
GPU Programming

in Computer Vision

Introduction to Parallel Computing

Evgeny Strekalovskiy, Maria Klodt

Jan Stühmer, Mohamed Souiai

Technical University Munich, Computer Vision Group

Winter Semester 2013/2014, March 3 – April 4

Computer Vision Group

Research

Our Research

Optimization

Math in general

everything needs to broken down into functions,

 basic operations and numbers

Numerics

continuous math on discrete hardware

Programming (serial/parallel)

C/C++, CUDA, Matlab, ...

Engineering

non-convex convex

This Course

Parallel Programming with CUDA

Computer Vision Basics

image filtering (convolution, diffusion, denoising)

regularization (dealing with noise, unique solutions)

Optimization + Numerics

Course Goals

Learn how to program massively parallel

processors and achieve

high performance

functionality and maintainability

scalability across future generations

Acquire technical knowledge required to achieve

above goals

principles and patterns of parallel programming

processor architecture features and constraints

programming API, tools and techniques

Apply this knowledge to implement computer

 vision algorithms efficiently

Course Timeline: 03.03 - 04.04

March 3-10 (this week) : Lecture

4h lectures (attendance mandatory)

programming exercises

groups of 2-3 students

no course on March 4

 (Faschingsdienstag)

March 10-28: Student project

advanced applications

unsupervised

March 31-April 4: Presentations

Lecture Week

Lecture

10-14 (1h lunch pause) each day

attendance mandatory to pass the course

Exercises

14-18 each day

groups of 2-3 students

present solutions

 on next day after the lecture

exercises of March 3: March 5

exercises of March 7: March 10

“Work @ Home” ™

You can access your computer remotely:

 ssh –X p123@atradig789.informatik.tu-muenchen.de

p123: replace with your login

atradig789: replace with your computer name
type hostname to find out the name

Works from within Linux or Mac

for Mac: install XQuartz first (X11 server)

Why Massively Parallel Processing?

A quiet revolution: Performance!

computations: TFLOPs vs. 100 GFLOPs

GPU in every PC – massive volume & impact

Why Massively Parallel Processing?

A quiet revolution: Performance!

bandwidth: ~5x

GPU in every PC – massive volume & impact

Serial Performance Scaling is Over

Cannot continue to scale processor frequencies

no 10 GHz chips

Cannot continue to increase power consumption

can’t melt chip

Can continue to increase transistor density

as per Moore’s Law

How to Use Transistors?

Larger caches … decreasing

Instruction-level parallelism … decreasing

out-of-order execution, speculation, …

Data-level parallelism … increasing

vector units, SIMD execution, …

Intel SSE, GPUs, …

Thread-level parallelism … increasing

multithreading, multicore, manycore

Design Difference: CPU vs. GPU

Different goals produce different designs
CPU must be good at everything, parallel or not

GPU assumes work load is highly parallel

CPU: minimize latency experienced by 1 thread
big on-chip caches

sophisticated control logic

GPU: maximize throughput of all threads
skip big caches, multithreading hides latency

share control logic across many threads, SIMD

create and run thousands of threads

Design Difference: CPU vs. GPU

Different goals produce different designs
CPU must be good at everything, parallel or not

GPU assumes work load is highly parallel

CPU

minimize latency

GPU

maximize throughput

Enter the GPU

Massively parallel

Affordable supercomputing

NVIDIA GPUs

Compute Capability

version number of the hardware architecture

core architecture and incremental improvements

Arch CC GPUs Features (e.g.)

