GPU Programming
In Computer Vision

Evgeny Strekalovskiy, Maria Klodt
Jan Stihmer, Mohamed Souiai

Optimization

Technical University Munich, Computer Vision Group
Winter Semester 2013/2014, March 3 — April 4

Outline

® Branch Divergence

® Shared Memory Bank Conflicts
® Pitch Allocation for 2D Images
® Host-Device Memory Transfer

® Occupancy

® See the Programming Guide for more details

BRANCH DIVERGENCE

Branch Divergence

® All 32 threads in a warp execute the same
Instruction
¢ always, no matter what

__global void kernel (float *result, float *input)
{
int i = threadlIdx.x + blockDim.x*blockIdx.x;
if (input[i]>0)
result[i] = 1.f;
else

result[i] = 0.f; within a warp

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else

® If threads diverge within a warp execution is
serialized

¢ all 32 threads must execute the same instruction

® Each path is taken by each of the 32 threads
® Threads which do not correspond to this path
are marked as inactive during execution

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result[i] = 0.£;

threadIdx.x: O 1 2 3 4 5 6 7 8 c e 31

input[i]: 7 23 -2 5 -1 66 24 -41 -3 . . 18

input[i]>0: T T ¥ T F T T F F ... T

- [J {J |I {J |I {] [J |I |I {J
\7 /

acﬂve inactive

Branch Divergence: Serialization

® Branch serialization occurs whenever the
execution path diverges
®» if / for / while / case

® Potential divergence:
® if (input[x]>0) {...}
¢® for(int i=0; i<num iters[x]; i++) {...}

® Divergence in different warps: No serialization
» if (threadldx.x/32==0) {...}

SHARED MEMORY
BANK CONFLICTS

Shared Memory is Banked

® Simultaneous access to shared memory by the
32 threads of each warp

® Shared memory is divided into banks
® consecutive 4bytes are in different banks
* banks process accesses independently
® each bank can service one address per cycle

)

Two or more threads access the
same bank, but different value
® accesses will be

Bank Conflicts

3
!

CONOUWAMWNRKER

sh[threadIdx.x]

no conflict

3
%

T
BhEBeaNaudIuNKD

TR
NOWw b

—

is8
19
20
21
22
23
249
25
26
27
28
29
30
31

sh|[

7

7

Ban

o)le/[x|owlafwn|x]el |§

]

:
!
]
i

CONOUAWNKD

sh[3*threadIdx.

no conflict

Bank Conflicts

Threads: Banks: Threads: Banks: Threads: Banks
o o o —e o o
1 P 1 1 —E 1 1
2 g 2 2 2 2 2
3 A 3 3 e 3 3 3
4 4 a 4 4 4
5 s s 5 5 5
6 — 6 6 & &
7 7 7 7 7 7
8 8 8) 8)
° =~ o] o [~ o ° o
10 S 10| 10/ 10 10 10
11 11 11— 11 11 11
12 [12 12—t 12 12 12
13 13 13 [»— 13 13 13
14 S 14 14 ™ 14 14 14
15 =15 15 "5 15 15
16 = 16 16 =116 16 16
17 17 17 17 17 17
18 < 18] 18 [18 18 18
19 =19 19 [~—"19 19 19
20 = 20 20 =20 20 20
21 21 21 21 21 21
22 22 22 22 22 22
23 | 23 23 23 23 23
24 %24 24—t o0 24 24
25 25 25 —f» 25 25 25
26— » 26 26 ~— 26 26 E)
27 g 277 =rd i 27 b=rd 27
28 >~ 28 28 [—— 28 28 28
29 29 29 29 29 29
so><--— 30 3o —f»=""30 30 30
31 = 31| 31 31 31 31

random threads 3,4,6,7,9 broadcast same
permutation same val in bank 5 value within bank

no conflict no conflict no conflict

Bank Conflicts

* Be careful with strided access:
sharedmem|[i + k*threadIdx.x]

®* Bank conflicts for K:
2-way. k= 2*1, 2*3, 2*5, 2*7, ..
» 4-way: k= 4*1, 4*3, 4*5, 4*7, ..
8-way: k= 8*1, 8*3, 8*5, 8*7, ...
16-way: k = 16*1, 16*3, 16*5, 16*7, ...

