Continuous Setting

Continuous setting

We view images as being defined on a continuous demain Ω.
Images are functions

$$
u: \Omega \rightarrow \mathbb{R}^{n}
$$

continuous setting

discrete setting

Representing Images as Functions

Image are functions

$$
u: \Omega \rightarrow \mathbb{R}^{n}
$$

Domain Ω (a rectangular subset of \mathbb{R}^{d})
$\Omega \subset \mathbb{R}^{1}$: signal (1D)
$\Omega \subset \mathbb{R}^{2}$: image (2D)
$\Omega \subset \mathbb{R}^{3}$: volume (3D)
Range \mathbb{R}^{n}
\mathbb{R}^{1} : grayscale images, \ldots
$\mathbb{R}^{2}: 2 \mathrm{D}$-vector fields,
\mathbb{R}^{3} : RGB images, HSV values, normals, ...
\mathbb{R}^{4} : matrix valued images, ...
We will represent multi-channel images by n single-valued images:

$$
u=\left(u_{1}, \ldots, u_{n}\right), \quad u(x)=\left(u_{1}(x), \ldots, u_{n}(x)\right) \in \mathbb{R}^{n}
$$

Differential Operators

We assume a two-dimensional domain: $\Omega \subset \mathbb{R}^{2}$.

Partial derivative w.r.t. \times of a scalar image $u: \Omega \rightarrow \mathbb{R}$

$$
\partial_{x} u: \Omega \rightarrow \mathbb{R}, \quad\left(\partial_{x} u\right)(x, y)=\lim _{h \rightarrow 0} \frac{u(x+h, y)-u(x, y)}{h}
$$

Partial derivative w.r.t. y of a scalar image $u: \Omega \rightarrow \mathbb{R}$

$$
\partial_{y} u: \Omega \rightarrow \mathbb{R}, \quad\left(\partial_{y} u\right)(x, y)=\lim _{h \rightarrow 0} \frac{u(x, y+h)-u(x, y)}{h}
$$

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: Component-wise

Differential Operators

Gradient of a scalar image $u: \Omega \rightarrow \mathbb{R}$
The gradient combines all partial derivatives into a vector:

$$
\nabla u: \Omega \rightarrow \mathbb{R}^{2}, \quad(\nabla u)(x, y)=\binom{\left(\partial_{x} u\right)(x, y)}{\left(\partial_{y} u\right)(x, y)}
$$

This vector is the direction of the fastest increase of u.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: One gradient per channel:

$$
\nabla u: \Omega \rightarrow\left(\mathbb{R}^{2}\right)^{n}, \quad \nabla u=\left(\nabla u_{1}, \ldots, \nabla u_{n}\right)
$$

Differential Operators

Divergence of a 2D-vector field $u: \Omega \rightarrow \mathbb{R}^{2}$
This operator needs a vector field as input. The result is a scalar function:

$$
\operatorname{div} u: \Omega \rightarrow \mathbb{R}, \quad(\operatorname{div} u)(x, y)=\left(\partial_{x} u_{1}\right)(x, y)+\left(\partial_{y} u_{2}\right)(x, y)
$$

Multi-channel 2D-vector fields $u: \Omega \rightarrow\left(\mathbb{R}^{2}\right)^{n}$: Divergence per channel:

$$
\operatorname{div} u: \Omega \rightarrow \mathbb{R}^{n}, \quad \operatorname{div} u=\left(\operatorname{div} u_{1}, \ldots, \operatorname{div} u_{n}\right)
$$

Differential Operators

Gradient magnitude of a scalar image
Pointwise absolute value of $\nabla u:|\nabla u|: \Omega \rightarrow \mathbb{R}$,

$$
(|\nabla u|)(x, y):=|(\nabla u)(x, y)|=\sqrt{\left(\partial_{x} u\right)(x, y)^{2}+\left(\partial_{y} u\right)(x, y)^{2}}
$$

This often serves as an edge detector: big values $|(\nabla u)(x, y)|$ indicate an edge at (x, y).

