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What is a 'good’ subspace?
¢ Principal Component Analysis
e Unsupervised, i.e. data is not associated with classes for
classification
¢ We find an orthogonal coordinate system, i.e. a basis of the Subopace Mlhods
subspace
e The redundancy in the dataset is minimized
e Linear Discriminant Analysis
e Supervised, i.e. the data points are associated with classes
¢ We find an orthogonal coordinate system, i.e. a basis of the
subspace
e The redundancy in the dataset is minimized
¢ Independent Component Analysis
e Unupervised, i.e. the data points are not associated with
classes
e We find linear basis vectors, which are not necessarily
orthogonal
e The independencd of different datapoints is maximized
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To reduce the dimension of the sample data we can use PCA.
If we have classified training data, this method is, however,
suboptimal.
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We first start out with only two classes...
We want to find a projection of the data, which satisfies the
following goals

e The means of the two classes are as far apart as possible

e The data samples of each class lie as close together as
possible

To project a data sample x onto a vector w in 2D, we compute
the scalar product w'x.

Let the classes be denoted by C; with original mean u; and
Covariance matrix X; before projection.
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Within-Class Scatter Matrix

After projection onto direction w the scatter of the samples
within each class is measured by

58 =Y (=il =Y (wix—wim) = witw
yeél. xeCj
The sum of the scatter over both classes is given by
§P4+ 82 =wisyw+ wSow=w(Z + S)w = w’S,w.

The within-class scatter matrix S, is defined as the sum of
the original covariance matrices of the samples in each class.
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Between-Class Scatter Matrix
After projection onto direction w the scatter of the means of all

classes (between class scatter) is given by -
[ subspace Methods
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i = (fir — fi)? = w (1 — p2)(p1 — p2)'w =: w’ Sgw

Sg is called the between-class scatter matrix.
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Left: projection onto w = uy — 2 is not optimal for separating
the samples of the two classes.
Right: projection onto w which minimizes the within class

scatter s"12 + s"22 and maximizes the between class scatter m.
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Fisher’s Discriminant R
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We want to maximize the scatter between different classes and -
minimize the scatter within each class. So Fisher proposed to
maximize the following function  Subspace Methods

w’ Sgw
wTSyw

J(w) =

with respect to w. To find the maximum we differentiate and
equate to zero.

dJ

aw — 0°
S,'Sgw = Jw)w
——

=A

Provided that S,, is invertible, we have to find the eigenvector
with maximum eigenvalue of matrix A to maximize J(w).
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— Samples for class o, : X;=(x,x,)={(4,2),(2,4),(2,3),(3,6),(4,4)}

- Sa.mple for class m2 X2 (Xl,xz) {09, 10) (6 8), (9 5),(8,7),(10,8)}
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LDA Example Subsp.ace.Me!hods.
The LDA projection is obtained by solving the following Claudia Nieuwenhuis

eigenvalue problem
S, S, w=Aw
[ subspace Methods

=8}/, - |=0
33 —0.3)(29.16 20.52 1 0
= -A
—03 55 ) (2052 14.44 0 1

_ 0.3045 0.0166J(29‘16 2052}_}{1 0)
0.0166 0.1827 ) 20.52 14.44 0 1
9.2213-4  6.489
4.2339 2.9794—,1)
=(9.2213-1)(2.9794— 1)~ 6.489x4.2339 =0

= 2 ~12.20072=0= A(A-12.2007)=0
= 4, =0,4, =12.2007

=
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jection

LDA - Pro
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Generalization to multiple classes: within-scatter matrix
For multiple classes C;, ..., Cx the within-scatter matrix is
computed in the following way:

k
S, = Zz,
i=1
1 ; 1
L= g 2= =) X
X€C; i€C;

\ 5,

3o
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Generalization to multiple classes: between-scatter matrix
For multiple classes Cq, ..., Cx the between-scatter matrix is
computed in the following way:

k k
Sg = .ZSB" :IZNi(uf*u)(ui*u)T

2o
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Linear Discriminant Analysis

In multiple dimensions, we now want to find the matrix W
containing k — 1 columns, which maximizes the following ratio

_ det(WTSgW)
(W) = Getws,, )

Since the projection is no longer a scalar, the determinant is
used. In multiple dimensions, the optimization leads to the
same eigenvalue equation

S, 'SgW =J(w)W.
N—_——
=:A
Hence, the matrix W consists of the k — 1 eigenvectors with
largest eigenvalues of A in its columns.
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X1 = the first feature
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The LDA projection is obtained by solving the following

eigenvalue problem

4
: Imeaj Wv_HOUUM - Y
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Classes PDF : using the first projection vector with eigen value
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Classes PDF : using the second projection vector with eigen value =
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