®* No bank conflicts for odd k:
k=1,3,5,0, ..

PITCHED ALLOCATION
FOR 2D IMAGES

2D Images: Linear Allocation

.

.

)

.

One can allocate 2D images as 1D-arrays and access in a
linearized way: img[x+w*y]

This works, but is in general for CUDA
For a 6*3 float image, the addresses &img[x+6*y] are

48 | 52 | 56 | 60 | 64 | 68

24 | 28 | 32 | 36 | 40 | 44

0 4 8 12 | 16 | 20

Read/write accesses are fastest when the starting
address of each row is a multiple of a big power of 2
® atleast 128, or even 512
® reason: requirement for memory coalescing, see later

2D Images: Pitched Allocation

® Adding padding bytes at the end of each row resolves this

64 | 68 | 72 | 76 | 80 | 84

32 | 36 | 40 | 44 | 48 | 52

0 4 8 12 | 16 | 20

® The total new width in bytes is called pitch
® here: pitch = 32 bytes (= 8*sizeof (float))

® in general, pitch = multiple of element size
® example: 10*10 float3 array
* sizeof(float3) = 12, w*sizeof(float3) = 120, pitch =128

® cudaMallocPitch (void **pointer, size t *pitch,
size _t widthIlnBytes, size t height);

2D Images: Pitched Allocation

®

®

On host;:

float *d a;
size_ t pitch;
cudaMallocPitch(&d _a, &pitch, w*sizeof(float), h);

In kernel:

float value =
((float) ((char*)a + x*sizeof (float) + pitch*y));
Copying: cudaMemcpy2D(...)
* see NVIDIA Programming Guide

For 3D-Data: cudaMalloc3D()

HOST-DEVICE MEMORY
TRANSFER

Host-Device Memory Transfer

D)

D)

D)

D)

Memcpy and vice versa s
® orders of magnitude slower than device-to-device

Minimize transfers
* Jleave datafor as long as possible on GPU for processing
* only transfer main inputs to GPU, and transfer main outputs back

Group transfers
¢ one large transfer much faster than many small ones

Overlap transfers with kernel executions
* if possible by hardware
® wuses pinned host memory and streams (see later)

Pinned Host Memory

® Enables highest memcpy performance
® Enables asynchronous memcpy (CC>=1.1)
* Enables direct access from GPU (CC>=1.1)

® cudaMallocHost (void **pHost, size t size,
unsigned int flags) ;

® cudaFreeHost (void *ptr);

* page-locked, allocating too much may degrade your system

® flags = cudaHostAllocMapped: direct access form GPU

void *pDev; cudaHostGetDevicePointer (&pDev, pHost, 0);

® flags = 0: default

Asynchronous Memory Copy

* Usual cudaMemcpy is blocking
® waits until memcpy is done

® cudaMemcpyAsync (dst, src, size, dir, 0);
® asynchronous, non-blocking
¢ cudaMemcpyDeviceToHost, cudaMemcpyHostToDevice

® O0isthe default stream (more later)

® Requirement: "pinned" host memory
¢ allocated using cudaMallocHost

OCCUPANCY

Occupancy

)

Multiprocessors (SMs) can have many more
active threads than there are CUDA Cores

)

High occupancy is important
* If some threads stall, the SM can switch to others

)

Pool of limited resources per SM

)

Occupancy determined by

Register usage per thread
® Shared memory per block

Resource Limits

Registers Shared Memory Registers Shared Memory

B2
B 1
B2
B0 B 1
B0

® Each block grabs registers and shared memory

® If one or the other is fully utilized:
® no more blocks per SM possible

Find Out Resource Usage

® Compile with nvec option -ptxas-options=-v
® Per kernel registers and (static) shared memory:

ptxas info : Compiling entry function'_Z10add_kernelPfPKfS1_i' for 'sm_10'
ptxas info : Used 4 registers, 44 bytes smem

® Amount of resources per multiprocessor:
¢ run deviceQuery

Optimize Algorithms for the GPU

»

Maximize independent parallelism

»

Maximize arithmetic density (math/bandwidth)

»

Sometimes it's better to recompute than to cache
* GPU spends transistors on computation, not memory

»

Do more computation on the GPU to avoid costly
data transfers

¢ Even low parallelism computations can sometimes be
faster than transfering back and forth to/from host

