GPU Programming in Computer Vision: Day 1

Date: Mon, 3 March 2014

Please work in groups of 2-3 people. We will check your solutions tomorrow after the lecture.
Please be prepared to present your solution and explain the code.

Download the code framework

In your home directory, execute:
git clone https://svncvpr.in.tum.de/git/cuda ws1314
The framework will be located in the folder cuda_ws1314.

The framework shows how to use opencv to load/save/display images, access the camera,
measure the run time, and process the command line parameters.

Compile: make

Run: ./main

Copy the folder framework for each new exercise.
Reuse the kernels you have previously written as much as possible.

General Code Requirements for the Exercises

e Keep your code as general as possible. It must be applicable for images with an arbitrary
number of channels n. (if not stated otherwise).

e Always comment your code.

e Whenever new parameters are introduced, always write the corresponding getParam
call, to be able to read in this parameter from command line arguments.

e Always include code for measuring run times and test how much time your overall
computation for the exercise takes.

e When finished, test on several still images. If you want, also test on live webcam stream
(uncomment #define CAMERA).

e Always use the macro CUDA_CHECK after each CUDA call, e.g.
cudaMalloc(...); CUDA_CHECK;

e Hint: Multi-channel images are layered: access imgIn(z,y, channel ¢) as
imgIn[x + (size_t)wxy + (size_t)wkhx*c]

e Always use a variable (of type size_t) for an index which you need more than once, e.g.
size_t pt = x + (size_t)wxy + (size_t)wxhx*c;

e Always cast to size_t in integer products when computing array indices or image sizes



Exercise 1: Check CUDA and the installed GPU (1P)

1. Check whether CUDA is installed: nvcc --version. Which version is installed?
2. Go to the “CUDA samples” folder! and run deviceQuery. Find out the following:

(a) name of the installed GPU and its compute capability (“CUDA Capability”),
(b) number of multiprocessors and CUDA cores,

(c) amount of global memory.

Exercise 2: First CUDA kernels (3P)

Implement the following CUDA kernels:

1. In basic/squareArray.cu, complete the CUDA code for squaring an array on the GPU.
Implement the square operation as a __device__ function. Compile with
nvcc -o squareArray squareArray.cu.

2. In basic/addArrays.cu, complete the CUDA code for adding two arrays on the GPU.
Implement the addition operation as a __device__ function.

3. Now, compile both files with
nvcc -o squareArray squareArray.cu --ptxas-options=-v
and similarly for addArrays. How many registers are used by your kernels?

Exercise 3: Color Inversion (4P)
Output: same number of channels as input image. Input: general number of channels.

Invert the colors of the input image: uS"(x,y) = 1 — u.(z,y) for each pixel (z,y) € Q and for
each channel ¢ € {1,...,n.}.

1. Write the CPU version. Keep your code general, so that it can process grayscale (n., = 1)
as well as color images (n. = 3). Test on several input images, with and without the
-gray parameter. Then test on live webcam images (uncomment #define CAMERA).

2. Write the GPU version, using a __device__ function for the 1 — u. operation. Test on
still images and on the webcam stream.

3. Compare the CPU and GPU run times on still images. Average the run times over
repeats > 1 repetitions and experiment with different values of repeats. For the GPU
version, first measure all operations, and then only the kernel executions excluding
alloc/free/memcpy. What do you observe?

4. Experiment with several different block sizes for the kernel launch, starting with (32,8, 1).
Make sure that the overall number of threads per block is a multiple of 32. For which
block size is the run time minimal?

! Jwork/sdks/cudacurrent/samples/C/1_Utilities/deviceQuery



Exercise 4: Image Thresholding (2P)
Output: grayscale. Input: general number of channels.

Compute a thresholded version of the input image, defined for a fixed threshold T" € [0, 1] as

follows:
i LY uayy) > T

0 else.

UOUt(J:‘, y) — {

1. Write only the GPU version, and use a __device__ function to get the 0-1 result (the
input of this function should be n% Sone, uc(w,y), and output u®™(x,y)). Keep your
code general, so that it can be applied for general numbers of channels n..

2. Measure the kernel execution time averaging over several repetitions.

Exercise 5: Image Gradient (2P)
Output: grayscale. Input: general number of channels.

Compute the absolute value of the image gradient |Vu| using forward differences 9;', 6; :

Vu(z,y)| = | Y [Vue(z,y)?
c=1

Write only a GPU version. As usual, write your code for a general n.. Implement this in
several steps:

1. Compute v! := 9} u and v? := d,fu in the same kernel (both v! and v? are parameters
of the kernel). The images v! and v? have the same number of channels as u, and 9,
and 8; are applied channelwise.

2. At each pixel (z,y) compute the gradient norm, which is given by

Nec

> (vl ) + 02 (@ )?).

c=1

Visualize the result.

Exercise 6: Convolution (6P)
Output: same number of channels as input image. Input: general number of channels.

Implement the convolution G, * u of an input image v with a Gaussian kernel G,.
Use GPU global memory for everything.

1. Compute the kernel k£ := G, on the CPU. Normalize so that the values sum up to 1.
For a general variance o > 0 set the kernel window radius to r := ceil(3 x o) (i.e. round

up).



. Visualize the kernel using OpenCV. For visualization, define a copy k' which is equal to
the kernel £ but is scaled so that the maximum value is 1. Note that the kernel can be
visualized as a grayscale image with width = height = 2r + 1. Remark: For this, you
will need to define a new OpenCV output image in the framework.

. Compute the convolution k * u on the CPU. The convolution is done channelwise on .
When the convolution requires values of u in pixels outside of the image domain, use
clamping. Visualize the result.

. Copy the kernel k£ computed in step 1 from the CPU to the GPU memory. Compute
the convolution k % u on the GPU. Use a single kernel execution to process all channels.
Visualize the result.

. Experiment with different values of o on still images, compare the run times.

. Test on webcam images.



