Variational Methods

Energy minimization

An established approach to model numerous computer vision problems.

Energy

Every possible candidate solution u is assigned an energy E(u). Idea: E(u) measures the costs of u: The smaller the costs the better the solution.

Minimizers

Candidates *u* with *least* energy are considered solutions to the problem.

Advantages:

- Clear mathematical correspondence between input data and result
- Extensive mathematical theory, optimality conditions
- Can describe sophisticated problems with only a few parameters
- ▶ Lots of algorithms to compute the minimizers

Variational Methods

Typical form

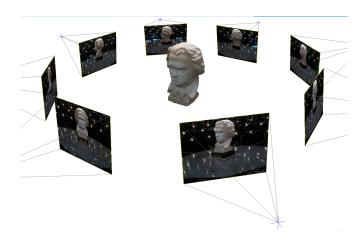
$$E(u) = D(u) + R(u)$$

- ▶ **Data term** D(u) measures how well the solution u fits input data.
- **Regularizer** R(u) enforces regularity and smoothness of u.

Minimizing E will give a solution u which fits to the inputs and is smooth!

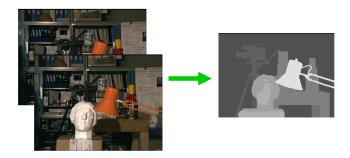
Example: 3D reconstruction

Input: views of an object from different cameras. Find: the 3D-object.



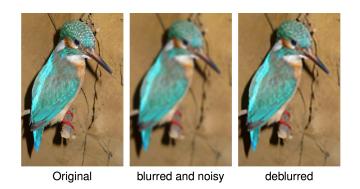
Example: Depth reconstruction

Input: a pair of stereo images. Find: the depth in every pixel



Example: Image Deblurring

Input: a blurry image. **Find:** a deblurred image.



Example: Segmentation

Input: a color image. **Find:** object with certain given characteristics (colors distribution etc.).

Example: Multilabel Segmentation

Input: a color image. **Find:** a meaningful decomposition into several regions.

Image Denoising: The Problem

Input: a noisy image $f: \Omega \to \mathbb{R}^n$. **Find:** denoised $u: \Omega \to \mathbb{R}^n$.

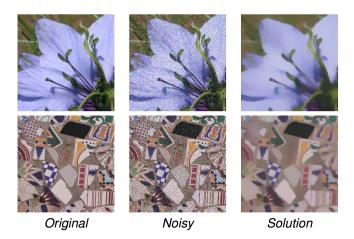


Image Denoising: Energy

Data term

▶ The clean image u must be *similar* to the noisy image f:

$$D(u) := \int_{\Omega} (u(x,y) - f(x,y))^2 dx dy$$

▶ Minimize D(u) to guarantee that $u \approx f$.

Regularizer

- ▶ Solution *u* must be noise-free, so we look for *smooth* images *u*.
- ▶ Colors in neighboring pixels must be similar, i.e. $|\nabla u|$ must be small:

$$R(u) := \lambda \int_{\Omega} \phi\Big(|(\nabla u)(x,y)|\Big) dx dy.$$

- $\phi: \mathbb{R} \to \mathbb{R}$ is an increasing function, $\lambda > 0$ is a weighting parameter.
- ▶ Minimize R(u) to guarantee that $|\nabla u|$ is small, and u noise-free.

Image Denoising: Energy

Denoising energy

$$E(u) = \int_{\Omega} \left(\underbrace{\left(u(x,y) - f(x,y)\right)^{2}}_{D(u)} + \underbrace{\lambda \phi \left(|(\nabla u)(x,y)|\right)}_{R(u)} \right) dx dy$$

If u = f:

Perfect fit for data: D(u) = 0. But u noisy: $R(u) \gg 1$.

If u = const:

Bad fit for data: $D(u) \gg 1$. But u smooth: R(u) = 0.

True solution

Will be a trade-off between data fitting and smoothness.

 λ controls the desired degree of smoothness of u.

Image Inpainting: The Problem

Input: image $f: \Omega \to \mathbb{R}^n$ which is known everywhere except in $A \subset \Omega$.

Find: suitable colors $u: \Omega \to \mathbb{R}^n$ in the A region.

Image Inpainting: Energy

Idea

- ▶ The image u must be equal to f in $\Omega \setminus A$.
- ▶ Inpainted colors should be *smooth* in the inpainting region, and have a *smooth transition* to the known colors. Minimize:

$$R(u) := \int_{\Omega} \phi\Big(|(\nabla u)(x,y)|\Big) dx dy.$$

Inpainting energy

Consists only of the regularizer (same as for denoising, but without λ)

$$E(u) = \int_{\Omega} \phi(|(\nabla u)(x, y)|) dx dy$$

subject to u = f in $\Omega \setminus A$ (hard constraint).

