
Variational Methods

Energy minimization
An established approach to model numerous computer vision problems.

Energy
Every possible candidate solution u is assigned an energy E (u).
Idea: E (u) measures the costs of u: The smaller the costs the better the
solution.

Minimizers
Candidates u with least energy are considered solutions to the problem.

Advantages:

I Clear mathematical correspondence between input data and result

I Extensive mathematical theory, optimality conditions

I Can describe sophisticated problems with only a few parameters

I Lots of algorithms to compute the minimizers



Variational Methods

Typical form

E (u) = D(u) + R(u)

I Data term D(u) measures how well the solution u fits input data.

I Regularizer R(u) enforces regularity and smoothness of u.

Minimizing E will give a solution u which fits to the inputs and is smooth!



Example: 3D reconstruction

Input: views of an object from different cameras. Find: the 3D-object.



Example: Depth reconstruction

Input: a pair of stereo images. Find: the depth in every pixel



Example: Image Deblurring

Input: a blurry image. Find: a deblurred image.



Example: Segmentation

Input: a color image. Find: object with certain given characteristics
(colors distribution etc.).



Example: Multilabel Segmentation

Input: a color image. Find: a meaningful decomposition into several
regions.



Image Denoising: The Problem

Input: a noisy image f : Ω→ Rn. Find: denoised u : Ω→ Rn.



Image Denoising: Energy

Data term

I The clean image u must be similar to the noisy image f :

D(u) :=

∫
Ω

(
u(x , y)− f (x , y)

)2
dx dy

I Minimize D(u) to guarantee that u ≈ f .

Regularizer

I Solution u must be noise-free, so we look for smooth images u.

I Colors in neighboring pixels must be similar, i.e. |∇u| must be small:

R(u) := λ

∫
Ω

φ
(
|(∇u)(x , y)|

)
dx dy .

I φ : R→ R is an increasing function, λ > 0 is a weighting parameter.

I Minimize R(u) to guarantee that |∇u| is small, and u noise-free.



Image Denoising: Energy

Denoising energy

E (u) =

∫
Ω

( (
u(x , y)− f (x , y)

)2︸ ︷︷ ︸
D(u)

+ λφ
(
|(∇u)(x , y)|

)
︸ ︷︷ ︸

R(u)

)
dx dy

If u = f :
Perfect fit for data: D(u) = 0. But u noisy: R(u)� 1.

If u = const:
Bad fit for data: D(u)� 1. But u smooth: R(u) = 0.

True solution
Will be a trade-off between data fitting and smoothness.
λ controls the desired degree of smoothness of u.



Image Inpainting: The Problem

Input: image f : Ω→ Rn which is known everywhere except in A ⊂ Ω.
Find: suitable colors u : Ω→ Rn in the A region.



Image Inpainting: Energy

Idea

I The image u must be equal to f in Ω \ A.

I Inpainted colors should be smooth in the inpainting region, and have
a smooth transition to the known colors. Minimize:

R(u) :=

∫
Ω

φ
(
|(∇u)(x , y)|

)
dx dy .

Inpainting energy
Consists only of the regularizer (same as for denoising, but without λ)

E (u) =

∫
Ω

φ
(
|(∇u)(x , y)|

)
dx dy

subject to u = f in Ω \ A (hard constraint).



Energy Minimization: Methods

Denoising Energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2
+ λφ

(
|(∇u)(x , y)|

) )
dx dy

How to find the minimizer u in practice?

There are many methods. The most common ones are:

1. Gradient descent: Go along the negative “gradient” of the energy.

2. Euler-Lagrange equation: Necessary condition for the minimizers.

3. Primal-dual methods: Very flexible iterative algorithms.



Gradient Descent: Gradient of the Energy
Intuitively: (∇E )(u) is the gradient w.r.t. values u(x , y) at each (x , y).

Analogy with finite e : Rk → R:

I For z ∈ Rk : (∇e)(z) has (dimRk)-many components.

I If the position z is changed slightly to z + h,
then (∇e)(z) describes the rate of the change of e:

e(z + h) ≈ e(x) +
k∑

i=1

(
(∇e)(z)

)
i
· hi

Therefore:

I For u : Ω→ R: (∇E )(u) has (dim
{

û : Ω→ R
}

)-many components,
i.e. one for every pixel. So (∇E )(u) is a function (∇E )(u) : Ω→ R.

I If the image u is changed slightly in each pixel to u(x , y) + h(x , y),
then (∇E )(u) describes the rate of the change of E :

E (u + h) ≈ E (u) +

∫
Ω

(
(∇E )(u)

)
(x , y) · h(x , y) dx dy



Gradient Descent: Update Equation

Idea

I The gradient is the direction of steepest increase of E .

I The negative gradient is the direction is steepest descent.

Gradient descent equation

∂tu = −(∇E )(u)

So, having computed some candidate u with energy E (u), we can
construct a better candidate unew with a potentially lower energy E (unew):

(unew)(x , y) = u(x , y) + τ
(
− (∇E (u))(x , y)

)



Gradient Descent: Image Denoising
Denoising energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2
+ λφ

(
|(∇u)(x , y)|

) )
dx dy

Functional derivative

(∇E )(u) = 2(u − f )− λ div

(
φ′
(
|∇u|

)
|∇u|

∇u

)
Gradient descent equation

∂tu = −(∇E )(u) = 2(f − u) + λ div

(
φ′
(
|∇u|

)
|∇u|

∇u

)
Observe:

I The structure of the equation is the same as for diffusion with

diffusivity g := λ φ
′(|∇u|)
|∇u| , but with an additional term 2(f − u).



