GPU Programming
In Computer Vision

Evgeny Strekalovskiy, Maria Klodt
Jan Stihmer, Mohamed Souiai

Miscellaneous

Technical University Munich, Computer Vision Group
Winter Semester 2013/2014, March 3 — April 4

Outline

® Atomics
® CUDA Streams and Events
® Multi-GPU Programming

® See the Programming Guide for more detalls

ATOMICS

Communication Through Memory

® Question:

__global void race()

{
__shared int my shared variable;
my shared variable = threadIdx.x;

Communication Through Memory

»

NIS IS a
ne result Is

ne order in which threads access the variable
IS undefined without explicit coordination

Use atomic operations (e.g., atomicAdd) to
enforce well-defined semantics

»

»

»

Atomics

® Use atomic operations to ensure exclusive
access to a variable

// assume *p result is initialized to O
__global void sum(int *input, int *p result)
{

atomicAdd (p _result, input[threadIdx.x]);

// after this kernel exits, the wvalue of

// *p result will be the sum of the inputs

Atomics Imply Serialization

® Atomic operations are costly!

® They imply to a variable

® use them only if there is no other better way to
achieve your task

__global void sum(int *input, int *p result)

{
atomicAdd (p _result, input[threadIdx.x]);

// how many threads will contend
// for exclusive access to p result?
sum <<<10,128>>> (input,p result);

Atomics: Hierarchical Summation

® Divide & Conquer
¢ _ shared__ partial sums: atomicAdd per thread
® global total sum: atomicAdd per block

Atomics: Hierarchical Summation

__global void sum(int *input, int *result)

{

__shared int partial sum;
// thread 0 is responsible for initializing partial sum
if (threadIdx.x == 0) partial sum = 0;

__syncthreads() ;

// each thread updates the partial sum
atomicAdd (&partial sum, input[threadIdx.x]);
__syncthreads() ;

// thread 0 updates the total sum
if (threadIdx.x == 0) atomicAdd(result, partial sum);

CUDA STREAMS
AND EVENTS

CUDA Streams

® Concurrency is handled through streams

.

.

.

.

overlap kernel execution with another kernel execution
overlap kernel execution with a memcpy

overlap memcpy with another memcpy

wait for certains kernels, but not for others

® Stream = sequence of commands executed in order

.

.

.

different streams may execute cuncurrently, but not guaranteed
depends on hardware and the kind of operations executed in the streams

default stream is 0: if no stream specified
so everything without an explicitly specified stream executes in order

possible: callbacks, relative priorities

CUDA Streams

cudaStream t streaml; cudaStream t stream2;
cudaStreamCreate (&streaml); cudaStreamCreate (&stream?) ;
float *h ptr; cudaMallocHost(&h ptr, size);

_ _ (potentially)
cudaMemcpyAsync (h_ptr, d ptr, size, dir, streaml);

: overlaping

kernel <<<grid,block,0,stream2>>> (...); i
execution

// check whether memcpy has finished
cudaError t res = cudaStreamQuery (streaml);
if (res==cudaSuccess) { ... }
// or: wait for completion:
cudaStreamSynchronize (streaml); // will only wait for the memcpy
cudaStreamSynchronize (stream2); // will only wait for the kernel

cudaStreamDestroy (&streaml) ; cudaStreamDestroy (&stream?) ;

CUDA Events

® Monitor device's progress
® Asynchronously record events at any point in the program

* Event recorded when all commands in stream completed
® measure elapsed time for CUDA calls (clock cycle precision)
® query the status of an asynchronous CUDA call
* Dblock CPU until CUDA calls prior to the event are completed

cudaEvent t start; cudaEvent t stop;
cudaEventCreate (&start) ; cudaEventCreate (&stop) ;

cudaEventRecord (start,0) ; // default stream

kernel <<<grid,block>>> (...);

cudaEventRecord (stop,0) ; // default stream
cudaEventSynchronize (stop) ; // block until "stop" recorded

float t; cudaEventElapsedTime (&t, start, stop);
cudaEventDestroy (start) ; cudaEventDestroy (end) ;

MULTI-GPU
PROGRAMMING

Multi-GPU Programming

® There may be more than one GPU installed

® CPU can gquery and select GPU devices
® cudaGetDeviceCount (int *count) ;
® cudaSetDevice (int device) ;
® cudaGetDevice (int *current device);
® cudaGetDeviceProperties (cudaDeviceProp *prop,

int device) ;

® Multi-GPU setting:
® device O is used by default

Multi-GPU: Current Device

»

»

)

cudaSetDevice(...) can be called at any time

Everything happens on the current device:
cudaMalloc(...) allocates on the cur. dev. only
cudaFree(...) frees memory of cur. dev.

Kernels execute only on the cur. dev.
cudaDeviceSynchronize () waits only for cur. dev.

»

»

»

»

GPUs are independent: kernels run in parallel

cudaSetDevice (0); mykernell <<<gridl,blockl>>> (d0_a, n0O_a);
cudaSetDevice (1) ; mykernel2 <<<grid2,block2>>> (dl _a, nl a);

Multi-GPU: Data Exchange

® Data exchange between GPUs
® cudaMemcpyPeer (ptr to, dev to,

ptr from, dev from, size);

® From CC>=2.0: Direct access between GPUs

Kernel on device x can read memory on devicey
® memcopies are done automatically

® utilizes unified virtual addressing

* must be explicitly enabled:

® cudaDeviceEnablePeerAccess (dev _peer, 0);
® enables current device to access memory of dev_peer

GPU Programming in Computer Vision

That's it!

Have fun

parallelizing your
applications

with CUDA!

And read the CUDA Programming Guide, really

