
Continuous Setting

Continuous setting
We view images as being defined on a continuous demain Ω.
Images are functions

u : Ω→ Rn

continuous setting discrete setting



Representing Images as Functions

Image are functions

u : Ω→ Rn

Domain Ω (a rectangular subset of Rd)
Ω ⊂ R1: signal (1D)
Ω ⊂ R2: image (2D)
Ω ⊂ R3: volume (3D)

Range Rn

R1: grayscale images, . . .
R2: 2D-vector fields, . . .
R3: RGB images, HSV values, normals, . . .
R4: matrix valued images, . . .

We will represent multi-channel images by n single-valued images:

u = (u1, . . . , un), u(x) =
(
u1(x), . . . , un(x)

)
∈ Rn



Differential Operators

We assume a two-dimensional domain: Ω ⊂ R2.

Partial derivative w.r.t. x of a scalar image u : Ω→ R

∂xu : Ω→ R, (∂xu)(x , y) = lim
h→0

u(x + h, y)− u(x , y)

h

Partial derivative w.r.t. y of a scalar image u : Ω→ R

∂yu : Ω→ R, (∂yu)(x , y) = lim
h→0

u(x , y + h)− u(x , y)

h

Multi-channel images u : Ω→ Rn: Component-wise



Differential Operators

Gradient of a scalar image u : Ω→ R
The gradient combines all partial derivatives into a vector:

∇u : Ω→ R2, (∇u)(x , y) =

(
(∂xu)(x , y)

(∂yu)(x , y)

)
This vector is the direction of the fastest increase of u.

Multi-channel images u : Ω→ Rn: One gradient per channel:

∇u : Ω→ (R2)n, ∇u = (∇u1, . . . ,∇un)



Differential Operators

Divergence of a 2D-vector field u : Ω→ R2

This operator needs a vector field as input. The result is a scalar function:

div u : Ω→ R, (div u)(x , y) = (∂xu1)(x , y) + (∂yu2)(x , y)

Multi-channel 2D-vector fields u : Ω→ (R2)n: Divergence per channel:

div u : Ω→ Rn, div u = (div u1, . . . , div un)



Differential Operators

Gradient magnitude of a scalar image
Pointwise absolute value of ∇u: |∇u| : Ω→ R,

(|∇u|)(x , y) := |(∇u)(x , y)| =
√

(∂xu)(x , y)2 + (∂yu)(x , y)2

This often serves as an edge detector: big values |(∇u)(x , y)| indicate an
edge at (x , y).

Multi-channel images u : Ω→ Rn: Norm over all partial derivatives:

(|∇u|)(x , y) :=

√√√√ n∑
i=1

|(∇ui )(x , y)|2 =

√√√√ n∑
i=1

(
(∂xui )(x , y)2 + (∂yui )(x , y)2

)



Differential Operators

Laplacian of a scalar image u : Ω→ R
The gradient ∇u : Ω→ R2 is a 2D-vector field, and divergence div
operates on 2D-vector fields. Thus, we can concatenate these two
operators. The result is the Laplacian:

∆ u : Ω→ R, ∆ u := div(∇u) = div

(
∂xu

∂yu

)
(∆ u)(x , y) = (∂xxu)(x , y) + (∂yyu)(x , y)

The laplacian is useful in physical models. For example, if u(x , y) is the
temperature at each point (x , y), then ∆ u is the rate of local
temperature decrease: (∂tu)(x , y) = a(∆ u)(x , y) for some a > 0.

Multi-channel images u : Ω→ Rn: Component-wise



Convolution

Convolution computes a weighted sum of the image values.



Convolution

Convolution
Given a kernel K : R2 → R and a multi-channel image u : Ω→ Rn:

K ∗ u : Ω→ Rn, (K ∗ u)(x , y) =

∫
R2

K (a, b) u(x − a, y − b) da db

(channel-wise). This sums up the u values around (x , y), weighted by K .

Definition at the boundary of image domain
The formula needs values of u outside of the definition domain Ω.
Common ways to resolve this:

I Clamping of (x , y) back to Ω (we will use this approach)

I Periodic boundary conditions (allows application of FFT)

I Mirroring boundary conditions



Convolution

2D-Gaussian kernel with a standard deviation σ > 0

K (a, b) = Gσ(a, b) :=
1

2πσ2
e−

a2+b2

2σ2



Convolution: Properties

I Commutativity:
K ∗ u = u ∗ K

I Associativity:
K1 ∗ (K2 ∗ u) = (K1 ∗ K2) ∗ u

I Bilinearity:

(aK1 + bK2) ∗ u = a(K1 ∗ u) + b(K2 ∗ u)

K ∗ (au1 + bu2) = a(K ∗ u1) + b(K ∗ u2)

for real a and b.

