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OVERVIEW OF 

MEMORY SPACES 



CUDA Memories 

Each thread can: 

read / write per-thread 

registers 

 

read / write per-block 

shared memory 

 

read / write per-grid 

global memory 

read            per-grid 

constant memory 
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CUDA Memories 

Other memories: 

local Memory 

texture Memory 

both are part of 

 global memory 
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CUDA Variable Type Qualifiers 

 

“automatic” scalar variables without qualifier 

reside in a register 

compiler may spill to thread local memory 

“automatic” array variables without qualifier 

reside in thread local memory 

Variable declaration Memory Scope Lifetime 

             int var; register thread thread 

             int array_var[10]; local thread thread 

__shared__   int shared_var; shared block block 

__device__   int global_var; global grid application 

__constant__ int constant_var; constant grid application 



CUDA Variable Type Performance 

 

scalar variables reside in fast, on-chip registers 

shared variables reside in fast, on-chip 

memories 

thread local arrays & global variables reside in 

off-chip memory 

constant variables reside in cached off-chip 

memory 

Variable declaration Memory Penalty 

             int var; register 1x 

             int array_var[10]; local 100x 

__shared__   int shared_var; shared 1x 

__device__   int global_var; global 100x 

__constant__ int constant_var; constant 1x 



CUDA Variable Type Scale 

100Ks per-thread variables, R/W by 1 thread 

100s shared variables, each R/W by 100s of 

threads 

1 global variable is R/W by 100Ks threads 

1 constant variable is readable by 100Ks threads 

Variable declaration Instances Visibility 

             int var; 100,000s 1 

             int array_var[10]; 100,000s 1 

__shared__   int shared_var; 100s 100s 

__device__   int global_var; 1 100,000s 

__constant__ int constant_var; 1 100,000s 



Local Memory 

Compiler might place variables 

in local memory: 

 

too many register variables 

a structure consumes too much 

register space 

an array is not indexed with 

constant quantities, i.e. 

 when the addressing of  

 the array is not known at 

 compile time 
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Example: Thread Local Variables 

__global__ void kernel(float2 *result, float2 *a, float2 *b) 

{ 

  // p goes in a register 

  float2 p = a[threadIdx.x]; 

 

  // big array, or indices are data dependent 

  float2 heap[10]; 

   

  // small array, and indices known at compile time  

  float2 bvals[2]; 

  bvals[0] = b[threadIdx.x]; 

  bvals[1] = b[threadIdx.x + blockDim.x]; 

  ... 

} 

Register 

Local 

memory 

Register 



SHARED MEMORY 



Global and Shared Memory 

Global memory is located off-chip 

high latency (often the bottleneck of computation) 

important to minimize accesses 

not cached for CC 1.x GPUs 

main difficulty: try to coalesce accesses (more later) 

 

Shared memory is on-chip 

low latency 

like a user-managed per-multiprocessor cache 

minor difficulty: try to minimize or avoid bank 

conflicts (more later) 

 

 



Take Advantage of Shared Memory 

Hundreds of times faster than global memory 

 

Threads can cooperate via shared memory 

 

Avoid multiple loads of same data by different 

threads of the block 

 

Use one/a few threads to load/compute data 

 shared by all threads in the block 

 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_global(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // each thread loads two elements from global memory 

    float xplus1 = input[i+1]; 

    float x0     = input[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

What are the bandwidth 

requirements of this kernel? 

two loads 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_global(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // each thread loads two elements from global memory 

    float xplus1 = input[i+1]; 

    float x0     = input[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

How many times does this 
kernel load input[i]? 

 again by thread i-1 

 once by thread i 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_global(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // each thread loads two elements from global memory 

    float xplus1 = input[i+1]; 

    float x0     = input[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

Idea: 

eliminate redundancy 

by sharing data 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_shared(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

  int iblock = threadIdx.x;  // local "block" version of i 

 

  // allocate shared array, of constant size BLOCK_SIZE 

  __shared__ float sh_data[BLOCK_SIZE]; 

 

  // each thread reads one element and writes into sh_data 

  sh_data[iblock] = input[i]; 

 

  // ensure all threads finish writing before continuing 

  __syncthreads(); 

  ... 

