
GPU Programming in Computer Vision: Day 1

Date: Mon, 3 March 2014

Please work in groups of 2–3 people. We will check your solutions tomorrow after the lecture.
Please be prepared to present your solution and explain the code.

Download the code framework

In your home directory, execute:
git clone https://svncvpr.in.tum.de/git/cuda ws1314

The framework will be located in the folder cuda ws1314.

The framework shows how to use opencv to load/save/display images, access the camera,
measure the run time, and process the command line parameters.
Compile: make
Run: ./main

Copy the folder framework for each new exercise.
Reuse the kernels you have previously written as much as possible.

General Code Requirements for the Exercises

• Keep your code as general as possible. It must be applicable for images with an arbitrary
number of channels nc (if not stated otherwise).

• Always comment your code.

• Whenever new parameters are introduced, always write the corresponding getParam

call, to be able to read in this parameter from command line arguments.

• Always include code for measuring run times and test how much time your overall
computation for the exercise takes.

• When finished, test on several still images. If you want, also test on live webcam stream
(uncomment #define CAMERA).

• Always use the macro CUDA CHECK after each CUDA call, e.g.
cudaMalloc(...); CUDA CHECK;

• Hint: Multi-channel images are layered: access imgIn(x, y, channel c) as
imgIn[x + (size t)w*y + (size t)w*h*c]

• Always use a variable (of type size t) for an index which you need more than once, e.g.
size t pt = x + (size t)w*y + (size t)w*h*c;

• Always cast to size t in integer products when computing array indices or image sizes

1

Exercise 1: Check CUDA and the installed GPU (1P)

1. Check whether CUDA is installed: nvcc --version. Which version is installed?

2. Go to the “CUDA samples” folder1 and run deviceQuery. Find out the following:

(a) name of the installed GPU and its compute capability (“CUDA Capability”),

(b) number of multiprocessors and CUDA cores,

(c) amount of global memory.

Exercise 2: First CUDA kernels (3P)

Implement the following CUDA kernels:

1. In basic/squareArray.cu, complete the CUDA code for squaring an array on the GPU.
Implement the square operation as a device function. Compile with
nvcc -o squareArray squareArray.cu.

2. In basic/addArrays.cu, complete the CUDA code for adding two arrays on the GPU.
Implement the addition operation as a device function.

3. Now, compile both files with
nvcc -o squareArray squareArray.cu --ptxas-options=-v

and similarly for addArrays. How many registers are used by your kernels?

Exercise 3: Color Inversion (4P)

Output: same number of channels as input image. Input: general number of channels.

Invert the colors of the input image: uoutc (x, y) = 1−uc(x, y) for each pixel (x, y) ∈ Ω and for
each channel c ∈ {1, . . . , nc}.

1. Write the CPU version. Keep your code general, so that it can process grayscale (nc = 1)
as well as color images (nc = 3). Test on several input images, with and without the
-gray parameter. Then test on live webcam images (uncomment #define CAMERA).

2. Write the GPU version, using a device function for the 1 − uc operation. Test on
still images and on the webcam stream.

3. Compare the CPU and GPU run times on still images. Average the run times over
repeats≥ 1 repetitions and experiment with different values of repeats. For the GPU
version, first measure all operations, and then only the kernel executions excluding
alloc/free/memcpy. What do you observe?

4. Experiment with several different block sizes for the kernel launch, starting with (32, 8, 1).
Make sure that the overall number of threads per block is a multiple of 32. For which
block size is the run time minimal?

1/work/sdks/cudacurrent/samples/C/1 Utilities/deviceQuery

2

Exercise 4: Image Thresholding (2P)

Output: grayscale. Input: general number of channels.

Compute a thresholded version of the input image, defined for a fixed threshold T ∈ [0, 1] as
follows:

uout(x, y) =

{
1 if 1

nc

∑nc
c=1 uc(x, y) ≥ T

0 else.

1. Write only the GPU version, and use a device function to get the 0-1 result (the
input of this function should be 1

nc

∑nc
c=1 uc(x, y), and output uout(x, y)). Keep your

code general, so that it can be applied for general numbers of channels nc.

2. Measure the kernel execution time averaging over several repetitions.

Exercise 5: Image Gradient (2P)

Output: grayscale. Input: general number of channels.

Compute the absolute value of the image gradient |∇u| using forward differences ∂+x , ∂+y :

|∇u(x, y)| =

√√√√ nc∑
c=1

|∇uc(x, y)|2

Write only a GPU version. As usual, write your code for a general nc. Implement this in
several steps:

1. Compute v1 := ∂+x u and v2 := ∂+y u in the same kernel (both v1 and v2 are parameters
of the kernel). The images v1 and v2 have the same number of channels as u, and ∂+x
and ∂+y are applied channelwise.

2. At each pixel (x, y) compute the gradient norm, which is given by√√√√ nc∑
c=1

(
v1c (x, y)2 + v2c (x, y)2

)
.

Visualize the result.

Exercise 6: Convolution (6P)

Output: same number of channels as input image. Input: general number of channels.

Implement the convolution Gσ ∗ u of an input image u with a Gaussian kernel Gσ.
Use GPU global memory for everything.

1. Compute the kernel k := Gσ on the CPU. Normalize so that the values sum up to 1.
For a general variance σ > 0 set the kernel window radius to r := ceil(3×σ) (i.e. round
up).

3

2. Visualize the kernel using OpenCV. For visualization, define a copy k′ which is equal to
the kernel k but is scaled so that the maximum value is 1. Note that the kernel can be
visualized as a grayscale image with width = height = 2r + 1. Remark: For this, you
will need to define a new OpenCV output image in the framework.

3. Compute the convolution k ∗ u on the CPU. The convolution is done channelwise on u.
When the convolution requires values of u in pixels outside of the image domain, use
clamping. Visualize the result.

4. Copy the kernel k computed in step 1 from the CPU to the GPU memory. Compute
the convolution k ∗ u on the GPU. Use a single kernel execution to process all channels.
Visualize the result.

5. Experiment with different values of σ on still images, compare the run times.

6. Test on webcam images.

4

