Variational Methods

Energy minimization
An established approach to model numerous computer vision problems.

Energy

Every possible candidate solution u is assigned an energy E(u).

Idea: E(u) measures the costs of u: The smaller the costs the better the
solution.

Minimizers
Candidates u with /east energy are considered solutions to the problem.

Advantages:

Clear mathematical correspondence between input data and result

>
» Extensive mathematical theory, optimality conditions

» Can describe sophisticated problems with only a few parameters
>

Lots of algorithms to compute the minimizers



Variational Methods

Typical form
E(u) = D(u) + R(v)

» Data term D(u) measures how well the solution v fits input data.

> Regularizer R(u) enforces regularity and smoothness of w.

Minimizing E will give a solution u which fits to the inputs and is smooth!



Example: 3D reconstruction

Input: views of an object from different cameras. Find: the 3D-object.




Example: Depth reconstruction

Input: a pair of stereo images. Find: the depth in every pixel




Example: Image Deblurring

Input: a blurry image. Find: a deblurred image.

Original

blurred and noisy

deblurred



Example: Segmentation

Input: a color image. Find: object with certain given characteristics
(colors distribution etc.).




Example: Multilabel Segmentation

Input: a color image. Find: a meaningful decomposition into several
regions.




Image Denoising: The Problem

Input: a noisy image f : Q — R". Find: denoised v : Q — R".

Solution




Image Denoising: Energy

Data term

» The clean image u must be similar to the noisy image f:
2
D) = [ (ulx.y) = F(x.1)" dxdy

» Minimize D(u) to guarantee that u = f.

Regularizer

» Solution u must be noise-free, so we look for smooth images wu.

» Colors in neighboring pixels must be similar, i.e. |Vu| must be small:

R(u) ::)\/Q¢(|(Vu)(x,y)|) dx dy.

» ¢ : R — R is an increasing function, A > 0 is a weighting parameter.

» Minimize R(u) to guarantee that |Vu| is small, and u noise-free.



Image Denoising: Energy

Denoising energy

Ew = | ( (u(,9) = £, )+ 20(|(Vu)(x.y)) ) dx dy

D(u) R(u)

If u=f:
Perfect fit for data: D(u) = 0. But u noisy: R(u) > 1.

If u= const:
Bad fit for data: D(u) > 1. But u smooth: R(u) = 0.

True solution
Will be a trade-off between data fitting and smoothness.
A controls the desired degree of smoothness of w.



Image Inpainting: The Problem

Input: image f : Q — R" which is known everywhere except in A C Q.
Find: suitable colors u: Q — R" in the A region.




Image Inpainting: Energy

Idea

» The image u must be equal to f in Q\ A.

> Inpainted colors should be smooth in the inpainting region, and have
a smooth transition to the known colors. Minimize:

mw:xyowwwmoww.

Inpainting energy
Consists only of the regularizer (same as for denoising, but without \)

Ew) = [ o(((Veler)) dedy

subject to u = f in Q\ A (hard constraint).



Energy Minimization: Methods

Denoising Energy

£ = [ ((wtxn) = 1x))” + A0(I(Tu)x 1) ) o

How to find the minimizer u in practice?

There are many methods. The most common ones are:

1. Gradient descent: Go along the negative “gradient” of the energy.
2. Euler-Lagrange equation: Necessary condition for the minimizers.

3. Primal-dual methods: Very flexible iterative algorithms.



Gradient Descent: Gradient of the Energy
Intuitively: (VE)(u) is the gradient w.r.t. values u(x, y) at each (x,y).

Analogy with finite e : R — R:
» For z € R¥: (Ve)(z) has (dim R¥)-many components.
» If the position z is changed slightly to z + h,
then (Ve)(z) describes the rate of the change of e:

k
e(z+h) ~e(x)+ > ((Ve)2)), " hi
i=1
Therefore:

» For u:Q — R: (VE)(u) has (dim {& : © — R})-many components,
i.e. one for every pixel. So (VE)(u) is a function (VE)(u) : Q@ — R.

» If the image v is changed slightly in each pixel to u(x,y) + h(x,y),
then (VE)(u) describes the rate of the change of E:

E(u+h)~ E(u) + /Q ((VE)(u))(x,y) - h(x,y) dx dy



Gradient Descent: Update Equation

Idea

» The gradient is the direction of steepest increase of E.

» The negative gradient is the direction is steepest descent.