} 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_shared(float *result, float *input, int n) 

{ 

  ... 

  float res = 0; 

  if (i+1 < n) 

  { 

    // handle thread block boundary 

    int xplus1 = (iblock+1<blockDim.x? sh_data[iblock+1] :  

                                       input[i+1]); 

    int x0     = sh_data[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ 

void diff_global(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

 

 

 

 

 

 

 

 

 

 

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // each thread loads two elements 

    float xplus1 = input[i+1]; 

 

 

    float x0     = input[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

 

// forward differences discretization of derivative 

__global__ 

void diff_shared(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

  int iblock = threadIdx.x;  // local version of i 

 

  // allocate shared array 

  __shared__ float sh_data[BLOCK_SIZE]; 

 

  // each thread reads one element to sh_data 

  if (i<n) sh_data[iblock] = input[i]; 

 

  // ensure all loads complete before continuing 

  __syncthreads();   

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // handle thread block boundary 

    float xplus1 = (iblock+1<blockDim.x? 

                      sh_data[iblock+1] :  

                      input[i+1]); 

    float x0     = sh_data[iblock]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

 



Shared Memory: Dynamic Allocation 

Size known at compile time 
 

__global__ void kernel (...) 

{ 

  ... 

  __shared__ float s_data[BLOCK_SIZE]; 

  ... 

} 

 

int main(void) 

{ 

  ... 

 

 

 

  kernel <<<grid,block>>> (...); 

  ... 

} 

 

Size known at kernel launch 
 

__global__ void kernel (...) 

{ 

  ... 

  extern __shared__ float s_data[]; 

  ... 

} 

 

int main(void) 

{ 

  ... 

  // allocate enough shared memory 

  size_t smBytes = block.x * block.y * block.z 

                     * sizeof(float); 

  kernel <<<grid,block,smBytes>>> (...); 

  ... 

} 

 

Always use dynamic allocation 

flexibility w.r.t. maximal block size: can specify at run time 

no waste of resources: more blocks can run in parallel 



Shared Memory: Synchronization 

__syncthreads(); 

 

Synchronizes all threads in a block 

generates a barrier synchronization instruction 

no thread can pass this barrier until all threads in the 

block reach it 

used to avoid Read-After-Write / Write-After-Read / 

Write-After-Write hazards for shared memory accesses 

 

Allowed in conditional code („if“, „while“, etc.) 

only if the conditional is uniform across the block 

e.g. every thread follows the same „if“- or „else“-path 



Shared Memory: Synchronization 

Always use __syncthreads() after writing to 

shared memory to ensure that data is ready for 

accessing 
 

__global__ void share_data(int *input) 

{ 

  extern __shared__ int data[]; 

  data[threadIdx.x] = input[threadIdx.x]; 

  __syncthreads(); 

  // the state of the entire data array 

  // is now well-defined for all threads in the block 

} 

 

Don’t synchronize or serialize unnecessarily 
 



TEXTURE MEMORY 



Texture Memory 

Actually part of 

 global memory 

 

Read-only, cached 

 

Global memory reads 

 are performed through 

 extra hardware 

 for texture manipulation 

  



Textures 

Texture is a CUDA abstraction for reading data 

 

Benefits: 

data is cached 

optimized for  2D spatial locality 

32 B cache line (smaller than global mem cache line 128 B) 

filtering (interpolation) with no additional costs 

linear / bilinear / trilinear 

wrap modes with no additional costs 

for „out-of-bounds“ addresses 

addressable in 1D, 2D, or 3D 

using integer or normalized [0,1) coordinates 

 



Texture Usage: Overview 

Host (CPU) code: 

allocate global memory 

create a texture reference object 

bind the texture reference to the allocated memory 

use texture reference in kernels 

when done: unbind texture reference 

 

Device (GPU) code: 

fetch (read) using texture reference 

tex1D(texRef,x), tex2D(texRef,x,y), 

tex3D(texRef,x,y,z) 



Texture Usage: Texture Reference 

Define a texture reference at file scope: 

  

  texture <Type, Dim, ReadMode> texRef; 

 

Type: int, float, float2, float4, … 

Dim: 1, 2, or 3, data dimension 

ReadMode: 
cudaReadModeElementType 

– for integer-valued textures: return value as is 

cudaReadModeNormalizedFloat 

– for integer-valued textures: normalize value to [0,1) 

 

  



Texture Usage: Set Parameters 

Set boundary conditions for x and y 

 texRef.addressMode[0] = cudaAddressModeClamp 

 texRef.addressMode[1] = cudaAddressModeClamp 

cudaAddressModeClamp, cudaAddressModeWrap 

 

Enable/disable filtering 

 texRef.filterMode = cudaFilterModePoint 

cudaFilterModePoint, cudaFilterModeLinear 

 

Set whether coordinates are normalized to [0,1) 

 texRef.normalized = false 



Texture Usage: Bind and Unbind 

Bind texture to array 

 cudaBindTexture2D 

            (NULL, &texRef, ptr, &desc, width, height, pitch) 

ptr: pointer to allocated array memory 

width: width of array 

height: height of array 

pitch: pitch of array in bytes 

– if ptr was allocated using cudaMalloc(), this is width*sizeof(ptr[0]) 

desc: number of bits for each texture channel 

– cudaCreateChannelDesc<float>()  // or float2, float4, int, … 

 

Unbind texture 

 cudaUnbindTexture(texRef) 

 



Textures: Example 

texture<float,2,cudaReadModeElementType> texRef;   // at file scope 

 

__global__ void kernel (...) 

{ 

 int x = threadIdx.x + blockDim.x*blockIdx.x; 

    int y = threadIdx.y + blockDim.y*blockIdx.y; 

 float val = tex2D(texRef, x+0.5f, y+0.5f);   // add 0.5f to get center of pixel 

 ... 

