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Our Research 

Optimization 

 

Math in general 

everything needs to broken down into functions, 

  basic operations and numbers 

Numerics 

continuous math on discrete hardware 

Programming (serial/parallel) 

C/C++, CUDA, Matlab, ... 

Engineering 

non-convex convex 



This Course 

Parallel Programming with CUDA 
 

Computer Vision Basics 

image filtering (convolution, diffusion, denoising) 

regularization (dealing with noise, unique solutions) 
 

Optimization + Numerics 



Course Goals 

Learn how to program massively parallel 

processors and achieve 

high performance 

functionality and maintainability 

scalability across future generations 

Acquire technical knowledge required to achieve 

above goals 

principles and patterns of parallel programming 

processor architecture features and constraints 

programming API, tools and techniques 

Apply this knowledge to implement computer 

 vision algorithms efficiently 







Course Timeline: 03.03 - 04.04 

March 3-10 (this week) : Lecture 

4h lectures (attendance mandatory) 

programming exercises 

groups of 2-3 students 

no course on March 4 

     (Faschingsdienstag) 

 

March 10-28: Student project 

advanced applications 

unsupervised  

 

March 31-April 4: Presentations 



Lecture Week 

Lecture 

10-14 (1h lunch pause) each day 

attendance mandatory to pass the course 

 

Exercises 

14-18 each day 

groups of 2-3 students 

present solutions 

    on next day after the lecture 

exercises of March 3: March 5 

exercises of March 7: March 10 

 



“Work @ Home” ™ 

You can access your computer remotely: 
 

 ssh –X p123@atradig789.informatik.tu-muenchen.de 

 

p123: replace with your login 

atradig789: replace with your computer name 
type  hostname to find out the name  

 

 

Works from within Linux or Mac 

for Mac: install XQuartz first (X11 server) 



Why Massively Parallel Processing? 

A quiet revolution: Performance!  

computations: TFLOPs vs. 100 GFLOPs 

 

 

 

 

 

 

 

 

 

 

GPU in every PC – massive volume & impact 



Why Massively Parallel Processing? 

A quiet revolution: Performance! 

bandwidth: ~5x 

 

 

 

 

 

 

 

 

 

 

GPU in every PC – massive volume & impact 



Serial Performance Scaling is Over 

Cannot continue to scale processor frequencies 

no 10 GHz chips 

 

 

Cannot continue to increase power consumption 

can’t melt chip 

 

 

Can continue to increase transistor density 

as per Moore’s Law 



How to Use Transistors? 

Larger caches … decreasing 

 

Instruction-level parallelism … decreasing 

out-of-order execution, speculation, … 

 

Data-level parallelism … increasing 

vector units, SIMD execution, … 

Intel SSE, GPUs, … 

 

Thread-level parallelism … increasing 

multithreading, multicore, manycore 



Design Difference: CPU vs. GPU 

Different goals produce different designs 
CPU must be good at everything, parallel or not  

GPU assumes work load is highly parallel 
 

 

 

CPU: minimize latency experienced by 1 thread 
big on-chip caches 

sophisticated control logic 

 
 

 

 

 

GPU: maximize throughput of all threads 
skip big caches, multithreading hides latency 

share control logic across many threads, SIMD 

create and run thousands of threads 

 



Design Difference: CPU vs. GPU 

Different goals produce different designs 
CPU must be good at everything, parallel or not  

GPU assumes work load is highly parallel 
 

 

 

CPU 

minimize latency 

GPU 

maximize throughput 



Enter the GPU 

Massively parallel 

 

Affordable supercomputing 



NVIDIA GPUs 

Compute Capability 

version number of the hardware architecture 

core architecture and incremental improvements 

 
Arch CC GPUs Features (e.g.) 

