
GPU Programming

in Computer Vision

CUDA Memories

Evgeny Strekalovskiy, Maria Klodt

Jan Stühmer, Mohamed Souiai

Technical University Munich, Computer Vision Group

Winter Semester 2013/2014, March 3 – April 4

Outline

Overview of Memory Spaces

Shared Memory

Texture Memory

Constant Memory

Common Strategy for Memory Accesses

See the Programming Guide for more details

OVERVIEW OF

MEMORY SPACES

CUDA Memories

Each thread can:

read / write per-thread

registers

read / write per-block

shared memory

read / write per-grid

global memory

read per-grid

constant memory

Grid

Global

memory

Block (0, 0)

Shared memory

Thread (0, 0)

Registers

Host

Constant

memory

Thread (1, 0)

Registers

Shared memory

Block (1, 0)

Shared memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Shared memory

CUDA Memories

Other memories:

local Memory

texture Memory

both are part of

 global memory

Grid

Global

memory

Block (0, 0)

Shared memory

Thread (0, 0)

Registers

Host

Constant

memory

Texture

memory

Local

memory

Thread (1, 0)

Registers

Local

memory

Shared memory

Block (1, 0)

Shared memory

Thread (0, 0)

Registers

Local

memory

Thread (1, 0)

Registers

Local

memory

Shared memory

CUDA Variable Type Qualifiers

“automatic” scalar variables without qualifier

reside in a register

compiler may spill to thread local memory

“automatic” array variables without qualifier

reside in thread local memory

Variable declaration Memory Scope Lifetime

 int var; register thread thread

 int array_var[10]; local thread thread

__shared__ int shared_var; shared block block

__device__ int global_var; global grid application

__constant__ int constant_var; constant grid application

CUDA Variable Type Performance

scalar variables reside in fast, on-chip registers

shared variables reside in fast, on-chip

memories

thread local arrays & global variables reside in

off-chip memory

constant variables reside in cached off-chip

memory

Variable declaration Memory Penalty

 int var; register 1x

 int array_var[10]; local 100x

__shared__ int shared_var; shared 1x

__device__ int global_var; global 100x

__constant__ int constant_var; constant 1x

CUDA Variable Type Scale

100Ks per-thread variables, R/W by 1 thread

100s shared variables, each R/W by 100s of

threads

1 global variable is R/W by 100Ks threads

1 constant variable is readable by 100Ks threads

Variable declaration Instances Visibility

 int var; 100,000s 1

 int array_var[10]; 100,000s 1

__shared__ int shared_var; 100s 100s

__device__ int global_var; 1 100,000s

__constant__ int constant_var; 1 100,000s

Local Memory

Compiler might place variables

in local memory:

too many register variables

a structure consumes too much

register space

an array is not indexed with

constant quantities, i.e.

 when the addressing of

 the array is not known at

 compile time

Grid

Global

memory

Block (0, 0)

Shared memory

Thread (0, 0)

Registers

Host

Constant

memory

Texture

memory

Local

memory

Thread (1, 0)

Registers

Local

memory

Shared memory

Block (1, 0)

Shared memory

Thread (0, 0)

Registers

Local

memory

Thread (1, 0)

Registers

Local

memory

Shared memory

Example: Thread Local Variables

__global__ void kernel(float2 *result, float2 *a, float2 *b)

{

 // p goes in a register

 float2 p = a[threadIdx.x];

 // big array, or indices are data dependent

 float2 heap[10];

 // small array, and indices known at compile time

 float2 bvals[2];

 bvals[0] = b[threadIdx.x];

 bvals[1] = b[threadIdx.x + blockDim.x];

 ...

}

Register

Local

memory

Register

SHARED MEMORY

Global and Shared Memory

Global memory is located off-chip

high latency (often the bottleneck of computation)

important to minimize accesses

not cached for CC 1.x GPUs

main difficulty: try to coalesce accesses (more later)

Shared memory is on-chip

low latency

like a user-managed per-multiprocessor cache

minor difficulty: try to minimize or avoid bank

conflicts (more later)

Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Avoid multiple loads of same data by different

threads of the block

Use one/a few threads to load/compute data

 shared by all threads in the block

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_global(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 float res = 0;

 if (i+1 < n)

 {

 // each thread loads two elements from global memory

 float xplus1 = input[i+1];

 float x0 = input[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

What are the bandwidth

requirements of this kernel?

two loads

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_global(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 float res = 0;

 if (i+1 < n)

 {

 // each thread loads two elements from global memory

 float xplus1 = input[i+1];

 float x0 = input[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

How many times does this
kernel load input[i]?

 again by thread i-1

 once by thread i

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_global(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 float res = 0;

 if (i+1 < n)

 {

 // each thread loads two elements from global memory

 float xplus1 = input[i+1];

 float x0 = input[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

Idea:

eliminate redundancy

by sharing data

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_shared(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 int iblock = threadIdx.x; // local "block" version of i

 // allocate shared array, of constant size BLOCK_SIZE

 __shared__ float sh_data[BLOCK_SIZE];

 // each thread reads one element and writes into sh_data

 sh_data[iblock] = input[i];

 // ensure all threads finish writing before continuing

 __syncthreads();

 ...