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: Norm over all partial derivatives:
$(|\nabla u|)(x, y):=\sqrt{\sum_{i=1}^{n}\left|\left(\nabla u_{i}\right)(x, y)\right|^{2}}=\sqrt{\sum_{i=1}^{n}\left(\left(\partial_{x} u_{i}\right)(x, y)^{2}+\left(\partial_{y} u_{i}\right)(x, y)^{2}\right)}$

Differential Operators

Laplacian of a scalar image $u: \Omega \rightarrow \mathbb{R}$
The gradient $\nabla u: \Omega \rightarrow \mathbb{R}^{2}$ is a 2 D -vector field, and divergence div operates on 2D-vector fields. Thus, we can concatenate these two operators. The result is the Laplacian:

$$
\begin{gathered}
\Delta u: \Omega \rightarrow \mathbb{R}, \quad \Delta u:=\operatorname{div}(\nabla u)=\operatorname{div}\binom{\partial_{x} u}{\partial_{y} u} \\
(\Delta u)(x, y)=\left(\partial_{x x} u\right)(x, y)+\left(\partial_{y y} u\right)(x, y)
\end{gathered}
$$

The laplacian is useful in physical models. For example, if $u(x, y)$ is the temperature at each point (x, y), then Δu is the rate of local temperature decrease: $\left(\partial_{t} u\right)(x, y)=a(\Delta u)(x, y)$ for some $a>0$.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: Component-wise

Convolution

Convolution computes a weighted sum of the image values.

*

Convolution

Convolution
Given a kernel $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and a multi-channel image $u: \Omega \rightarrow \mathbb{R}^{n}$:

$$
K * u: \Omega \rightarrow \mathbb{R}^{n}, \quad(K * u)(x, y)=\int_{\mathbb{R}^{2}} K(a, b) u(x-a, y-b) d a d b
$$

(channel-wise). This sums up the u values around (x, y), weighted by K.

Definition at the boundary of image domain
The formula needs values of u outside of the definition domain Ω.
Common ways to resolve this:

- Clamping of (x, y) back to Ω (we will use this approach)
- Periodic boundary conditions (allows application of FFT)
- Mirroring boundary conditions

Convolution

2D-Gaussian kernel with a standard deviation $\sigma>0$

$$
K(a, b)=G_{\sigma}(a, b):=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{a^{2}+b^{2}}{2 \sigma^{2}}}
$$

Convolution: Properties

- Commutativity:

$$
K * u=u * K
$$

- Associativity:

$$
K_{1} *\left(K_{2} * u\right)=\left(K_{1} * K_{2}\right) * u
$$

- Bilinearity:

$$
\begin{aligned}
& \left(a K_{1}+b K_{2}\right) * u=a\left(K_{1} * u\right)+b\left(K_{2} * u\right) \\
& K *\left(a u_{1}+b u_{2}\right)=a\left(K * u_{1}\right)+b\left(K * u_{2}\right)
\end{aligned}
$$

for real a and b.

- Differential operators:

$$
\begin{aligned}
& \partial_{x}(K * u)=\left(\partial_{x} K\right) * u=K *\left(\partial_{x} u\right) \\
& \partial_{y}(K * u)=\left(\partial_{y} K\right) * u=K *\left(\partial_{y} u\right)
\end{aligned}
$$

Discretization: Images

The image domain $\Omega \subset \mathbb{R}^{2}$ is discretized into a 2D-grid of $W \times H$ pixels.

Linearized storage for scalar images $u: \Omega \rightarrow \mathbb{R}$
The WH values $u(x, y)$ are arranged as a single one-dimensional array u. Usually, one uses a row-by-row order:

$$
\begin{aligned}
u= & (u(0,0), u(1,0), u(2,0), \ldots, u(W-1,0), \\
& u(0,1), u(1,1), u(2,1), \ldots, u(W-1,1), \ldots \\
& u(0, H-1), u(1, H-1), u(2, H-1), \ldots, u(W-1, H-1)) .
\end{aligned}
$$

Linearized access

$$
u(x, y)=u[x+W \cdot y]
$$

Discretization: Images

Linearized storage of multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$
The $n W H$ values $u_{i}(x, y)$ are arranged as a single one-dimensional array.
The n channels u_{i} are stored directly one after another

$$
u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)
$$

and, as previously, each channel u_{i} is stored in row-by-row order.
This is called layered storage, and we will use this variant.
(Another possiblity is interleaved storage: save the n values $u_{i}(x, y)$ pixel-by-pixel. For example, this is used by OpenCV.)

Linearized access

$$
u_{i}(x, y)=u[x+W \cdot y+W H \cdot i]
$$

C/C++
To support potentially very large images, always compute the products using the size_t type: $\mathrm{x}+($ size_t) $\mathrm{W} * \mathrm{y}+($ size_t $) \mathrm{W} * \mathrm{H} * \mathrm{i}$.

Discretization: Differential Operators

Gradient

Forward differences:

$$
\left(\nabla^{+} u\right)(x, y)=\binom{\left(\partial_{x}^{+} u\right)(x, y)}{\left(\partial_{y}^{+} u\right)(x, y)}
$$

Forward differences (with Neumann boundary conditions)

$$
\begin{aligned}
& \left(\partial_{x}^{+} u\right)(x, y):= \begin{cases}u(x+1, y)-u(x, y) & \text { if } x+1<W \\
0 & \text { else }\end{cases} \\
& \left(\partial_{y}^{+} u\right)(x, y):= \begin{cases}u(x, y+1)-u(x, y) & \text { if } y+1<H \\
0 & \text { else }\end{cases}
\end{aligned}
$$

This assumes that u has slope 0 at the boundary: $\partial_{\text {normal }} u=0$.