Tesla

(2007)

1.0 8800 GTX, Tesla C870 Basic functionality

1.1 9800 GTX, Quadro FX 580 Atomics in global mem

1.2 GT 240, Quadro FX 1800M Atomics in shared mem

1.3 GTX 285, Tesla C1060 Double precision

Fermi

(2010)

2.0 GTX 480/580, Tesla C2070 Memory cache

2.1 GTX 460, GTX 560 Ti More cores (hardware)

Kepler

(2012)

3.0 GTX 680/770, Tesla K10 Power efficiency, Many cores

3.5 GTX 780/Titan, Tesla K20 Dynamic Parallelism, Hyper-Q

Maxwell

(2014)

4.0? GTX 750, GTX 750 Ti 135% performance/core

200% performance/watt

NVIDIA GPUs

Compute Capability

version number of the hardware architecture

core architecture and incremental improvements

List of features for each Compute Capability:

see NVIDIA Programming Guide: Appendix G.1

NVIDIA GPUs: Current Architecture

15 multiprocessors (up to)

192 Cuda Cores per SM

2880 Cores in total (up to)

Kepler

GPU

Enter CUDA
(“Compute Unified Device Architecture“)

Scalable parallel programming model

exposes the computational horsepower of GPUs

Abstractions for parallel computing

let programmers focus on parallel algorithms

not mechanics of a parallel programming language

Minimal extensions to familiar C/C++

environment to run code on the GPU

low learning curve

CUDA: Scalable Parallel Programming

Provide straightforward mapping onto hardware

good fit to GPU architecture

maps well to multi-core CPUs too

Execute code by many threads in parallel

Scale to 100s of cores & 10,000s of threads

GPU threads are lightweight — create / switch is free

GPU needs 1000s of threads for full utilization

Reference: CUDA Programming Guide

CUDA comes with excellent documentation
doc/pdf in the CUDA folder, have a look!

CUDA Programming Guide

one of the best CUDA references

covers every CUDA feature

provides in-depth explanations

Also: list of all CUDA functions:

CUDA_Runtime_API.pdf

Outline of CUDA Basics

Kernels and Thread Hierarchy

Execution on the GPU

Memory Management

Error Handling And Compiling

See the Programming Guide for the full API

BASIC KERNELS AND

THREAD HIERARCHY

CUDA Definitions

Device: GPU

executes code in parallel

Host: CPU

manages execution on the device

Kernel: C/C++ function executed on the device

executed by many threads

each thread executes the same sequential program

each thread is free to execute a unique code path

Quick Example

CPU: Process subtasks serially one by one:

GPU: Process each subtask in its own thread:

launch enough threads to cover all data

__global__ void vecAdd (float *a, float *b, float *c)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 c[i] = a[i] + b[i];

}

for(int i=0; i<n; i++)

{

 c[i] = a[i] + b[i];

}

Each thread knows its index

Thread Hierarchy

Kernel threads are grouped into blocks

up to 512 or 1024 threads per block

Idea: Threads from the same block can cooperate

synchronize their execution

communicate via shared memory

threads from different blocks cannot cooperate

Allows transparent scaling to different GPUs

All kernel blocks together form a grid

Thread Hierarchy

threads per block:

up to 512 (CC 1.x),

up to 1024 (CC>=2.0)

Blocks can be 1D, 2D, or 3D

Grids can be 1D, 2D, or 3D

CC 1.x: only 1D or 2D

Dimensions set at launch

can be different for each grid

IDs and Dimensions

Threads:

3D IDs, unique within a block

Blocks:

3D IDs, unique within a grid

Built-in variables:

threadIdx, blockIdx

blockDim, gridDim

Array Accesses: Index Calculation

Obtain unique array index from block/thread IDs

threadIdx, blockIdx

blockDim, gridDim

0 1 2 3 4

0

0 1 2 3 4

1

0 1 2 3 4

2 blockIdx.x

threadIdx.x

blockDim.x = 5

threadIdx.x + blockDim.x*blockIdx.x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 array index

Kernel Launch

Usual C/C++ function call, with an additional

specification of grid and block sizes:

 dim3 grid; dim3 block;

three int‘s: block.x, block.y, block.z

Kernel is launched by the CPU
CC 3.x: kernels can launch other kernels

Executed on the GPU

mykernel <<< grid, block >>> (...);

Example: One-dimensional Kernel

__global__ void mykernel (int *a, int n)

{

 int ind = threadIdx.x + blockDim.x * blockIdx.x;

 if (ind<n) a[ind] = a[ind] + 1;

}

int main()

{

 dim3 block = dim3(128,1,1); // 128 threads

 // ensure enough blocks to cover n elements (round up)

 dim3 grid = dim3((n + block.x – 1) / block.x, 1, 1);

 mykernel <<<grid, block>>> (d_a, n);