}

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_shared(float *result, float *input, int n)

{

 ...

 float res = 0;

 if (i+1 < n)

 {

 // handle thread block boundary

 int xplus1 = (iblock+1<blockDim.x? sh_data[iblock+1] :

 input[i+1]);

 int x0 = sh_data[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

Shared Memory: Example

// forward differences discretization of derivative

__global__

void diff_global(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 float res = 0;

 if (i+1 < n)

 {

 // each thread loads two elements

 float xplus1 = input[i+1];

 float x0 = input[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

// forward differences discretization of derivative

__global__

void diff_shared(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 int iblock = threadIdx.x; // local version of i

 // allocate shared array

 __shared__ float sh_data[BLOCK_SIZE];

 // each thread reads one element to sh_data

 if (i<n) sh_data[iblock] = input[i];

 // ensure all loads complete before continuing

 __syncthreads();

 float res = 0;

 if (i+1 < n)

 {

 // handle thread block boundary

 float xplus1 = (iblock+1<blockDim.x?

 sh_data[iblock+1] :

 input[i+1]);

 float x0 = sh_data[iblock];

 res = xplus1 – x0;

 }

 result[i] = res;

}

Shared Memory: Dynamic Allocation

Size known at compile time

__global__ void kernel (...)

{

 ...

 __shared__ float s_data[BLOCK_SIZE];

 ...

}

int main(void)

{

 ...

 kernel <<<grid,block>>> (...);

 ...

}

Size known at kernel launch

__global__ void kernel (...)

{

 ...

 extern __shared__ float s_data[];

 ...

}

int main(void)

{

 ...

 // allocate enough shared memory

 size_t smBytes = block.x * block.y * block.z

 * sizeof(float);

 kernel <<<grid,block,smBytes>>> (...);

 ...

}

Always use dynamic allocation

flexibility w.r.t. maximal block size: can specify at run time

no waste of resources: more blocks can run in parallel

Shared Memory: Synchronization

__syncthreads();

Synchronizes all threads in a block

generates a barrier synchronization instruction

no thread can pass this barrier until all threads in the

block reach it

used to avoid Read-After-Write / Write-After-Read /

Write-After-Write hazards for shared memory accesses

Allowed in conditional code („if“, „while“, etc.)

only if the conditional is uniform across the block

e.g. every thread follows the same „if“- or „else“-path

Shared Memory: Synchronization

Always use __syncthreads() after writing to

shared memory to ensure that data is ready for

accessing

__global__ void share_data(int *input)

{

 extern __shared__ int data[];

 data[threadIdx.x] = input[threadIdx.x];

 __syncthreads();

 // the state of the entire data array

 // is now well-defined for all threads in the block

}

Don’t synchronize or serialize unnecessarily

TEXTURE MEMORY

Texture Memory

Actually part of

 global memory

Read-only, cached

Global memory reads

 are performed through

 extra hardware

 for texture manipulation

Textures

Texture is a CUDA abstraction for reading data

Benefits:

data is cached

optimized for 2D spatial locality

32 B cache line (smaller than global mem cache line 128 B)

filtering (interpolation) with no additional costs

linear / bilinear / trilinear

wrap modes with no additional costs

for „out-of-bounds“ addresses

addressable in 1D, 2D, or 3D

using integer or normalized [0,1) coordinates

Texture Usage: Overview

Host (CPU) code:

allocate global memory

create a texture reference object

bind the texture reference to the allocated memory

use texture reference in kernels

when done: unbind texture reference

Device (GPU) code:

fetch (read) using texture reference

tex1D(texRef,x), tex2D(texRef,x,y),

tex3D(texRef,x,y,z)

Texture Usage: Texture Reference

Define a texture reference at file scope:

 texture <Type, Dim, ReadMode> texRef;

Type: int, float, float2, float4, …

Dim: 1, 2, or 3, data dimension

ReadMode:
cudaReadModeElementType

– for integer-valued textures: return value as is

cudaReadModeNormalizedFloat

– for integer-valued textures: normalize value to [0,1)