 

Tesla 

(2007) 

1.0 8800 GTX, Tesla C870 Basic functionality 

1.1 9800 GTX, Quadro FX 580 Atomics in global mem 

1.2 GT 240, Quadro FX 1800M Atomics in shared mem 

1.3 GTX 285, Tesla C1060 Double precision 

  

Fermi 

(2010) 

2.0 GTX 480/580, Tesla C2070 Memory cache 

2.1 GTX 460, GTX 560 Ti More cores (hardware) 

  

Kepler 

(2012) 

3.0 GTX 680/770, Tesla K10 Power efficiency, Many cores 

3.5 GTX 780/Titan, Tesla K20 Dynamic Parallelism, Hyper-Q 

Maxwell 

(2014) 

4.0? GTX 750, GTX 750 Ti 135% performance/core 

200% performance/watt 



NVIDIA GPUs 

Compute Capability 

version number of the hardware architecture 

core architecture and incremental improvements 

 

List of features for each Compute Capability: 

see NVIDIA Programming Guide: Appendix G.1 

 



NVIDIA GPUs: Current Architecture 

 

 

 

 

 

 

15 multiprocessors (up to) 

 

192 Cuda Cores per SM 

2880 Cores in total (up to) 

Kepler 

GPU 



Enter CUDA 
(“Compute Unified Device Architecture“) 

Scalable parallel programming model 

exposes the computational horsepower of GPUs 

 

Abstractions for parallel computing 

let programmers focus on parallel algorithms 

not mechanics of a parallel programming language 

 

Minimal extensions to familiar C/C++ 

environment to run code on the GPU 

low learning curve 

 

 

 



CUDA: Scalable Parallel Programming 

Provide straightforward mapping onto hardware 

good fit to GPU architecture 

maps well to multi-core CPUs too 

 

Execute code by many threads in parallel 

 

Scale to 100s of cores & 10,000s of threads 

GPU threads are lightweight — create / switch is free 

GPU needs 1000s of threads for full utilization 

 



Reference: CUDA Programming Guide 

CUDA comes with excellent documentation 
doc/pdf  in the CUDA folder, have a look! 

 

 

CUDA Programming Guide 

one of the best CUDA references 

covers every CUDA feature 

provides in-depth explanations 

 

 

Also: list of all CUDA functions: 

CUDA_Runtime_API.pdf 



Outline of CUDA Basics 

Kernels and Thread Hierarchy 

Execution on the GPU 

Memory Management 

Error Handling And Compiling 
 

 

 

 

See the Programming Guide for the full API 



BASIC KERNELS AND 

THREAD HIERARCHY 



CUDA Definitions 

Device: GPU 

executes code in parallel 

 

Host: CPU 

manages execution on the device 

 

Kernel: C/C++ function executed on the device 

executed by many threads 

each thread executes the same sequential program 

each thread is free to execute a unique code path 



Quick Example  

CPU: Process subtasks serially one by one: 

 

 

 

 

GPU: Process each subtask in its own thread: 

 

 

 
 

launch enough threads to cover all data 

__global__ void vecAdd (float *a, float *b, float *c) 

{ 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    c[i] = a[i] + b[i]; 

} 

for( int i=0; i<n; i++ ) 

{ 

    c[i] = a[i] + b[i]; 

} 

 

 

Each thread knows its index 



Thread Hierarchy 

Kernel threads are grouped into blocks 

up to 512 or 1024 threads per block 

 

Idea: Threads from the same block can cooperate 

synchronize their execution 

communicate via shared memory 

threads from different blocks cannot cooperate 

 

Allows transparent scaling to different GPUs 

All kernel blocks together form a grid 



Thread Hierarchy 

# threads per block: 

up to 512 (CC 1.x), 

up to 1024 (CC>=2.0) 

 

Blocks can be 1D, 2D, or 3D 

Grids can be 1D, 2D, or 3D 

CC 1.x: only 1D or 2D 

 

Dimensions set at launch  

can be different for each grid 

 

 



IDs and Dimensions 

Threads: 

3D IDs, unique within a block 

Blocks: 

3D IDs, unique within a grid 

 

