian at time
step 0

• Distribution rapidly collapses
down to three peaks - maintained
even during temporal occlusion

• Algorithm takes account of motion
of all three people, represents
multimodal distribution effectively
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Multi-Person-Tracking
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A robot is located in a hall with three doors. It can recognize
doors, but it does not know its initial location. At the beginning
the robot’s position is uncertain over the hall.
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The robot can recognize doors, which is reflected by the sensor
model in the middle. Since it knows that it is standing in front of
a door, the particles receive stronger weights at the door
locations due to the measurement model (importance factors).
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The robot moves to the right according to the motion model, so
the particles move to the right as well. By means of importance
sampling locations with particles with high importance receive
more particles.



Bayes Filters

Claudia Nieuwenhuis

Bayesian Filters

Kalman Filters

Particle Filter

updated 20.11.12 4.29/30

The sensor model indicates the door locations. Only at the
location of the second do the measurement model and a large
amount of particles fall together. So the probability is very high
that the robot is standing in front of the second door.
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The robot moves again to the right and the particles with it.
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