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Exercise 1. (Unbiased Estimators for Sample Mean and Variance)

We want to find unbiased estimators for the mean and variance of a given sample set.

Unbiasedness
Let ĝ : H→ Γ be a function, which maps from the sample space H to the parameter space
Γ containing the possible mean and variance values. Let Pγ be the assumed true distribu-
tion of the given samples. Then ĝ is called an unbiased estimator for the parameter γ if
the expection value of the estimator under the true distribution Pγ equals the parameter
to be estimated

EPγ (ĝ(x)) = γ

For example, the mean µ of the Gaussian distribution can be estimated by the sample
mean ĝ(X) = 1

N

∑N
i=1Xi. This estimator is unbiased, since E(ĝ(X)) = µ.

Let
ξγ := EPγ (X), σ2

γ := VPγ (X)

denote the true expectation value and variance of the sample set.

a) Show that

X̄ :=
1

n

n∑
i=1

Xi

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2

are unbiased estimators for the sample mean and variance.

b) Show that the variance of the X̄ estimator is given by Vγ(X̄) = 1
n
σ2
γ

c) Show that the maximum likelihood estimators of the mean and variance of the
one-dimensional Gaussian distribution with density

f(z) =
1√
2πσ

exp−(z − a)2

2σ2



are given by

a =
1

n

n∑
i=1

Xi

σ2 =
1

n

n∑
i=1

(Xi − a)2

This demonstrates that for Gaussian distributions the maximum likelihood estimate
is unbiased for the mean, but biased for the variance.

Exercise 2. (Principal Component Analysis)

We want to derive an alternative formulation of Principal Component Analysis (PCA) in
terms of projection error minimization.
We start from a complete orthonormal set of D-dimensional basis vectors {ui} satisfying
uTi uj = δij. Since this basis is complete each data point can be represented exactly by a
linear combination of the basis vectors

xn =
D∑
i=1

αniui =
D∑
i=1

(xTnui)ui

ForM < D dimensions the linear subspace can be represented by the firstM basis vectors.
Each data point can now be approximated by

x̃n =
M∑
i=1

zniui +
D∑

i=M+1

biui.

Here the zni depend on the particular data point, the bi are constant for all data points.
The second summand can be interpreted as a translation orthogonal to theM -Dimensional
subspace. Our goal is to find {ui}, {zni} and {bi}, which minimize the projection error
of the data points onto the subspace. That means we want to minimize the distortion
measure

J =
1

N

N∑
n=1

‖xn − x̃n‖2.

To do this, prove the following steps

a) Take the derivative of J with respect to zni and bi.

b) Compute the projection error xn − x̃n by using the previous solution for zni and bi.

c) Introduce the projection error into the distortion measure and express J by means
of the sample covariance matrix

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T



d) Show for a 2-dimensional subspace (D=2, M=1) that the solution to the minimiza-
tion of J yields u2 as the eigenvector to the smallest eigenvalue λ2 of S and J = λ2.
To this end, we minimize the following function, which uses a Lagrange multiplier
to ensure basis vectors of length 1

J̃ = uT2 Su2 + λ2(1− uT2 u2)

This result can be generalized to D dimensions: J =
∑D

i=M+1 λi.

This shows that we minimize the projection error by removing the eigenvectors with the
smallest eigenvalues from the orthogonal basis.

The next exercise class will take place on December 4th, 2012.

For downloads of slides and of homework assignments and for further information on the
course see

http://vision.in.tum.de