Built-in variables: 

threadIdx, blockIdx 

blockDim, gridDim 

 



Array Accesses: Index Calculation 

Obtain unique array index from block/thread IDs 

threadIdx, blockIdx 

blockDim, gridDim 

 

0 1 2 3 4 

0 

0 1 2 3 4 

1 

0 1 2 3 4 

2 blockIdx.x 

threadIdx.x 

blockDim.x = 5 

threadIdx.x + blockDim.x*blockIdx.x 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 array index 



Kernel Launch 

Usual C/C++ function call, with an additional 

specification of grid and block sizes: 

 

 

 

 dim3 grid; dim3 block; 

three int‘s: block.x, block.y, block.z 

 

Kernel is launched by the CPU 
CC 3.x: kernels can launch other kernels 

Executed on the GPU 

 

mykernel <<< grid, block >>> (...); 



Example: One-dimensional Kernel 

__global__ void mykernel (int *a, int n) 

{ 

    int ind = threadIdx.x + blockDim.x * blockIdx.x; 

    if (ind<n) a[ind] = a[ind] + 1; 

} 

 

int main() 

{ 

    dim3 block = dim3(128,1,1);  // 128 threads 

    // ensure enough blocks to cover n elements (round up) 

    dim3 grid = dim3( (n + block.x – 1) / block.x, 1, 1); 

    mykernel <<<grid, block>>> (d_a, n); 

 

    // Also possible: 

    // launch 4 blocks, each with 128 threads 

    mykernel <<<4,128>>> (d_a, n); 

} 

 



Example: Two-dimensional Kernel 

__global__ void mykernel (int *a, int w, int h) 

{ 

    int x = threadIdx.x + blockDim.x * blockIdx.x; 

    int y = threadIdx.y + blockDim.y * blockIdx.y; 

    int ind = x + w*y; 

    if (x<w && y<h) a[ind] = a[ind] + 1; 

} 

 

int main() 

{ 

    dim3 block = dim3(32,8,1);   // 32*8 = 256 threads 

    // ensure enough blocks to cover w * h elements (round up) 

    dim3 grid = dim3( (w + block.x – 1) / block.x, 

                      (h + block.y - 1) / block.y, 1 ); 

    mykernel <<<grid,block>>> (d_A, dimx, dimy); 

} 

 



Always Check Validity of Indices 

 

 

 

 

__global__ void mykernel (int *a, int n) 

{ 

    int ind = threadIdx.x + blockDim.x * blockIdx.x; 

    if (ind<n) a[ind] = a[ind] + 1; 

} 

 

__global__ void mykernel (int *a, int w, int h) 

{ 

    int x = threadIdx.x + blockDim.x * blockIdx.x; 

    int y = threadIdx.y + blockDim.y * blockIdx.y; 

    int ind = x + w*y; 

    if (x<w && y<h) a[ind] = a[ind] + 1; 

} 

 

 

There may be more threads than array elements 

Always test whether the indices are within bounds 



 
__global__ void kernel (int *a) 

{ 

    int idx = threadIdx.x  + blockDim.x * blockIdx.x; 

    a[idx] = 7; 

} 

 

 

__global__ void kernel (int *a) 

{ 

    int idx = threadIdx.x  + blockDim.x * blockIdx.x; 

    a[idx] = blockIdx.x; 

} 

 

 

__global__ void kernel(int *a) 

{ 

    int idx = threadIdx.x  + blockDim.x * blockIdx.x; 

    a[idx] = threadIdx.x; 

} 

Exercise: IDs of Threads and Blocks 

Output: 

Output: 

kernel<<<4,4>>>(d_a); 

7 7 7 7   7 7 7 7   7 7 7 7   7 7 7 7 

Output: 0 0 0 0   1 1 1 1   2 2 2 2   3 3 3 3 

0 1 2 3   0 1 2 3   0 1 2 3   0 1 2 3 



Code Executed on GPU: Functions 

Special qualifiers to declare GPU functions: 
 

