
GPU Programming in Computer Vision: Day 3

Date: Thu, 6 March 2014

Please work in groups of 2–3 people. We will check your solutions tomorrow after the lec-
ture. Please be prepared to present your solution and explain the code. The general code
requirements from exercise sheet 1 still apply. The bonus exercises are not mandatory.

Exercise 10: Linear Diffusion (3P)

Output: same number of channels as input image. Input: general number of channels.

Implement the Laplace diffusion
∂tu = ∆u.

1. Use the diffusion discretization from the lecture. Instead of computing div−(∇+u) in
several steps, use the explicit discretization of ∆ from the lecture.

2. Compute N iterations of the diffusion and visualize the end result. Experiment with
different time steps τ and different numbers of iterations N .

A necessary condition for convergence is τ < 0.25. What do you observe for τ > 0.25?
What happens for a very large N?

3. Compare the result to Gaussian convolution Gσ ∗ u with σ =
√

2τN . What do you
observe?

Exercise 11: Nonlinear Diffusion (7P)

Output: same number of channels as input image. Input: general number of channels.

Implement the Huber-diffusion

∂tu = div
(
ĝ
(
|∇u|

)
∇u
)
,

with ĝ(s) := 1
max(ε,s) . Here the gradient is computed from all channels of u:

|∇u(x, y)| =

√√√√ nc∑
c=1

|∇uc(x, y)|2 =

√√√√ nc∑
c=1

(
(∂xuc)(x, y)2 + (∂yuc)(x, y)2

)
.

Implement this in several steps:

1. Use forward differences to compute the derivatives v1 := ∂+x u and v2 := ∂+y u.
Reuse your code from exercise 5.

2. Compute the diffusivity g from v1, v2. Reuse your code from exercise 5. Use a “ host

device ” function for ĝ.
Hint: Note that g is scalar, there is only one value g, which is shared for all channels.

1

3. Multiply v1, v2 by g, and store the result again in v1, v2.
If you want, you can combine steps 2 and 3 into a single kernel. Note that then you
don’t need an array for g, because you can compute g locally in the kernel.

4. Use backward differences to compute the divergence: d := div
(
v1
v2

)
= ∂−x v1 + ∂−y v2.

Note that d has nc channels, just as v1, v2 and u. The divergence operation is applied
channelwise.

5. Compute the update step for u, update all of the nc channels in a single kernel. You
can implement this as a separate kernel, or as part of the div-kernel from step 3.

6. Compute N iterations of the diffusion and visualize the end result. Experiment with
different time steps τ , number of steps N , and ε values.

A necessary condition for convergence is τ < 0.25/ĝ(0) = 0.25 ε. Start with ε = 0.01,
and τ = 0.2 ε.

7. Try using a different diffusivity function:

(a) ĝ(s) = 1.

(b) ĝ(s) = exp(−s2/ε)/ε.

How does the result change in each case?

Exercise 12 (Bonus): Mandelbrot fractal (5P)

Output: grayscale. Input: No input image.

You can use CUDA to generate a very well-known fractal: the Mandelbrot set.
For this, we need to work with complex numbers, which can be viewed as points in R2.

The Mandelbrot set M is a subset of R2: every complex number c ∈ R2 either lies in M
(and is colored as black), or not (and is colored as white). One can construct successive
approximations to M by running the following pseudo-code: Input is a complex number c
which will depend on the location in the output image:

n := 0;

z := c; // z and c are complex numbers

while (|z| < 2 and n < N) {
z := z2 + c;

n++;

}

If the loop is exited before the maximum number N of iterations is reached, then c 6∈ M .
Otherwise, c lies in a neighborhood of M . Increasing N yields better approximations.

Implement this iteration for a rectangular subset of R2:

1. Choose a rectangular subset b ⊂ R2 for which you want to compute the fractal. Specify
it by choosing a center point and a radius. A good start is (−0.5, 0)± 1.5.

2

2. b is discretized into a number of pixels. Choose the desired output image dimensions,
e.g. w = 640 and h = 480. Think of how you would map the pixels to the complex
numbers in the region b. The mapping must be orthogonal, i.e. there must be no skewing
in the y-direction.

3. Implement the above iteration for each pixel. Use the build-in type float2 to repre-
sent complex numbers. Implement the multiplication, addition, and the absolute value
operation as “ host device ” functions.

4. Set the grayscale value in each output pixel to 1− n
N .

5. Experiment with different values of N . Try some other regions b to “zoom in” into the
fractal, for example (−0.773, 0.1175)± 0.005.

3