 // Also possible:

 // launch 4 blocks, each with 128 threads

 mykernel <<<4,128>>> (d_a, n);

}

Example: Two-dimensional Kernel

__global__ void mykernel (int *a, int w, int h)

{

 int x = threadIdx.x + blockDim.x * blockIdx.x;

 int y = threadIdx.y + blockDim.y * blockIdx.y;

 int ind = x + w*y;

 if (x<w && y<h) a[ind] = a[ind] + 1;

}

int main()

{

 dim3 block = dim3(32,8,1); // 32*8 = 256 threads

 // ensure enough blocks to cover w * h elements (round up)

 dim3 grid = dim3((w + block.x – 1) / block.x,

 (h + block.y - 1) / block.y, 1);

 mykernel <<<grid,block>>> (d_A, dimx, dimy);

}

Always Check Validity of Indices

__global__ void mykernel (int *a, int n)

{

 int ind = threadIdx.x + blockDim.x * blockIdx.x;

 if (ind<n) a[ind] = a[ind] + 1;

}

__global__ void mykernel (int *a, int w, int h)

{

 int x = threadIdx.x + blockDim.x * blockIdx.x;

 int y = threadIdx.y + blockDim.y * blockIdx.y;

 int ind = x + w*y;

 if (x<w && y<h) a[ind] = a[ind] + 1;

}

There may be more threads than array elements

Always test whether the indices are within bounds

__global__ void kernel (int *a)

{

 int idx = threadIdx.x + blockDim.x * blockIdx.x;

 a[idx] = 7;

}

__global__ void kernel (int *a)

{

 int idx = threadIdx.x + blockDim.x * blockIdx.x;

 a[idx] = blockIdx.x;

}

__global__ void kernel(int *a)

{

 int idx = threadIdx.x + blockDim.x * blockIdx.x;

 a[idx] = threadIdx.x;

}

Exercise: IDs of Threads and Blocks

Output:

Output:

kernel<<<4,4>>>(d_a);

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Code Executed on GPU: Functions

Special qualifiers to declare GPU functions:

__global__ : kernels

 launched by CPU to run on the GPU

 must return void

__device__ : auxiliary GPU functions

 can only be called on the GPU

 called from __global__ or __device__ functions

__host__ : “normal” CPU C/C++ functions

 can only be called on the CPU

__host__ __device__ : qualifiers can be combined
 callable from CPU and from GPU

Code Executed on GPU: Restrictions

C/C++ with some restrictions

only access to GPU memory

not to CPU memory

can access „pinned“ CPU memory (special allocation needed)

from CUDA 6 and CC 3.0: GPU can access CPU memory

no access to host functions

no variable number of arguments

no static variables in functions or classes

Code Executed on GPU: Features

Many C/C++ features available for GPU code
templates

recursion (CC >=2.0)

overloading
function overloading

operator overloading

classes
stack allocation

heap allocation (CC >= 2.0)

inheritance, virtual functions (CC >= 2.0)

function pointers (CC >= 2.0)

printf() formatted output (CC >= 2.0)

Vector variants of basic types
float2, float3, float4, double2, int4, char2, etc.

float2 a=make_float2(1,2); a.x=10; a.y=a.x;

Blocks: Must Be Independent

Any possible ordering of blocks should be valid

presumed to run to completion without pre-emption

can run in any order (order is unspecified)

can run concurrently OR sequentially

Blocks may coordinate but not synchronize

shared queue pointer: OK

shared lock: BAD … can easily deadlock

Independence requirement gives scalability

Execution of Kernels: Asynchronous

Kernel launches are asynchronous w.r.t. CPU

after kernel launch, control immediately returns

CPU is free to do other work while the GPU is busy

Kernel launches are queued

kernel doesn‘t start until previous kernels are

finished

concurrent kernels possible for CC >= 2.0

(given enough resources)

Explicit synchronization if needed

cudaDeviceSynchronize()

EXECUTION ON GPU

NVIDIA GPU Architecture

16 independent multiprocessors (SMs)