Discretization: Differential Operators

Divergence

Backward differences:

$$
\left(\operatorname{div}^{-} u\right)(x, y)=\left(\partial_{x}^{-} u_{1}\right)(x, y)+\left(\partial_{y}^{-} u_{2}\right)(x, y)
$$

Backward differences (with Dirichlet boundary conditions)

$$
\begin{aligned}
& \left(\partial_{x}^{-} u\right)(x, y):=\left\{\begin{array}{ll}
u(x, y) & \text { if } x+1<W \\
0 & \text { else }
\end{array}\right\}-\left\{\begin{array}{ll}
u(x-1, y) & \text { if } x>0 \\
0 & \text { else }
\end{array}\right\} \\
& \left(\partial_{y}^{-} u\right)(x, y):=\left\{\begin{array}{ll}
u(x, y) & \text { if } y+1<H \\
0 & \text { else }
\end{array}\right\}-\left\{\begin{array}{ll}
u(x, y-1) & \text { if } y>0 \\
0 & \text { else }
\end{array}\right\}
\end{aligned}
$$

This assumes that u has zero values at the boundary.

Discretization: Differential Operators

Laplacian
According to ∇^{+}and div^{-}:

$$
\Delta u=\operatorname{div}^{-}\left(\nabla^{+} u\right)=\partial_{x}^{-}\left(\partial_{x}^{+} u\right)+\partial_{y}^{-}\left(\partial_{y}^{+} u\right)
$$

This means

$$
\begin{aligned}
(\Delta u)(x, y)= & \mathbf{1}_{x+1<W} \cdot u(x+1, y)+\mathbf{1}_{x>0} \cdot u(x-1, y) \\
& +\mathbf{1}_{y+1<H} \cdot u(x, y+1)+\mathbf{1}_{y>0} \cdot u(x, y-1) \\
& -\left(\left(\mathbf{1}_{x+1<W}\right)+\left(\mathbf{1}_{y+1<H}\right)+\left(\mathbf{1}_{x>0}\right)+\left(\mathbf{1}_{y>0}\right)\right) \cdot u(x, y)
\end{aligned}
$$

Here we define (and similarly for other factors):

$$
\mathbf{1}_{x+1<W}:= \begin{cases}1 & \text { if } x+1<W \\ 0 & \text { otherwise }\end{cases}
$$

Only compute $u(x+1, y)$ etc. if its factor is not zero!

Discretization: Differential Operators

Gradient

A more rotationally invariant discretization:

$$
\begin{array}{r}
\partial_{x}^{r} u(x, y):=\frac{1}{32}\left(\begin{array}{c}
3 u(x+1, y+1)+10 u(x+1, y)+3 u(x+1, y-1) \\
\\
-3 u(x-1, y+1)-10 u(x-1, y)-3 u(x-1, y-1)
\end{array}\right) \\
\left.\begin{array}{r}
\partial_{y}^{r} u(x, y):=\frac{1}{32}\left(\begin{array}{c}
3 u(x+1, y+1)+10 u(x, y+1)+3 u(x-1, y+1) \\
\\
-3 u(x+1, y-1)-10 u(x, y-1)-3 u(x-1, y-1)
\end{array}\right)
\end{array} . \begin{array}{r}
3
\end{array}\right)
\end{array}
$$

Neumann boundary conditions
If values $u(x, y)$ in pixels outside of Ω are needed, clamp (x, y) back to Ω.

Discretization: Convolution

Discretization

Finite weighted sum:

$$
(K * u)(x, y)=\sum_{(a, b) \in S_{K}} K(a, b) \cdot u(x-a, y-b)
$$

Windowing

S_{K} is the support of K : positions (a, b) with $K(a, b) \neq 0$.
It is assumed to lie entirely in a small window of size $\left(2 r_{x}+1\right) \times\left(2 r_{y}+1\right)$:

$$
(K * I)(x, y)=\sum_{a=-r_{x}}^{r_{x}} \sum_{b=-r_{y}}^{r_{y}} K(a, b) u(x-a, y-b) d a d b
$$

Discretized kernel

One often deals with small-support kernels K, or the kernel is truncated artificially (e.g. Gaussian kernel).
Discretized K is stored row-by-row: $K(x, y)=K\left[x+\left(2 r_{x}+1\right) \cdot y\right]$.

