Continuous Setting
Continuous setting
We view images as being defined on a continuous demain Q.
Images are functions

u:Q—R"

continuous setting

discrete setting



Representing Images as Functions

Image are functions

u:Q—R"

Domain Q (a rectangular subset of R?)
Q c R!: signal (1D)

Q C R?: image (2D)

Q C R3: volume (3D)

Range R”

R®: grayscale images, ...

R2: 2D-vector fields, ...

R3: RGB images, HSV values, normals, . ..
R*: matrix valued images, ...

We will represent multi-channel images by n single-valued images:

u=(uy,...,up), u(x)=(u1(x),...,ua(x)) €R"



Differential Operators

We assume a two-dimensional domain: Q C R2.

Partial derivative w.r.t. x of a scalar image v: Q2 — R

aXU:Q*)Ra (GXU)(X7y):[|,Lr>nO U(X+h,yi)1*u(x,y)

Partial derivative w.r.t. y of a scalar image v: Q — R

ou:Q—=R, (9yu)(x,y)= lim ulxy+h) = ulx.y)

= |
h—0 h

Multi-channel images u : Q — R": Component-wise



Differential Operators

Gradient of a scalar image v: Q — R
The gradient combines all partial derivatives into a vector:

(8Xu)(x,y))
@y u)(x.y)

This vector is the direction of the fastest increase of u.

Vu:Q—=R?%  (Vu)x,y) = (

Multi-channel images u : Q — R": One gradient per channel:

Vu:Q— (RY)", Vu=(Vu,...,Vu,)



Differential Operators

Divergence of a 2D-vector field v : Q — R?
This operator needs a vector field as input. The result is a scalar function:

divu:Q—= R, (divu)(x,y) = (0xu1)(x,y) + (yu2)(x,y)

Multi-channel 2D-vector fields u :  — (R?)": Divergence per channel:

divu:Q—R" divu=(divu,...,divu,)



Differential Operators

Gradient magnitude of a scalar image
Pointwise absolute value of Vu: |Vu|: Q = R,

(IVuD(xy) = [(Vu)(x,y)l = \/(3XU)(X,Y)2+(@yU)(X7y)2

This often serves as an edge detector: big values |(Vu)(x, y)| indicate an
edge at (x,y).

Multi-channel images u :  — R": Norm over all partial derivatives:

n

(IVul)(x.) $Z| Vu)(x.y) JZ((axu,-)(x,nz+(ayu,-)(x,y)2)

i=1



Differential Operators

Laplacian of a scalar image v: Q — R

The gradient Vu : Q — R? is a 2D-vector field, and divergence div
operates on 2D-vector fields. Thus, we can concatenate these two
operators. The result is the Laplacian:

Au:Q—R, Avu:=div(Vu)=div (6Xu>
Oyu

(A u)(x,y) = (Ouct)(x,y) + (Bpyu)(x,¥)

The laplacian is useful in physical models. For example, if u(x, y) is the
temperature at each point (x, y), then A u is the rate of local
temperature decrease: (0:u)(x,y) = a(A u)(x,y) for some a > 0.

Multi-channel images u :  — R": Component-wise



Convolution

Convolution computes a weighted sum of the image values.




Convolution

Convolution
Given a kernel K : R? — R and a multi-channel image v : Q — R":

Kxu:Q—R", (K*u)(x,y):/ K(a,b) u(x —a,y — b)dadb
R2

(channel-wise). This sums up the u values around (x, y), weighted by K.

Definition at the boundary of image domain
The formula needs values of u outside of the definition domain €.
Common ways to resolve this:

» Clamping of (x,y) back to Q (we will use this approach)

» Periodic boundary conditions (allows application of FFT)

» Mirroring boundary conditions



Convolution

2D-Gaussian kernel with a standard deviation ¢ > 0

1 _ 2242
e 202

K(a, b) = G,(a, b) :=

210




Convolution: Properties

v

Commutativity:
Kxu=uxK

v

Associativity:
Kl*(Kz*u):(Kl*Kz)*U

v

Bilinearity:
(aKi + bKy) x u = a(Ki * u) + b(Kz * u)

K x (auy + bup) = a(K * ur) + b(K * up)

for real a and b.

v

Differential operators:
Ox(K * u) = (0xK) * u = K x (Oxu)

Oy (K xu) = (0yK) *x u= K (0yu)



Discretization: Images

The image domain Q C R? is discretized into a 2D-grid of W x H pixels.