} 

 

int main() 

{ 

    ... 

    texRef.addressMode[0] = cudaAddressModeClamp;   // clamp x to border 

    texRef.addressMode[1] = cudaAddressModeClamp;   // clamp y to border 

    texRef.filterMode = cudaFilterModeLinear;       // linear interpolation 

    texRef.normalized = false;   // access as (x+0.5f,y+0.5f), not as ((x+0.5f)/w,(y+0.5f)/h) 

    cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>(); 

    cudaBindTexture2D(NULL, &texRef, d_ptr, &desc, w, h, w*sizeof(d_ptr[0])); 

    kernel <<<grid,block>>> (...); 

    cudaUnbindTexture(texRef); 

 ... 

} 

 



CONSTANT MEMORY 



Constant Memory 

Part of global memory 

 

Read-only, cached 

cache is dedicated 

same as for textures 

will not be overwritten by 

 other global memory reads 

 

fast 

limited size (48 KB) 

few small crucial parameters 

 



Constant Memory 

Defined at file scope 

Qualifier: __constant__ 

__constant__ float myparam; 

__constant__ float constKernel[KERNEL_SIZE]; 

array size must be known, no dynamic allocation possible 

 

Reading only on device 

float val = myparam;  val = constKernel[0]; 

 

Writing only on host 

cudaMemcpyToSymbol (constKernel, h_ptr, sizeBytes); 



A COMMON STRATEGY 

FOR MEMORY ACCESSES 



Global Memory: Coalescing 

Global memory access is slow 

400-800 clock cycles 

 

Hardware coalesces (combines) memory accesses 

chunks of size 32 B, 64 B, 128 B 

aligned to multiples of 32 B, 64 B, 128 B, respectively 

 

Coalescing is per warp (CC 1.x: per halfwarp) 

each thread reads a char: 1B*32 = 32 B chunk 

each thread reads a float: 4B*32 = 128 B chunk 

each thread reads a int2:  8B*32 = 2*128 B chunks 

 



Global Memory: Coalescing 

Global memory access is slow 

400-800 clock cycles 

 

Make sure threads within a warp access 

a contiguous memory region 

as few 128 B segments as possible (CC>=2.0) 

CC >= 2.0: Cached accesses, cache line is always 128 B 

CC 1.x: more restrictive as to when coalescing occurs 

 

Huge performance hit for non-coalesced accesses 

memory accesses per warp will be serialized 

worst case: reading chars from random locations 

 



Global Memory: Coalescing 



Global Memory: Coalescing 



A Common Programming Strategy 

1. Process data in chunks to take advantage of 

fast shared memory 

process each chunk in its own block 

 

2. Load data from global to shared memory 

using as coalesced accesses as possible 

 

3. Process data in shared memory 

freedom w.r.t. accesses: no coalescence requirements 

 

4. Write data back from shared to global memory 

using as coalesced accesses as possible 

 



A Common Programming Strategy 

Partition data into several chunks 



A Common Programming Strategy 

Handle each data chunk with one thread block 

each chunk must fit into shared memory for the block 

this determines the maximal size of the chunks 



A Common Programming Strategy 

Load data from global to shared memory 

using as coalesced accesses as possible  

distribute data loading across multiple threads 



A Common Programming Strategy 

Process data in shared memory 

much more freedom w.r.t. memory accesses 

even random accesses may still be fast 



A Common Programming Strategy 

Write data back from shared to global memory 

using as coalesced accesses as possible 

distribute data writing across multiple threads 



The Most Important CUDA Optimization 

Minimize the number of global memory accesses 

they are the slowest operations 

essentially the only reason for slow kernel run time 

If you access global memory, do it coalesced 

 

Rules of thumb: 

neighboring threads must access neighboring elements 
array[threadId.x + blockDim.x * blockIdx.x] 

two float arrays are better than one float2 array 

therefore: use layered memory layout for multi-channel images 

if one value is used a lot in same thread: load in local variable 

even if used just more than once 

if one value is used by lots of threads: shared memory 

but if used only by 2 or so threads, don't bother, global mem is still OK 