Energy Minimization: Methods

Denoising Energy

$$E(u) = \int_{\Omega} \left(\left(u(x,y) - f(x,y) \right)^2 + \lambda \phi \left(|(\nabla u)(x,y)| \right) \right) dx dy$$

How to find the minimizer u in practice?

There are many methods. The most common ones are:

- 1. Gradient descent: Go along the negative "gradient" of the energy.
- 2. Euler-Lagrange equation: Necessary condition for the minimizers.
- 3. Primal-dual methods: Very flexible iterative algorithms.

Gradient Descent: Gradient of the Energy

Intuitively: $(\nabla E)(u)$ is the gradient w.r.t. values u(x,y) at each (x,y).

Analogy with finite $e: \mathbb{R}^k \to \mathbb{R}$:

- ▶ For $z \in \mathbb{R}^k$: $(\nabla e)(z)$ has $(\dim \mathbb{R}^k)$ -many components.
- ▶ If the position z is changed slightly to z + h, then $(\nabla e)(z)$ describes the rate of the change of e:

$$e(z+h) \approx e(x) + \sum_{i=1}^{k} ((\nabla e)(z))_{i} \cdot h_{i}$$

Therefore:

- For $u: \Omega \to \mathbb{R}$: $(\nabla E)(u)$ has $(\dim \{\hat{u}: \Omega \to \mathbb{R}\})$ -many components, i.e. one for every pixel. So $(\nabla E)(u)$ is a function $(\nabla E)(u): \Omega \to \mathbb{R}$.
- ▶ If the image u is changed slightly in each pixel to u(x,y) + h(x,y), then $(\nabla E)(u)$ describes the rate of the change of E:

$$E(u+h) \approx E(u) + \int_{\Omega} ((\nabla E)(u))(x,y) \cdot h(x,y) dx dy$$

Gradient Descent: Update Equation

Idea

- ▶ The gradient is the direction of steepest increase of *E*.
- ▶ The *negative* gradient is the direction is *steepest descent*.

Gradient descent equation

$$\partial_t u = -(\nabla E)(u)$$

So, having computed some candidate u with energy E(u), we can construct a better candidate u_{new} with a potentially lower energy $E(u_{\text{new}})$:

$$(u_{\mathsf{new}})(x,y) = u(x,y) + \tau \left(-(\nabla E(u))(x,y)\right)$$

Gradient Descent: Image Denoising

Denoising energy

$$E(u) = \int_{\Omega} \left(\left(u(x,y) - f(x,y) \right)^2 + \lambda \phi \left(|(\nabla u)(x,y)| \right) \right) dx dy$$

Functional derivative

$$(\nabla E)(u) = 2(u - f) - \lambda \operatorname{div}\left(\frac{\phi'(|\nabla u|)}{|\nabla u|}\nabla u\right)$$

Gradient descent equation

$$\partial_t u = -(\nabla E)(u) = 2(f - u) + \lambda \operatorname{div}\left(\frac{\phi'(|\nabla u|)}{|\nabla u|}\nabla u\right)$$

Observe:

▶ The structure of the equation is the same as for diffusion with diffusivity $g := \lambda \frac{\phi'(|\nabla u|)}{|\nabla u|}$, but with an additional term 2(f - u).

Gradient Descent: Quadratic Regularizer Example

Quadratic regularizer: Set $\phi(s) := \frac{1}{2}s^2$.

Denoising energy

$$E(u) = \int_{\Omega} \left(\left(u(x,y) - f(x,y) \right)^2 + \frac{\lambda}{2} |(\nabla u)(x,y)|^2 \right) dx dy$$

Using this regularizer leads to oversmoothing, solutions are too blurry.

Gradient descent equation

We have $\frac{\phi'(s)}{s} = 1$, therefore

$$\partial_t u = 2(f - u) + \lambda \Delta u$$

Gradient Descent: Huber Regularizer Example

Huber regularizer: Set
$$\phi(s) := h_{\varepsilon}(s) := \begin{cases} \frac{s^2}{2\varepsilon} & \text{if } s < \varepsilon \\ s - \frac{\varepsilon}{2} & \text{else} \end{cases}$$
.

Denoising energy

$$E(u) = \int_{\Omega} \left(\left(u(x,y) - f(x,y) \right)^2 + \lambda h_{\varepsilon} \left(\left| (\nabla u)(x,y) \right| \right) \right) dx dy$$

This regularizer only smooths in flat regions, edges are well preserved.