Linearized storage for scalar images v: Q2 — R
The WH values u(x,y) are arranged as a single one-dimensional array u.
Usually, one uses a row-by-row order:

u= (u(o,O), u(1,0), u(2,0), ..., u(W —1,0),
u(0,1), u(1,1), w(2,1), ..., u(W-1,1), ...,
w(0,H—1), u(1,H—1), u(2H—1), ..., u(W—1,H - 1)).

Linearized access

u(x,y) = u[er W'y]



Discretization: Images

Linearized storage of multi-channel images v : Q — R”
The nWH values u;(x, y) are arranged as a single one-dimensional array.
The n channels u; are stored directly one after another

u= (Ul,U27...,Un)
and, as previously, each channel u; is stored in row-by-row order.

This is called layered storage, and we will use this variant.
(Another possiblity is interleaved storage: save the n values u;(x, y)
pixel-by-pixel. For example, this is used by OpenCV.)

Linearized access

ui(x,y) =ulx+ W -y + WH-i]

C/C++
To support potentially very large images, always compute the products
using the size_t type: x + (size_t)Wxy + (size_t)WxHx*i.



Discretization: Differential Operators

Gradient
Forward differences:

) ((0Fu)(x,y)
(VTu)(x,y) = ((aju)(x,)/)>

Forward differences (with Neumann boundary conditions)

(OFu)(x,y) = {U(x+ Ly)—u(x,y) ifx+1<W
0 else

n Julx,y +1)—u(x,y) ify+1<H
(O ) y) = {0 L

This assumes that u has slope 0 at the boundary: Ohormaiqt = 0.



Discretization: Differential Operators

Divergence
Backward differences:

(div™ u)(x,y) = (0 u)(x,y) + (9, w2)(x, y)

Backward differences (with Dirichlet boundary conditions)

(O 0)(x,y) = {u(x,y) ifx+1<W} B {u(x—l,y) ifx>0}

0 else 0 else
_ ulx,y) ify+1<H ulx,y—1) ify>0
0 y) = _
(0 u)x.y) {0 else 0 else

This assumes that v has zero values at the boundary.



Discretization: Differential Operators

Laplacian
According to VT and div™:

Au=div (Vu) =0 (05 u)+ 8, (8, u)

This means

(Au)(x,¥) = Lej1ew - u(x+1,y) + Leso - u(x—1,y)
+ 1y0<n - ulxy +1) + 1,50 - u(x,y —1)

— ((Leaew) + (ysaem) + (Loo) + (Ly20)) - ulx.)

Here we define (and similarly for other factors):

1 )1 ifx+1< W,
W 0 otherwise.

Only compute u(x + 1,y) etc. if its factor is not zero!



Discretization: Differential Operators

Gradient
A more rotationally invariant discretization:

1
Oru(x,y) == o ( Bu(x+1,y+1)+10u(x+1,y) +3u(x+ 1,y — 1)

—3Bu(x—=1,y+1)—10u(x—1,y) —3u(x—1,y — 1) )

opu(x,y) = o5 ( Bu(x+1,y+1)+10u(x,y +1) +3u(x — 1,y + 1)

—3u(x+1,y—1)—10u(x,y — 1) = 3u(x— 1,y — 1) )

Neumann boundary conditions
If values u(x, y) in pixels outside of Q are needed, clamp (x, y) back to Q.



Discretization: Convolution

Discretization
Finite weighted sum:

(Kxu)(x,y) = Z K(a,b) - u(x —a,y — b)

(a,b)ESK

Windowing
Sk is the support of K: positions (a, b) with K(a, b) # 0.
It is assumed to lie entirely in a small window of size (2r,+1) x (2r, +1):

(K * 1)(x Z Z u(x —a,y — b)dadb

a=—rx b=—r,

Discretized kernel

One often deals with small-support kernels K,

or the kernel is truncated artificially (e.g. Gaussian kernel).
Discretized K is stored row-by-row: K(x,y) = K[x + (2r, +1) - y].



