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Overview

1 Support Vector Machines
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Support Vector Machines

We want to classify unknown data points given a training
dataset (x1, ..., xN) with indicated classes (t1, ..., tN) ∈ {−1,1}.
Support Vector Machines define hyperplanes, which separate
the data points. Such a hyperplane is given by

y(x) = wT x + b

We want to find the ’optimal’ hyperplane for class separation.
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Support Vector Machines
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Support Vector Machines
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Support Vector Machines

Optimal hyperplane means that the margin (the perpendicular
distance between the decision boundary and the closest point
of the data points) is maximized.

Distance d between point xn and plane defined by y(xn):

y(x) = wT x + b ⇒ dn =
tny(xn)

‖w‖

To maximize the margin, we solve the optimization problem

argmax
w,b

{
1
‖w‖

min
n

[tn(wTφ(xn) + b)]
}

where φ means a kernel function which allows for non-linear
decision boundaries.
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Kernel Functions
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Optimization Problem

Note that any rescaling κw and κb does not change the
distance of any point from the hyperplane. Hence, the
hyperplane is not uniquely defined. This degree of freedom
can be used to set

min
n

tn(wTφ(xn) + b) = 1 (1)

for the point closest to the hyperplane. It follows for all points
that

tn(wTφ(xn) + b) ≥ 1 (2)

By definition, there will always be at least one active constraint,
because there will always be a closest point. The optimization
problem then simply requires that we maximize ‖w‖−1, which
is equivalent to minimizing ‖w‖2. This leads to the optimization
problem

argmin
w,b

1
2
‖w‖2

subject to the constraints (2) above.
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Optimization Problem

To solve the constrained optimization problem, we use
Lagrange multipliers to incorporate the inequality constraints
and obtain the Karush-Kuhn-Tucker conditions

L(w ,b,a) =
1
2
‖w‖2 −

N∑
n=1

an{tn(wTφ(xn) + b)− 1}, s.t .

tn(wTφ(xn) + b)− 1 ≥ 0
an ≥ 0
an{tn(wTφ(xn) + b)− 1} = 0 (3)

We minimize over w and b.
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Optimization Problem

Taking the derivative with respect to b and w and eliminating b
and w from L(w ,b,a) leads to the following maximization
problem in a

L̃(a) = −1
2

N∑
n=1

N∑
m=1

antnamtmk(xn, xm) +
N∑

n=1

an, s.t .

an ≥ 0
N∑

n=1

antn = 0

where k(xn, xm) := φ(xn)
Tφ(xm). This is a quadratic

programming problem, which can be solved for a.
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After computing a we can compute w from

w =
N∑

n=1

antnφ(xn)

From the complementary slackness condition

an{tn(wTφ(xn) + b)− 1} = 0

we see that either an = 0 or the inequality constraint is exactly
fulfilled. Only the set of points S, for which the constraint is
exactly fulfilled and an > 0, play a role in the classification of
points by means of

y(x) = wTφ(x) + b =
N∑

n=1

antnk(x , xn) + b.

If y(x) is negative x belongs to one class, otherwise to the
other.
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Support Vectors

These points in the set S are the so-called support vectors,
which lie directly on the margin boundary. For these points we
have (see (1))

tny(xn) = tn(wTφ(xn) + b) = 1.

b can be computed from one of these points. To make the
computation more stable we multiply by tn, use t2

n = 1 and use
averaging

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn, xm)

)
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Kernel Functions
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Overlapping Class Distributions
So far, we have assumed that the classes are linearly
separable in the feature space. This may not be the case. We
introduce variables ξn, which allow for classification errors.

ξn = max{|tn − y(xn)|,0}

ξn


= 0 xn lies on or outside the correct margin boundary
< 1 xn lies within the margin but is classified correctly
= 1 xn lies on the class separating plane
> 1 xn is classified incorrectly
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Overlapping Classes

Instead of the original constraints (2)

tn(wTφ(xn) + b) ≥ 1

we obtain the relaxed constraints

tn(wTφ(xn) + b) ≥ 1− ξn, ξn ≥ 0 (4)

We want to maximize the margin and softly penalize points
lying on the wrong side of the margin boundary. This leads to
the new target function

1
2
‖w‖2 + C

N∑
n=1

ξn

which is to be minimized subject to the above constraints (4).
C can be understood as a regularization parameter, which
determines the influence of misclassified points.
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Optimization Problem

The corresponding Lagrangian is given by

L(w ,b,a) =
1
2
‖w‖2+C

N∑
n=1

ξn−
N∑

n=1

an{tny(xn)−1+ξn}−
N∑

n=1

µnξn,

tny(xn)− 1 + ξn ≥ 0, ξn ≥ 0 ("primal feasibility")
an ≥ 0, µn ≥ 0 ("dual feasibility")
an(tny(xn)− 1 + ξn) = 0, µnξn = 0 ("comp. slackness") (5)
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Optimization Problem

Eliminating w , b and ξ leads to the same optimization problem
as before with slightly different constraints

L̃(a) = −1
2

N∑
n=1

N∑
m=1

antnamtmk(xn, xm) +
N∑

n=1

an, s.t .

0 ≤ an ≤ C
N∑

n=1

antn = 0
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Support Vectors

For classification we have again

y(x) =
N∑

n=1

antnk(x , xn) + b.

As before, only the support vectors with an > 0 play an
important role for the classification of new points x .
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After solving the optimization problem for the parameters a, we
obtain the same hyperplane parameter equations as before -
but computed from different values for an.

w =
N∑

n=1

antnφ(xn)

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn, xm)

)
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