__global__ :  kernels 
 

    launched by CPU to run on the GPU 

    must return void 

 

__device__ : auxiliary GPU functions 
 

    can only be called on the GPU 

    called from __global__ or __device__ functions 

 

__host__    :  “normal” CPU C/C++ functions 
 

    can only be called on the CPU 

 

__host__   __device__ : qualifiers can be combined 
     callable from CPU and from GPU 



Code Executed on GPU: Restrictions 

C/C++ with some restrictions 

 
only access to GPU memory 

not to CPU memory 

can access „pinned“ CPU memory (special allocation needed) 

from CUDA 6 and CC 3.0: GPU can access CPU memory 

 

no access to host functions 

 

no variable number of arguments 

 

no static variables in functions or classes 

 



Code Executed on GPU: Features 

Many C/C++ features available for GPU code 
templates  

recursion (CC >=2.0) 

overloading 
function overloading 

operator overloading 

classes 
stack allocation 

heap allocation (CC >= 2.0) 

inheritance, virtual functions (CC >= 2.0) 

function pointers (CC >= 2.0) 

printf() formatted output  (CC >= 2.0) 
 

Vector variants of basic types 
float2, float3, float4, double2, int4, char2, etc. 

float2 a=make_float2(1,2); a.x=10; a.y=a.x; 

 



Blocks: Must Be Independent 

Any possible ordering of blocks should be valid 

presumed to run to completion without pre-emption 

can run in any order (order is unspecified) 

can run concurrently OR sequentially 

 

Blocks may coordinate but not synchronize 

shared queue pointer: OK 

shared lock: BAD … can easily deadlock 

 

Independence requirement gives scalability 



Execution of Kernels: Asynchronous 

Kernel launches are asynchronous w.r.t. CPU 

after kernel launch, control immediately returns 

CPU is free to do other work while the GPU is busy 

 

Kernel launches are queued 

kernel doesn‘t start until previous kernels are 

finished 

concurrent kernels possible for CC >= 2.0 

(given enough resources) 

 

Explicit synchronization if needed 

cudaDeviceSynchronize() 



EXECUTION ON GPU 



NVIDIA GPU Architecture 

 

 

 

 

 

 

 

 

16 independent multiprocessors (SMs) 

No shared resources except global memory 

No synchronization, always work in parallel  

Fermi 

GPU 

(CC 2.x) 



Single Fermi SM Multiprocessor 

32 CUDA Cores per SM (512 total) 
arithmetic/logic operations 

 

16 memory load/store units 
(slow) access to off-chip GPU memory 

 

4 Special Function Units 
1/X, 1/SQRT(X), SIN, COS, EXP, … 

 

64 KB on-chip shared memory 
shared amongst CUDA cores 

enables thread communication 



NVIDIA GPU Architecture: Current 

 

 

 

 

 

 

15 multiprocessors (up to) 

 

192 Cuda Cores per SM 

2880 Cores in total (up to) 

Kepler 

GPU 

(CC 3.x) 



Warps: Key Architectural Idea 

SIMT (Single Instruction Multiple Thread) execution 

threads run in groups of 32 called warps 

 

All 32 threads in a warp execute the same 

instruction 

always, no matter what (even if threads diverge) 

 

Threads are executed warp-wise by the GPU 

for each warp, the 32 threads are executed in parallel 

warps are executed one after another 

but several warps can run simultaneously 

up to 2 for CC 2.x, up to 6 for CC 3.x 



Thread Hierarchy 

 

 



Execution of Kernels on the GPU 

Blocks are distributed across 

 the Multiprocessors (SMs) 

 

Active blocks 

are currently executed 

reside on a multiprocessor 

resources allocated 

executed until finished 

 

Waiting blocks 

wait to be executed 

not yet assigned to a SM 



Blocks Execute on Multiprocessors 

Each block is executed on one Multiprocessor (SM) 

cannot migrate 

reason for block independence 

 