Gradient descent equation

deu = —(VE)(u)

So, having computed some candidate u with energy E(u), we can
construct a better candidate upew with a potentially lower energy E(unew):

(thew) (x,¥) = u(x,y) + 7 (= (VE(W))(x,¥))



Gradient Descent: Image Denoising

Denoising energy

£ = [ ((utxn) = x))” + A0(I(Tu)x)]) ) o
Functional derivative

(VE)(u) =2(u—f)— Adiv (WVU)

Gradient descent equation
"IV
Do = ~(VE)(s) = 2(f — ) + Adiv (¢(|VI|)V)

Observe:

» The structure of the equation is the same as for diffusion with
diffusivity g := A £ (W"‘ , but with an additional term 2(f — u).



Gradient Descent: Quadratic Regularizer Example

Quadratic regularizer: Set ¢(s) := 3s2.

Denoising energy

() = [ ((uxr) = ) + 3(T0)x P ) ey

Using this regularizer leads to oversmoothing, solutions are too blurry.

Gradient descent equation
We have d’T(S) =1, therefore

Ou=2(f—u)+XAu



Gradient Descent: Huber Regularizer Example

52 H
£ f

Huber regularizer: Set ¢(s) := h.(s) := {25 . I Is <€ }
S — 5 else

Denoising energy

@) = [ () = 7)) + A((Tu)x ) ) ooy

This regularizer only smooths in flat regions, edges are well preserved.

Gradient descent equation

We have ¢/s(s) = max%gﬁs), therefore

Oru = 2(u — f) — Adiv (’“E‘X(EI»V“UVU)



Euler-Lagrange Equation

Idea
Setting the gradient to zero, i.e. considering (VE)(u) = 0, yields a
necessary optimality condition for the minimizers u.

Euler-Lagrange equation

2(u — f) — Adiv (Wvu) =0

For convex energies:
Any image u fulfilling the equation is a minimizer of the energy.

Solving:
> discretize

» apply fixed-point iteration



Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity g :== g(|V"ul), g(s) := 45/5(5).

Forward differences for V, backward differences for div:

2w—f)—Adiv_ (g Vtu) =0.

Fully written out, this is

2(u— f) —/\< gru(x+1y)+gulx—1y)
+ guu(x,y + 1)+ gqu(x,y — 1)
— (& + & +&u+gd)u(x,y) ):0
with

g =Llaicw - g(xy),  &:=1lco glx—1y),
g =1lyacn-g(x,y),  81=1,50-8(x,y—1).

This is a nonlinear equations system. Use a fixed point iteration scheme.



Euler-Lagrange Equation: Fixed-Point lteration

1. Start with an image u°.

2. Compute the diffusivity g = g(|V"u*|) at the current iterate u*.
Compute g, g1, 8u, &4 in each pixel (see previous slide).

3. Solve the following linear system for u**1: for all (x,y) € Q,

(2 +MNer+8+8u+ gd)> U (x,y)
—Ag i (x+ 1y) - Ag i (x - 1,y)
- )‘gu uk+1(X7y + 1) - )‘gd uk+1(Xv.y - 1) = 2f(X7y)

4. lterate until convergence.



Linear Equation Systems: Jacobi Method

Jacobi Method
To solve Az = b: split A= D + R with diagonal D and off-diagonal R:

an 0 A 0 0 ain A ain
D — O dno 7 R _ ani O
: 0 : dn—1,n
0 Ce 0 dnn anl -«+ dnpn-1 0

(D+ R)z=b, so z= D71(b— Rz). One iteration leads to the update:

1
k+1 § : k
Z’- = — (b, — a,JzJ )
aji

JF#i

Update for the Euler-Lagrange equation

2 (x,y) + A gtk (x+1,y) + A g (x—1,y) + X gu* (x,y+1) + A gau* (x,y—1)

k+1 _
u T (xy) = 2+ Mg tet+8ted)



Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method
Split A= L, + U, with L, lower triangular and U upper triangular:

a0 o 0 0 ap -+ an,
dz1 a2 . 0 0
L, = , U=
0 . " an—1,n
anl .- ann—1 o ... 0 0

(L + U)z = b, so z = L;1(b — Ux). One iteration leads to the update:
1
21 L (o= St - Y )
ajj .y —
> <i
This is exactly the Jacobi update, but with new values zk*1 if available.

Red-black scheme
To parallelize the Gauss-Seidel update: First: update only at pixels (x, y)
with (x + y)%2 = 0. Then: only with (x + y)%2 = 1.



Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)
Accelerates the Gauss-Seidel method by linear extrapolation.

SOR update step
Let z¥*1 be the result of one Gauss-Seidel iteration applied to z¥.

Compute

where 6 € [0,1) is a fixed parameter.

Convergence
SOR converges for any 6 € [0,1). The optimal 6 depends on A.
In practice, one uses values near 1, typically 0.5-0.9, or 0.9-0.98.