Gradient descent equation

We have $\frac{\phi'(s)}{s} = \frac{1}{\max(\varepsilon, s)}$, therefore

$$\partial_t u = 2(u - f) - \lambda \operatorname{div}\left(\frac{1}{\max(\varepsilon, |\nabla u|)} \nabla u\right)$$

Euler-Lagrange Equation

Idea

Setting the gradient to zero, i.e. considering $(\nabla E)(u) = 0$, yields a necessary optimality condition for the minimizers u.

Euler-Lagrange equation

$$2(u-f) - \lambda \operatorname{div}\left(\frac{\phi'\left(|\nabla u|\right)}{|\nabla u|}\nabla u\right) = 0$$

For convex energies:

Any image u fulfilling the equation is a minimizer of the energy.

Solving:

- discretize
- apply fixed-point iteration

Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity $g:=\widehat{g}(|\nabla^+ u|)$, $\widehat{g}(s):=\frac{\phi'(s)}{s}$. Forward differences for ∇ , backward differences for div:

$$2(u-f)-\lambda\operatorname{div}^{-}\left(g\,\nabla^{+}u\right)=0.$$

Fully written out, this is

$$2(u-f) - \lambda \left(g_r u(x+1,y) + g_l u(x-1,y) + g_u u(x,y+1) + g_d u(x,y-1) - (g_r + g_l + g_u + g_d) u(x,y) \right) = 0$$

with

$$\begin{split} g_r &:= \mathbf{1}_{x+1 < W} \cdot g(x, y), \qquad g_l := \mathbf{1}_{x>0} \cdot g(x-1, y), \\ g_u &:= \mathbf{1}_{y+1 < H} \cdot g(x, y), \qquad g_d := \mathbf{1}_{y>0} \cdot g(x, y-1). \end{split}$$

This is a nonlinear equations system. Use a fixed point iteration scheme.

Euler-Lagrange Equation: Fixed-Point Iteration

- 1. Start with an image u^0 .
- 2. Compute the diffusivity $g = \widehat{g}(|\nabla^+ u^k|)$ at the current iterate u^k . Compute g_r , g_l , g_u , g_d in each pixel (see previous slide).
- 3. Solve the following *linear* system for u^{k+1} : for all $(x,y) \in \Omega$,

$$(2 + \lambda(g_r + g_I + g_u + g_d)) u^{k+1}(x, y)$$

$$- \lambda g_r u^{k+1}(x+1, y) - \lambda g_I u^{k+1}(x-1, y)$$

$$- \lambda g_u u^{k+1}(x, y+1) - \lambda g_d u^{k+1}(x, y-1) = 2f(x, y).$$

4. Iterate until convergence.

Linear Equation Systems: Jacobi Method

Jacobi Method

To solve Az = b: split A = D + R with diagonal D and off-diagonal R:

$$D = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}, R = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & & \vdots \\ \vdots & & \ddots & a_{n-1,n} \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{pmatrix}$$

(D+R)z=b, so $z=D^{-1}(b-Rz)$. One iteration leads to the update:

$$z_i^{k+1} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} z_j^k \right)$$

Update for the Euler-Lagrange equation

$$u^{k+1}(x,y) = \frac{2f(x,y) + \lambda g_r u^k(x+1,y) + \lambda g_l u^k(x-1,y) + \lambda g_u u^k(x,y+1) + \lambda g_d u^k(x,y-1)}{2 + \lambda (g_r + g_l + g_d)}$$

Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method

Split $A = L_* + U$, with L_* lower triangular and U upper triangular:

$$L_* = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & 0 \\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{pmatrix}, U = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & & \vdots \\ \vdots & & \ddots & a_{n-1,n} \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

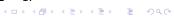
 $(L_* + U)z = b$, so $z = L_*^{-1}(b - Ux)$. One iteration leads to the update:

$$z_i^{k+1} = \frac{1}{a_{ii}} \left(b_i - \sum_{j>i} a_{ij} z_j^k - \sum_{j$$

This is exactly the Jacobi update, but with new values z^{k+1} if available.

Red-black scheme

To parallelize the Gauss-Seidel update: First: update only at pixels (x, y) with (x + y)%2 = 0. Then: only with (x + y)%2 = 1.



Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)

Accelerates the Gauss-Seidel method by linear extrapolation.

SOR update step

Let \bar{z}^{k+1} be the result of one Gauss-Seidel iteration applied to z^k . Compute

$$z^{k+1} = \bar{z}^{k+1} + \theta(\bar{z}^{k+1} - z^k)$$

where $\theta \in [0,1)$ is a fixed parameter.

Convergence

SOR converges for any $\theta \in [0,1)$. The optimal θ depends on A. In practice, one uses values near 1, typically 0.5–0.9, or 0.9–0.98.