Several blocks per SM possible 

if enough resources available 

SM resources are divided among all blocks 

 

Block threads share SM resources 

SM registers are divided up 

 among the threads 

SM shared memory can be 

 read/written by all threads 

 



Execution on each Multiprocessor 

Assume there are three blocks on one SM, 

 with 128 threads per block: 

 

 

 

 

 

block 0 

 

128 

threads 

block 1 

 

128 

threads 

block 2 

 

128 

threads 



Execution on each Multiprocessor 

Threads from all blocks are divided into warps 

 

In our example: 

4 warps from every block (128 threads/32) 

12 warps overall on SM (3 blocks * 4 warps/block) 

12*32 = 384 threads 

 

 

 

 

 



Execution on each Multiprocessor 

Resources are allocated for all potential warps 

the state of every potentially executable warp is 

always present on the Multiprocessor, until finished 

overall many more potentially executable threads 

than CUDA Cores possible 

 

Therefore: 

switching between warps is free 

any non-waiting warp can run 

 



Execution on each Multiprocessor 

At each clock cycle 

each warp scheduler chooses a warp 

 which is ready to be executed 

  

For each chosen warp 

the next instruction is executed 

 for all 32 threads of the warp 

issued for execution to 

CUDA Cores 

or load/store units 

or special function units 

or texture units 

 



Execution on each Multiprocessor 



MEMORY MANAGEMENT 



GPU Memory 

Kernel 0 

. . . 
Per-device 

Global 
Memory 

. . . 

Kernel 1 

Sequential 

Kernels 

Device 0 
memory 

Device 1 
memory 

Host memory cudaMemcpy() 



GPU Memory 

CPU and GPU have separate memory spaces 

data is moved across PCIe bus 

use functions to allocate/set/copy memory on GPU 
very similar to corresponding C functions 

 

Pointers are just addresses 

cannot tell from pointer if memory is on GPU or CPU 

but possible for CC>=2.0: unified virtual addressing 

must exercise care when dereferencing: 

crash if GPU dereferences pointer to CPU memory 

and vice versa 

 



Allocation / Release 

Host (CPU) manages device (GPU) memory: 

cudaMalloc (void **pointer, size_t nbytes) 

cudaMemset (void *pointer, int value, size_t count) 

cudaFree (void* pointer) 

 
int n = 1024; 

size_t nbytes = n*sizeof(int); 

int *d_a = NULL; 

cudaMalloc(&d_a, nbytes); 

cudaMemset(d_a, 0, nbytes); 

cudaFree(d_a); 

 



Data Copies Between GPU and CPU 

cudaMemcpy (void *dst,  void *src,   size_t nbytes,  
             cudaMemcpyKind direction); 

blocks the CPU thread until all bytes have been copied 

non-blocking variants are also available 

doesn't start copying until all previous CUDA calls complete 

 

cudaMemcpyKind: 

cudaMemcpyHostToDevice 

cudaMemcpyDeviceToHost 

cudaMemcpyDeviceToDevice 

 

 

 cudaMemcpy(dev_ptr, host_ptr, n*sizeof(float), 

  cudaMemcpyHostToDevice); 

 



Example Host Code 

// allocate and initialize host (CPU) memory 

float *h_a = ...,   *h_b = ...; *h_c = ... (empty) 

 

// allocate device (GPU) memory 

float *d_a, *d_b, *d_c; 

cudaMalloc( &d_a, n * sizeof(float) ); 

cudaMalloc( &d_b, n * sizeof(float) ); 

cudaMalloc( &d_c, n * sizeof(float) ); 

 

// copy host memory to device 

cudaMemcpy( d_a, h_a, n * sizeof(float), cudaMemcpyHostToDevice ); 

cudaMemcpy( d_b, h_b, n * sizeof(float), cudaMemcpyHostToDevice ); 

 

// launch kernel 

dim3 block = dim3(128,1,1); 

dim3 grid = dim3((n + block.x – 1) / block.x, 1, 1); 

vecAdd <<<grid,block>>> (d_a, d_b, d_c); 

 

// copy result back to host (CPU) memory 

cudaMemcpy( h_c, d_c, n * sizeof(float), cudaMemcpyDeviceToHost ); 

 

// do someting with the result... 

