
Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.1/18

Chapter 9
Classification
Neural Networks

Statistical Methods and Learning in Computer Vision
WS 2012/13

Claudia Nieuwenhuis
Lehrstuhl für Computer Vision and Pattern Recognition

Fakultät für Informatik
Technische Universität München



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.2/18

Overview

1 Neural Networks



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.3/18

Neural Networks

Neural Networks can be used for
• classification
• data quantization

They are typically used if the amount of input data is very large,
but no formula or method is available how this input data is
mapped to the correct outcome. If the complexity of the
problem is overwhelming but it is easy to create a lot of sample
datasets neural networks should be considered as a solution to
the problem.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.4/18

Neural Networks

The idea of Neural Networks is based on the way information is
processed in the human brain. The brain consists of 10 billions
of neurons. Information is processed by transmitting electric
impulses over the axons. The axon is split at the end forming
several synapses. A neuron only transmits its activation to
other neurons if the electric potential exceeds a certain
threshold.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.5/18

Neural Networks

Computers are not yet able to process information completely
parallely as in the human brain. Therefore, neural networks are
organized in layers.

• input layer: as many neurons as input variables to the
network

• hidden layers: one or several layers with an arbitrary
number of neurons

• output layer: returns the output of the network



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.6/18

Neurons



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.7/18

Neurons

A neuron can be thought of as an information processing unit.
The activation of the neuron is computed by the activation
function, usually the scalar product of the incoming signals
and the weight vector of the neuron. The weights are important
for the specialization of the neuron to a given task, since they
assign more or less importance to an incoming impulse.
Weights can also be negative.
The resulting activation of the neuron is passed to the transfer
function, which determines the output value which is
transmitted to the next layer or returned by the output layer.
Common transfer functions are the Heaviside function or the
sigmoid function.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.8/18

Activation Function



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.9/18

Transfer Functions

O(x) =

{
1, x ≥ θ

0, x < θ
O(x) = 1

1+exp−x



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.10/18

Learning

The objective of learning is to adapt the weights of the neurons
to the data presented to the network according to some
learning strategy. The weights are adapted so that the output
corresponds to the training data. Neural Networks are then
able to generalize the learned information to unknown data
samples.

• Supervised Learning: the correct output values which the
network is supposed to return are known and can be
compared to the output values of the network, e.g. in hand
sign recognition. Typical representatives are the multilayer
perceptron.

• Unsupervised Learning: the network approximates the
structure of the data by forming clusters, which mirror the
density of the input data in any point of the feature space.
Typical representatives are Kohonen maps and the Neural
Gas.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.11/18

Supervised Learning

It can be shown that every solvable classification problem can
be learned by a multilayer perceptron. If the classes are

• linearly separable, no hidden layer is necessary.
• separable by convex regions, one hidden layer is

necessary.
• arbitrary, two hidden layers are necessary.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.12/18

Error Backpropagation Algorithm

The error backpropagation algorithm minimizes the mean
squared error at the n output neurons given the teaching vector
t and the network output yL based on L layers.

E(y , t) =
1
2

n∑
i=1

(ti − yL
i )

2

This error is recursively propagated back to adapt the weights
of the neurons in the previous layers. The adaptation depends
on the output error and the derivative of the transfer function at
each neuron.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.13/18

Network Size and Training

If the network is too large (i.e. too many layers or neurons)
overfitting occurs (’learning by heart’).
If the network is too small underfitting becomes a problem.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.14/18

Validation

Solution: Separation of the training data into training and
validation data. Training goes on based on the training data
only until the error in the validation data increases.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.15/18

Momentum Term

To improve the speed and quality of the gradient descent
approach, a momentum term can be used. Each time a weight
is adapted, a certain percentage of the previous adaptation is
added. This has three advantages

• The speed of the optimization increases along flat
plateaus.

• Oscillations in narrow valleys can be avaoided.
• Local minima can be avoided.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.16/18

Unsupervised Learning

Unsupervised networks are used for finding optimal data
representations based on feature vectors. During the
adaptation process the feature vectors distribute themselves in
the data space. New data points can be classified based on
the closest neuron in feature space.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.17/18

Self-Organizing Networks

Given a probability distribution P(x) of data vectors x . We want
to represent the data vectors as good as possible by a fixed
number of neurons. Each neuron represents a feature vector,
which is adapted to the data.
At each time step a randomly chosen feature vector is
presented to the network. The distance of each neuron’s
feature vector to the given data vector is evaluated and sorted
leading to indices i1 (for the closest) to in (for the farthest
neuron). The closer the feature vector is to the presented data
vector the more it is adapted to the presented data point.

w t+1
ik = w t

ik + εexp− k
λ (x−w t

ik
)

Here, ε is the adaptation step size and λ the neighborhood
range.



Classification

Claudia Nieuwenhuis

Neural Networks

updated 09.01.13 9.18/18

Self-Organizing Maps

Two main types of self-organizing networks are known:
Kohonen Maps and Neural Gas. Kohonen Maps preserve the
neighborhood structure between neurons (e.g. initialization
becomes less important), whereas the neural gas neurons are
free to move in space allowing for arbitrary topologies.

Kohohnen Maps Neural Gas


	Neural Networks