No shared resources except global memory

No synchronization, always work in parallel

Fermi

GPU

(CC 2.x)

Single Fermi SM Multiprocessor

32 CUDA Cores per SM (512 total)
arithmetic/logic operations

16 memory load/store units
(slow) access to off-chip GPU memory

4 Special Function Units
1/X, 1/SQRT(X), SIN, COS, EXP, …

64 KB on-chip shared memory
shared amongst CUDA cores

enables thread communication

NVIDIA GPU Architecture: Current

15 multiprocessors (up to)

192 Cuda Cores per SM

2880 Cores in total (up to)

Kepler

GPU

(CC 3.x)

Warps: Key Architectural Idea

SIMT (Single Instruction Multiple Thread) execution

threads run in groups of 32 called warps

All 32 threads in a warp execute the same

instruction

always, no matter what (even if threads diverge)

Threads are executed warp-wise by the GPU

for each warp, the 32 threads are executed in parallel

warps are executed one after another

but several warps can run simultaneously

up to 2 for CC 2.x, up to 6 for CC 3.x

Thread Hierarchy

Execution of Kernels on the GPU

Blocks are distributed across

 the Multiprocessors (SMs)

Active blocks

are currently executed

reside on a multiprocessor

resources allocated

executed until finished

Waiting blocks

wait to be executed

not yet assigned to a SM

Blocks Execute on Multiprocessors

Each block is executed on one Multiprocessor (SM)

cannot migrate

reason for block independence

Several blocks per SM possible

if enough resources available

SM resources are divided among all blocks

Block threads share SM resources

SM registers are divided up

 among the threads

SM shared memory can be

 read/written by all threads

Execution on each Multiprocessor

Assume there are three blocks on one SM,

 with 128 threads per block:

block 0

128

threads

block 1

128

threads

block 2

128

threads

Execution on each Multiprocessor

Threads from all blocks are divided into warps

In our example:

4 warps from every block (128 threads/32)

12 warps overall on SM (3 blocks * 4 warps/block)

12*32 = 384 threads

Execution on each Multiprocessor

Resources are allocated for all potential warps

the state of every potentially executable warp is

always present on the Multiprocessor, until finished

overall many more potentially executable threads

than CUDA Cores possible

Therefore:

switching between warps is free

any non-waiting warp can run

Execution on each Multiprocessor

At each clock cycle

each warp scheduler chooses a warp

 which is ready to be executed

For each chosen warp

the next instruction is executed

 for all 32 threads of the warp

issued for execution to

CUDA Cores

or load/store units

or special function units

or texture units

Execution on each Multiprocessor

MEMORY MANAGEMENT

GPU Memory

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential

Kernels

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

GPU Memory

CPU and GPU have separate memory spaces

data is moved across PCIe bus

use functions to allocate/set/copy memory on GPU
very similar to corresponding C functions

Pointers are just addresses

cannot tell from pointer if memory is on GPU or CPU

but possible for CC>=2.0: unified virtual addressing

must exercise care when dereferencing:

crash if GPU dereferences pointer to CPU memory

and vice versa

Allocation / Release

Host (CPU) manages device (GPU) memory:

cudaMalloc (void **pointer, size_t nbytes)

cudaMemset (void *pointer, int value, size_t count)

cudaFree (void* pointer)

int n = 1024;

size_t nbytes = n*sizeof(int);

int *d_a = NULL;

cudaMalloc(&d_a, nbytes);

cudaMemset(d_a, 0, nbytes);

cudaFree(d_a);

Data Copies Between GPU and CPU

cudaMemcpy (void *dst, void *src, size_t nbytes,
 cudaMemcpyKind direction);

blocks the CPU thread until all bytes have been copied

non-blocking variants are also available

doesn't start copying until all previous CUDA calls complete

cudaMemcpyKind:

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

 cudaMemcpy(dev_ptr, host_ptr, n*sizeof(float),

 cudaMemcpyHostToDevice);

Example Host Code

// allocate and initialize host (CPU) memory

float *h_a = ..., *h_b = ...; *h_c = ... (empty)