 

// free device (GPU) memory 

cudaFree(d_a); 

cudaFree(d_b); 

cudaFree(d_c); 

 



Use float by Default 

GPUs can handle double since CC>=1.3 

But float operations are still much faster 

by an order of magnitude 

so use double only if float is not enough 

 

Avoid using double where not needed: 

Add 'f' suffix to float literals: 
0.f, 1.0f, 3.1415f are of type float 

0.0, 1.0,  3.1415   are of type double 

Use float version of math functions: 

expf / logf / sinf / sqrtf / etc. take and return float  

exp  / log / sin / sqrt / etc. take and return double 



Blocks Size: How To Choose? 

Number of threads/block should be multiple of 32 

because threads are always executed in groups of 32 

 

Rules of thumb: 

not too small or too big: between 128 and 256 threads 

start with dim3(32,8,1), i.e. 256 threads 

experiment with similar sized "power-of-2"-blocks: 

(64,4,1), (128,2,1), (32,4,1), (64,2,1) 

(32,16,1), (64,8,1), (128,4,1), (256,2,1) 

measure the run time and choose the best block size! 



ERROR HANDLING 

AND COMPILING 



Error Handling 

Checking for errors is crucial for programming GPUs 

cudaError_t cudaGetLastError() 

returns the code for the last error 

resets the error flag back to cudaSuccess 

cudaPeetAtLastError(): get error code without resetting it 

if everything OK: cudaSuccess 

char* cudaGetErrorString(cudaError_t code) 

returns a C-string describing the error 

 

 cudaMalloc(&d_a, n*sizeof(float)); 
cudaError_t e = cudaGetLastError(); 

if (e!=cudaSuccess) 

{ 

    cerr << "ERROR: " << cudaGetErrorString(e) << endl; 

    exit(1); 

} 

 



Error Handling 

Kernel execution is asynchronous 
first wait for the kernel to finish by cudaDeviceSynchronize() 

only then call cudaGetLastError() 

– otherwise it will be called too soon, the error may not have yet occured 

kernel launch itself may produce errors due to invalid configurations 

– too many threads/block, too many blocks, too much shared memory requested 

 

Kernels may produce subtle memory corruption errors 
may get unnoticed even after cudaDeviceSynchronize() 

subsequent CUDA calls may or may not fail because of such an error 

if they do fail, they were not the origin of the error 

 

It helps to keep track of the previous x CUDA calls 

x=1, or x=2, or x=10 



Compiling 

CUDA files have ending .cu: squareArray.cu 

 

NVidia CUDA Compiler: nvcc 

handles the CUDA part 

hands over pure C/C++ part to host compiler 

 

 

Additional info about the kernels by option  

 --ptxas-options=-v 

 

nvcc -o squareArray squareArray.cu 

nvcc -o squareArray squareArray.cu --ptxas-options=-v 

ptxas info    : Compiling entry function '_Z18cuda_square_kernelPfi' for 'sm_10' 

ptxas info    : Used 2 registers, 28 bytes smem 



CUDA Short Summary 

Thread Hierarchy 

thread  -  smallest executable unity 

block -  group of threads, shared memory for collaboration 

grid -  consists of several blocks 

warp -  group of 32 threads 

 

Keyword extensions for C/C++ 

__global__ -  kernel - function called by CPU, executed on GPU 

__device__ -  function called by GPU and executed  on GPU 

__host__ -  [optional] - function called and executed by CPU 

<<<...>>>  -  kernel launch, chevrons specify grid and block sizes 

 

Compilation: 

nvcc -o <executable> <filename>.cu --ptxas-options=-v 


