
GPU Programming

in Computer Vision

Miscellaneous

Evgeny Strekalovskiy, Maria Klodt

Jan Stühmer, Mohamed Souiai

Technical University Munich, Computer Vision Group

Winter Semester 2013/2014, March 3 – April 4

Outline

Atomics

CUDA Streams and Events

Multi-GPU Programming

See the Programming Guide for more details

ATOMICS

Communication Through Memory

Question:

__global__ void race()

{

 __shared__ int my_shared_variable;

 my_shared_variable = threadIdx.x;

 // what is the value of my_shared_variable?

}

Communication Through Memory

This is a race condition

The result is undefined

The order in which threads access the variable

is undefined without explicit coordination

Use atomic operations (e.g., atomicAdd) to

enforce well-defined semantics

Atomics

Use atomic operations to ensure exclusive

access to a variable

// assume *p_result is initialized to 0

__global__ void sum(int *input, int *p_result)

{

 atomicAdd(p_result, input[threadIdx.x]);

 // after this kernel exits, the value of

 // *p_result will be the sum of the inputs

}

Atomics Imply Serialization

Atomic operations are costly!

They imply serialized access to a variable

use them only if there is no other better way to

achieve your task

__global__ void sum(int *input, int *p_result)

{

 atomicAdd(p_result, input[threadIdx.x]);

}

// how many threads will contend

// for exclusive access to p_result?

sum <<<10,128>>> (input,p_result);

Atomics: Hierarchical Summation

Divide & Conquer

__shared__ partial sums: atomicAdd per thread

global total sum: atomicAdd per block

S

S0 S1 Si

Atomics: Hierarchical Summation

__global__ void sum(int *input, int *result)

{

 __shared__ int partial_sum;

 // thread 0 is responsible for initializing partial_sum

 if(threadIdx.x == 0) partial_sum = 0;

 __syncthreads();

 // each thread updates the partial sum

 atomicAdd(&partial_sum, input[threadIdx.x]);

 __syncthreads();

 // thread 0 updates the total sum

 if(threadIdx.x == 0) atomicAdd(result, partial_sum);

}

CUDA STREAMS

AND EVENTS

CUDA Streams

Concurrency is handled through streams

overlap kernel execution with another kernel execution

overlap kernel execution with a memcpy

overlap memcpy with another memcpy

wait for certains kernels, but not for others

Stream = sequence of commands executed in order

different streams may execute cuncurrently, but not guaranteed
depends on hardware and the kind of operations executed in the streams

default stream is 0: if no stream specified
so everything without an explicitly specified stream executes in order

possible: callbacks, relative priorities

CUDA Streams

cudaStream_t stream1; cudaStream_t stream2;

cudaStreamCreate(&stream1); cudaStreamCreate(&stream2);

float *h_ptr; cudaMallocHost(&h_ptr, size);

cudaMemcpyAsync(h_ptr, d_ptr, size, dir, stream1);

kernel <<<grid,block,0,stream2>>> (...);

// check whether memcpy has finished

cudaError_t res = cudaStreamQuery(stream1);

if (res==cudaSuccess) { ... }

// or: wait for completion:

cudaStreamSynchronize(stream1); // will only wait for the memcpy

cudaStreamSynchronize(stream2); // will only wait for the kernel

cudaStreamDestroy(&stream1); cudaStreamDestroy(&stream2);

(potentially)

overlaping

execution

CUDA Events

Monitor device's progress

Asynchronously record events at any point in the program

Event recorded when all commands in stream completed

measure elapsed time for CUDA calls (clock cycle precision)

query the status of an asynchronous CUDA call

block CPU until CUDA calls prior to the event are completed

cudaEvent_t start; cudaEvent_t stop;

cudaEventCreate(&start); cudaEventCreate(&stop);

cudaEventRecord(start,0); // default stream

kernel <<<grid,block>>> (...);

cudaEventRecord(stop,0); // default stream

cudaEventSynchronize(stop); // block until "stop" recorded

float t; cudaEventElapsedTime(&t, start, stop);

cudaEventDestroy(start); cudaEventDestroy(end);

MULTI-GPU

PROGRAMMING

Multi-GPU Programming

There may be more than one GPU installed

CPU can query and select GPU devices

cudaGetDeviceCount(int *count);

cudaSetDevice(int device);

cudaGetDevice(int *current_device);

cudaGetDeviceProperties(cudaDeviceProp *prop,

 int device);

Multi-GPU setting:

device 0 is used by default

Multi-GPU: Current Device

cudaSetDevice(...) can be called at any time

Everything happens on the current device:

cudaMalloc(...) allocates on the cur. dev. only

cudaFree(...) frees memory of cur. dev.

Kernels execute only on the cur. dev.

cudaDeviceSynchronize() waits only for cur. dev.

GPUs are independent: kernels run in parallel

 cudaSetDevice(0); mykernel1 <<<grid1,block1>>> (d0_a, n0_a);

 cudaSetDevice(1); mykernel2 <<<grid2,block2>>> (d1_a, n1_a);

Multi-GPU: Data Exchange

Data exchange between GPUs

cudaMemcpyPeer(ptr_to, dev_to,

 ptr_from, dev_from, size);

From CC>=2.0: Direct access between GPUs

Kernel on device x can read memory on device y

memcopies are done automatically

utilizes unified virtual addressing

must be explicitly enabled:

cudaDeviceEnablePeerAccess(dev_peer, 0);

enables current device to access memory of dev_peer

GPU Programming in Computer Vision

That's it!

Have fun

parallelizing your

applications

with CUDA!

And read the CUDA Programming Guide, really