I Differential operators:

∂x(K ∗ u) = (∂xK ) ∗ u = K ∗ (∂xu)

∂y (K ∗ u) = (∂yK ) ∗ u = K ∗ (∂yu)



Discretization: Images

The image domain Ω ⊂ R2 is discretized into a 2D-grid of W × H pixels.

Linearized storage for scalar images u : Ω→ R
The WH values u(x , y) are arranged as a single one-dimensional array u.
Usually, one uses a row-by-row order:

u =
(

u(0, 0), u(1, 0), u(2, 0), . . . , u(W − 1, 0),

u(0, 1), u(1, 1), u(2, 1), . . . , u(W − 1, 1), . . . ,

u(0,H − 1), u(1,H − 1), u(2,H − 1), . . . , u(W − 1,H − 1)
)
.

Linearized access

u(x , y) = u
[
x + W · y

]



Discretization: Images

Linearized storage of multi-channel images u : Ω→ Rn

The nWH values ui (x , y) are arranged as a single one-dimensional array.
The n channels ui are stored directly one after another

u =
(
u1, u2, . . . , un

)
and, as previously, each channel ui is stored in row-by-row order.

This is called layered storage, and we will use this variant.
(Another possiblity is interleaved storage: save the n values ui (x , y)
pixel-by-pixel. For example, this is used by OpenCV.)

Linearized access

ui (x , y) = u
[
x + W · y + WH · i

]
C/C++
To support potentially very large images, always compute the products
using the size t type: x + (size t)W*y + (size t)W*H*i.



Discretization: Differential Operators

Gradient
Forward differences:

(∇+u)(x , y) =

(
(∂+

x u)(x , y)

(∂+
y u)(x , y)

)

Forward differences (with Neumann boundary conditions)

(∂+
x u)(x , y) :=

{
u(x + 1, y)− u(x , y) if x + 1 < W

0 else

(∂+
y u)(x , y) :=

{
u(x , y + 1)− u(x , y) if y + 1 < H

0 else

This assumes that u has slope 0 at the boundary: ∂normalΩ u = 0.



Discretization: Differential Operators

Divergence
Backward differences:

(div− u)(x , y) = (∂−x u1)(x , y) + (∂−y u2)(x , y)

Backward differences (with Dirichlet boundary conditions)

(∂−x u)(x , y) :=

{
u(x , y) if x + 1 < W

0 else

}
−

{
u(x − 1, y) if x > 0

0 else

}

(∂−y u)(x , y) :=

{
u(x , y) if y + 1 < H

0 else

}
−

{
u(x , y − 1) if y > 0

0 else

}

This assumes that u has zero values at the boundary.



Discretization: Differential Operators

Laplacian
According to ∇+ and div−:

∆ u = div−(∇+u) = ∂−x (∂+
x u) + ∂−y (∂+

y u)

This means

(∆ u)(x , y) = 1x+1<W · u(x + 1, y) + 1x>0 · u(x − 1, y)

+ 1y+1<H · u(x , y + 1) + 1y>0 · u(x , y − 1)

−
(

(1x+1<W ) + (1y+1<H) + (1x>0) + (1y>0)
)
· u(x , y)

Here we define (and similarly for other factors):

1x+1<W :=

{
1 if x + 1 < W ,

0 otherwise.

Only compute u(x + 1, y) etc. if its factor is not zero!



Discretization: Differential Operators

Gradient
A more rotationally invariant discretization:

∂rxu(x , y) :=
1

32

(
3u(x + 1, y + 1) + 10u(x + 1, y) + 3u(x + 1, y − 1)

−3u(x − 1, y + 1)− 10u(x − 1, y)− 3u(x − 1, y − 1)

)

∂ryu(x , y) :=
1

32

(
3u(x + 1, y + 1) + 10u(x , y + 1) + 3u(x − 1, y + 1)

−3u(x + 1, y − 1)− 10u(x , y − 1)− 3u(x − 1, y − 1)

)
Neumann boundary conditions
If values u(x , y) in pixels outside of Ω are needed, clamp (x , y) back to Ω.



Discretization: Convolution

Discretization
Finite weighted sum:

(K ∗ u)(x , y) =
∑

(a,b)∈SK

K (a, b) · u(x − a, y − b)

Windowing
SK is the support of K : positions (a, b) with K (a, b) 6= 0.
It is assumed to lie entirely in a small window of size (2rx + 1)× (2ry + 1):

(K ∗ I )(x , y) =
rx∑

a=−rx

ry∑
b=−ry

K (a, b) u(x − a, y − b) da db

Discretized kernel
One often deals with small-support kernels K ,
or the kernel is truncated artificially (e.g. Gaussian kernel).
Discretized K is stored row-by-row: K (x , y) = K [x + (2rx + 1) · y ].


