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What is a ’good’ subspace?
• Principal Component Analysis

• Unsupervised, i.e. data is not associated with classes for
classification

• We find an orthogonal coordinate system, i.e. a basis of the
subspace

• The redundancy in the dataset is minimized
• Linear Discriminant Analysis

• Supervised, i.e. the data points are associated with classes
• We find an orthogonal coordinate system, i.e. a basis of the

subspace
• The redundancy in the dataset is minimized

• Independent Component Analysis
• Unupervised, i.e. the data points are not associated with

classes
• We find linear basis vectors, which are not necessarily

orthogonal
• The independencd of different datapoints is maximized
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To reduce the dimension of the sample data we can use PCA.
If we have classified training data, this method is, however,
suboptimal.
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Linear Discriminant Analysis

We first start out with only two classes...
We want to find a projection of the data, which satisfies the
following goals

• The means of the two classes are as far apart as possible
• The data samples of each class lie as close together as

possible
To project a data sample x onto a vector w in 2D, we compute
the scalar product wT x .
Let the classes be denoted by Ci with original mean µi and
Covariance matrix Σi before projection.
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Within-Class Scatter Matrix

After projection onto direction w the scatter of the samples
within each class is measured by

s̃i
2

=
∑
y∈C̃i

(y − µ̃i )
2 =

∑
x∈Ci

(wT x − wTµi )
2 = wT Σiw

The sum of the scatter over both classes is given by

s̃1
2

+ s̃2
2

= wT Σ1w + wT Σ2w = wT (Σ1 + Σ2)w =: wT Sw w .

The within-class scatter matrix Sw is defined as the sum of
the original covariance matrices of the samples in each class.
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Between-Class Scatter Matrix
After projection onto direction w the scatter of the means of all
classes (between class scatter) is given by

m̃ = (µ̃1 − µ̃2)2 = wT (µ1 − µ2)(µ1 − µ2)T w =: wT SBw

SB is called the between-class scatter matrix.

Left: projection onto w = µ1 − µ2 is not optimal for separating
the samples of the two classes.
Right: projection onto w which minimizes the within class
scatter s̃1

2
+ s̃2

2 and maximizes the between class scatter m̃.
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Fisher’s Discriminant

We want to maximize the scatter between different classes and
minimize the scatter within each class. So Fisher proposed to
maximize the following function

J(w) =
wT SBw
wT SW w

with respect to w . To find the maximum we differentiate and
equate to zero.

dJ
dw

= 0⇔

S−1
w SB︸ ︷︷ ︸
=:A

w = J(w)w

Provided that Sw is invertible, we have to find the eigenvector
with maximum eigenvalue of matrix A to maximize J(w).
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LDA Example
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LDA Example
The LDA projection is obtained by solving the following
eigenvalue problem
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Generalization to multiple classes: within-scatter matrix
For multiple classes C1, ...,Ck the within-scatter matrix is
computed in the following way:

Sw =
k∑

i=1

Σi

Σi =
1

ni − 1

∑
x∈Ci

(x − µi )(x − µi )
T , µi =

1
ni

∑
i∈Ci

xi



Subspace Methods

Claudia Nieuwenhuis

Subspace Methods

updated 12.12.12 6.15/20

Generalization to multiple classes: between-scatter matrix
For multiple classes C1, ...,Ck the between-scatter matrix is
computed in the following way:

SB =
k∑

i=1

SBi :=
k∑

i=1

Ni (µi − µ)(µi − µ)T

µ =
1
N

∑
x∈C1,...,Ck

x
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Linear Discriminant Analysis

In multiple dimensions, we now want to find the matrix W
containing k − 1 columns, which maximizes the following ratio

J(W ) =
det(W T SBW )

det(W T Sw W )

Since the projection is no longer a scalar, the determinant is
used. In multiple dimensions, the optimization leads to the
same eigenvalue equation

S−1
w SB︸ ︷︷ ︸
=:A

W = J(w)W .

Hence, the matrix W consists of the k − 1 eigenvectors with
largest eigenvalues of A in its columns.
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LDA Example
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LDA Example
The LDA projection is obtained by solving the following
eigenvalue problem
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