Texture Usage: Set Parameters

Set boundary conditions for x and y

 texRef.addressMode[0] = cudaAddressModeClamp

 texRef.addressMode[1] = cudaAddressModeClamp

cudaAddressModeClamp, cudaAddressModeWrap

Enable/disable filtering

 texRef.filterMode = cudaFilterModePoint

cudaFilterModePoint, cudaFilterModeLinear

Set whether coordinates are normalized to [0,1)

 texRef.normalized = false

Texture Usage: Bind and Unbind

Bind texture to array

 cudaBindTexture2D

 (NULL, &texRef, ptr, &desc, width, height, pitch)

ptr: pointer to allocated array memory

width: width of array

height: height of array

pitch: pitch of array in bytes

– if ptr was allocated using cudaMalloc(), this is width*sizeof(ptr[0])

desc: number of bits for each texture channel

– cudaCreateChannelDesc<float>() // or float2, float4, int, …

Unbind texture

 cudaUnbindTexture(texRef)

Textures: Example

texture<float,2,cudaReadModeElementType> texRef; // at file scope

__global__ void kernel (...)

{

 int x = threadIdx.x + blockDim.x*blockIdx.x;

 int y = threadIdx.y + blockDim.y*blockIdx.y;

 float val = tex2D(texRef, x+0.5f, y+0.5f); // add 0.5f to get center of pixel

 ...

}

int main()

{

 ...

 texRef.addressMode[0] = cudaAddressModeClamp; // clamp x to border

 texRef.addressMode[1] = cudaAddressModeClamp; // clamp y to border

 texRef.filterMode = cudaFilterModeLinear; // linear interpolation

 texRef.normalized = false; // access as (x+0.5f,y+0.5f), not as ((x+0.5f)/w,(y+0.5f)/h)

 cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();

 cudaBindTexture2D(NULL, &texRef, d_ptr, &desc, w, h, w*sizeof(d_ptr[0]));

 kernel <<<grid,block>>> (...);

 cudaUnbindTexture(texRef);

 ...

}

CONSTANT MEMORY

Constant Memory

Part of global memory

Read-only, cached

cache is dedicated

same as for textures

will not be overwritten by

 other global memory reads

fast

limited size (48 KB)

few small crucial parameters

Constant Memory

Defined at file scope

Qualifier: __constant__

__constant__ float myparam;

__constant__ float constKernel[KERNEL_SIZE];

array size must be known, no dynamic allocation possible

Reading only on device

float val = myparam; val = constKernel[0];

Writing only on host

cudaMemcpyToSymbol (constKernel, h_ptr, sizeBytes);

A COMMON STRATEGY

FOR MEMORY ACCESSES

Global Memory: Coalescing

Global memory access is slow

400-800 clock cycles

Hardware coalesces (combines) memory accesses

chunks of size 32 B, 64 B, 128 B

aligned to multiples of 32 B, 64 B, 128 B, respectively

Coalescing is per warp (CC 1.x: per halfwarp)

each thread reads a char: 1B*32 = 32 B chunk

each thread reads a float: 4B*32 = 128 B chunk

each thread reads a int2: 8B*32 = 2*128 B chunks

Global Memory: Coalescing

Global memory access is slow

400-800 clock cycles

Make sure threads within a warp access

a contiguous memory region

as few 128 B segments as possible (CC>=2.0)

CC >= 2.0: Cached accesses, cache line is always 128 B

CC 1.x: more restrictive as to when coalescing occurs

Huge performance hit for non-coalesced accesses

memory accesses per warp will be serialized

worst case: reading chars from random locations

Global Memory: Coalescing

Global Memory: Coalescing

A Common Programming Strategy

1. Process data in chunks to take advantage of

fast shared memory

process each chunk in its own block

2. Load data from global to shared memory

using as coalesced accesses as possible

3. Process data in shared memory

freedom w.r.t. accesses: no coalescence requirements

4. Write data back from shared to global memory

using as coalesced accesses as possible

A Common Programming Strategy

Partition data into several chunks

A Common Programming Strategy

Handle each data chunk with one thread block

each chunk must fit into shared memory for the block

this determines the maximal size of the chunks

A Common Programming Strategy

Load data from global to shared memory

using as coalesced accesses as possible

distribute data loading across multiple threads

A Common Programming Strategy

Process data in shared memory

much more freedom w.r.t. memory accesses

even random accesses may still be fast

A Common Programming Strategy

Write data back from shared to global memory

using as coalesced accesses as possible

distribute data writing across multiple threads

The Most Important CUDA Optimization

Minimize the number of global memory accesses

they are the slowest operations

essentially the only reason for slow kernel run time

If you access global memory, do it coalesced

Rules of thumb:

neighboring threads must access neighboring elements
array[threadId.x + blockDim.x * blockIdx.x]

two float arrays are better than one float2 array

therefore: use layered memory layout for multi-channel images

if one value is used a lot in same thread: load in local variable

even if used just more than once

if one value is used by lots of threads: shared memory

but if used only by 2 or so threads, don't bother, global mem is still OK