Gradient Descent: Quadratic Regularizer Example

Quadratic regularizer: Set φ(s) := 1
2 s2.

Denoising energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2
+ λ

2 |(∇u)(x , y)|2
)

dx dy

Using this regularizer leads to oversmoothing, solutions are too blurry.

Gradient descent equation

We have φ′(s)
s = 1, therefore

∂tu = 2(f − u) + λ∆ u



Gradient Descent: Huber Regularizer Example

Huber regularizer: Set φ(s) := hε(s) :=

{
s2

2ε if s < ε

s − ε
2 else

}
.

Denoising energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2
+ λhε

(
|(∇u)(x , y)|

))
dx dy

This regularizer is only smooths in flat regions, edges are well preserved.

Gradient descent equation

We have φ′(s)
s = 1

max(ε,s) , therefore

∂tu = 2(u − f )− λ div

(
1

max(ε,|∇u|)∇u

)



Euler-Lagrange Equation

Idea
Setting the gradient to zero, i.e. considering (∇E )(u) = 0, yields a
necessary optimality condition for the minimizers u.

Euler-Lagrange equation

2(u − f )− λ div

(
φ′
(
|∇u|

)
|∇u|

∇u

)
= 0

For convex energies:
Any image u with fulfilling the equation is a minimizer of the energy.

Solving:

I discretize

I apply fixed-point iteration



Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity g := ĝ
(
|∇+u|

)
, ĝ(s) := φ′(s)

s .
Forward differences for ∇, backward differences for div:

2(u − f )− λ div−
(
g ∇+u

)
= 0.

Fully written out, this is

2(u − f )− λ
(

gr u(x + 1, y) + gl u(x − 1, y)

+ gu u(x , y + 1) + gd u(x , y − 1)

− (gr + gl + gu + gd) u(x , y)

)
= 0

with

gr := 1x+1<W · g(x , y), gl := 1x>0 · g(x − 1, y),

gu := 1y+1<H · g(x , y), gd := 1y>0 · g(x , y − 1).

This is a nonlinear equations system. Use a fixed point iteration scheme.



Euler-Lagrange Equation: Fixed-Point Iteration

1. Start with an image u0.

2. Compute the diffusivity g = ĝ
(
|∇+u0|

)
at the current iterate uk .

Compute gr , gl , gu, gd in each pixel.

3. Solve the following linear system for uk+1: for all (x , y) ∈ Ω,(
2 + λ(gr + gl + gu + gd)

)
uk+1(x , y)

− λ gr uk+1(x + 1, y)− λ gl uk+1(x − 1, y)

− λ gu uk+1(x , y + 1)− λ gd uk+1(x , y − 1) = 2f (x , y).

4. Iterate until convergence.



Linear Equation Systems: Jacobi Method
Jacobi Method
To solve Az = b: split A = D + R with diagonal D and off-diagonal R:

D =


a11 0 · · · 0

0 a22

...
...

. . . 0
0 . . . 0 ann

, R =


0 a12 · · · a1n

a21 0
...

...
. . . an−1,n

an1 . . . an,n−1 0


(D + R)z = b, so z = D−1(b − Rz). One iteration leads to the update:

zk+1
i =

1

aii

(
bi −

∑
j 6=i

aijz
k
j

)

Update for the Euler-Lagrange equation

uk+1(x , y) = 2f (x,y) +λ gru
k (x+1,y) +λ glu

k (x−1,y) +λ guu
k (x,y+1) +λ gdu

k (x,y−1)
2 +λ (gr+gl+gu+gd )



Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method
Split A = L∗ + U, with L∗ lower triangular and U upper triangular:

L∗ =


a11 0 · · · 0

a21 a22

...
...

. . . 0
an1 . . . an,n−1 ann

, U =


0 a12 · · · a1n

0 0
...

...
. . . an−1,n

0 . . . 0 0


(L∗ + U)z = b, so z = L−1

∗ (b − Ux). One iteration leads to the update:

zk+1
i =

1

aii

(
bi −

∑
j>i

aijz
k
j −

∑
j<i

aijz
k+1
j

)
This is exactly the Jacobi update, but with new values zk+1 if available.

Red-black scheme
To parallelize the Gauss-Seidel update: First: update only at pixels (x , y)
with (x + y)%2 = 0. Then: only with (x + y)%2 = 1.



Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)
Accelerates the Gauss-Seidel by linear extrapolation.

SOR update step
Let z̄k+1 be the result of one Gauss-Seidel iteration applied to zk .
Compute

zk+1 = z̄k+1 + θ(z̄k+1 − zk)

where θ ∈ [0, 1) is a fixed parameter.

Convergence
SOR converges for any θ ∈ [0, 1). The optimal θ depends on A.
In practice, one uses values near 1, typically 0.5–0.9, or 0.9–0.98.