// allocate device (GPU) memory

float *d_a, *d_b, *d_c;

cudaMalloc(&d_a, n * sizeof(float));

cudaMalloc(&d_b, n * sizeof(float));

cudaMalloc(&d_c, n * sizeof(float));

// copy host memory to device

cudaMemcpy(d_a, h_a, n * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_b, h_b, n * sizeof(float), cudaMemcpyHostToDevice);

// launch kernel

dim3 block = dim3(128,1,1);

dim3 grid = dim3((n + block.x – 1) / block.x, 1, 1);

vecAdd <<<grid,block>>> (d_a, d_b, d_c);

// copy result back to host (CPU) memory

cudaMemcpy(h_c, d_c, n * sizeof(float), cudaMemcpyDeviceToHost);

// do someting with the result...

// free device (GPU) memory

cudaFree(d_a);

cudaFree(d_b);

cudaFree(d_c);

Use float by Default

GPUs can handle double since CC>=1.3

But float operations are still much faster

by an order of magnitude

so use double only if float is not enough

Avoid using double where not needed:

Add 'f' suffix to float literals:
0.f, 1.0f, 3.1415f are of type float

0.0, 1.0, 3.1415 are of type double

Use float version of math functions:

expf / logf / sinf / sqrtf / etc. take and return float

exp / log / sin / sqrt / etc. take and return double

Blocks Size: How To Choose?

Number of threads/block should be multiple of 32

because threads are always executed in groups of 32

Rules of thumb:

not too small or too big: between 128 and 256 threads

start with dim3(32,8,1), i.e. 256 threads

experiment with similar sized "power-of-2"-blocks:

(64,4,1), (128,2,1), (32,4,1), (64,2,1)

(32,16,1), (64,8,1), (128,4,1), (256,2,1)

measure the run time and choose the best block size!

ERROR HANDLING

AND COMPILING

Error Handling

Checking for errors is crucial for programming GPUs

cudaError_t cudaGetLastError()

returns the code for the last error

resets the error flag back to cudaSuccess

cudaPeetAtLastError(): get error code without resetting it

if everything OK: cudaSuccess

char* cudaGetErrorString(cudaError_t code)

returns a C-string describing the error

 cudaMalloc(&d_a, n*sizeof(float));
cudaError_t e = cudaGetLastError();

if (e!=cudaSuccess)

{

 cerr << "ERROR: " << cudaGetErrorString(e) << endl;

 exit(1);

}

Error Handling

Kernel execution is asynchronous
first wait for the kernel to finish by cudaDeviceSynchronize()

only then call cudaGetLastError()

– otherwise it will be called too soon, the error may not have yet occured

kernel launch itself may produce errors due to invalid configurations

– too many threads/block, too many blocks, too much shared memory requested

Kernels may produce subtle memory corruption errors
may get unnoticed even after cudaDeviceSynchronize()

subsequent CUDA calls may or may not fail because of such an error

if they do fail, they were not the origin of the error

It helps to keep track of the previous x CUDA calls

x=1, or x=2, or x=10

Compiling

CUDA files have ending .cu: squareArray.cu

NVidia CUDA Compiler: nvcc

handles the CUDA part

hands over pure C/C++ part to host compiler

Additional info about the kernels by option

 --ptxas-options=-v

nvcc -o squareArray squareArray.cu

nvcc -o squareArray squareArray.cu --ptxas-options=-v

ptxas info : Compiling entry function '_Z18cuda_square_kernelPfi' for 'sm_10'

ptxas info : Used 2 registers, 28 bytes smem

CUDA Short Summary

Thread Hierarchy

thread - smallest executable unity

block - group of threads, shared memory for collaboration

grid - consists of several blocks

warp - group of 32 threads

Keyword extensions for C/C++

__global__ - kernel - function called by CPU, executed on GPU

__device__ - function called by GPU and executed on GPU

__host__ - [optional] - function called and executed by CPU

<<<...>>> - kernel launch, chevrons specify grid and block sizes

Compilation:

nvcc -o <executable> <filename>.cu --ptxas-options=-v

