TU MÜnchen
Fakultät für Informatik
Dr. Claudia Nieuwenhuis
Eno Töppe

Statistical Methods and Learning in Computer Vision Winter term 2012

Homework Assignment 3 - November 21th, 2012

Exercise 1. (Kalman Filter)
For bivariate normal distributions the following theorem holds:

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\left(\mu_{1}, \mu_{2}\right),\left(\begin{array}{c}
\Sigma_{11} \\
\Sigma_{21} \Sigma_{12} \\
\Sigma_{22}
\end{array}\right)\right)
$$

if and only if

$$
p\left(x_{1} \mid x_{2}\right)=\mathcal{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right) \quad \text { and } \quad p\left(x_{2}\right)=\mathcal{N}\left(\mu_{2}, \Sigma_{22}\right)
$$

Now, consider a Kalman filter. Using the notation in the lecture, the probability $p\left(x_{k} \mid z_{1}, \ldots, z_{k}\right)$ is a Gaussian of the form $\mathcal{N}\left(\tilde{\mu_{k}}, \tilde{\Sigma_{k}}\right)$. Derive $\tilde{\mu_{k}}$ and $\tilde{\Sigma_{k}}$. To this end, apply the above theorem to the conditional probability $p\left(z_{k} \mid x_{k}, z_{1}, \ldots, z_{k-1}\right)=\mathcal{N}\left(H x_{k}, R\right)$ and the marginal probability $p\left(x_{k} \mid z_{1}, \ldots, z_{k-1}\right)=\mathcal{N}\left(F \mu_{k}, F \Sigma_{k} F^{T}+Q\right)=\mathcal{N}\left(\overline{\mu_{k}}, \bar{\Sigma}_{k}\right)$ in order to get the joint probability $p\left(z_{k}, x_{k}\right)$. Then, apply the theorem again to $p\left(z_{k}, x_{k}\right)$ in order to derive $p\left(x_{k} \mid z_{1}, \ldots, z_{k}\right)$.

The next exercise class will take place on November 27th, 2012.
For downloads of slides and of homework assignments and for further information on the course see

