Variational Methods

Energy minimization

An established approach to model numerous computer vision problems.

Energy

Every possible candidate solution u is assigned an energy $E(u)$. Idea: $E(u)$ measures the costs of u : The smaller the costs the better the solution.

Minimizers

Candidates u with least energy are considered solutions to the problem.

Advantages:

- Clear mathematical correspondence between input data and result
- Extensive mathematical theory, optimality conditions
- Can describe sophisticated problems with only a few parameters
- Lots of algorithms to compute the minimizers

Variational Methods

Typical form

$$
E(u)=D(u)+R(u)
$$

- Data term $D(u)$ measures how well the solution u fits input data.
- Regularizer $R(u)$ enforces regularity and smoothness of u.

Minimizing E will give a solution u which fits to the inputs and is smooth!

Example: 3D reconstruction

Input: views of an object from different cameras. Find: the 3D-object.

Example: Depth reconstruction

Input: a pair of stereo images. Find: the depth in every pixel

Example: Image Deblurring

Input: a blurry image. Find: a deblurred image.

Original

blurred and noisy

deblurred

Example: Segmentation

Input: a color image. Find: object with certain given characteristics (colors distribution etc.).

Example: Multilabel Segmentation

Input: a color image. Find: a meaningful decomposition into several regions.

Image Denoising: The Problem

Input: a noisy image $f: \Omega \rightarrow \mathbb{R}^{n}$. Find: denoised $u: \Omega \rightarrow \mathbb{R}^{n}$.

Original

Noisy

Solution

Image Denoising: Energy

Data term

- The clean image u must be similar to the noisy image f :

$$
D(u):=\int_{\Omega}(u(x, y)-f(x, y))^{2} d x d y
$$

- Minimize $D(u)$ to guarantee that $u \approx f$.

Regularizer

- Solution u must be noise-free, so we look for smooth images u.
- Colors in neighboring pixels must be similar, i.e. $|\nabla u|$ must be small:

$$
R(u):=\lambda \int_{\Omega} \phi(|(\nabla u)(x, y)|) d x d y .
$$

- $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing function, $\lambda>0$ is a weighting parameter.
- Minimize $R(u)$ to guarantee that $|\nabla u|$ is small, and u noise-free.

Image Denoising: Energy

Denoising energy

$$
E(u)=\int_{\Omega}(\underbrace{(u(x, y)-f(x, y))^{2}}_{D(u)}+\underbrace{\lambda \phi(|(\nabla u)(x, y)|)}_{R(u)}) d x d y
$$

If $u=f$:
Perfect fit for data: $D(u)=0$. But u noisy: $R(u) \gg 1$.

If $u=$ const:
Bad fit for data: $D(u) \gg 1$. But u smooth: $R(u)=0$.

True solution

Will be a trade-off between data fitting and smoothness.
λ controls the desired degree of smoothness of u.

Image Inpainting: The Problem

Input: image $f: \Omega \rightarrow \mathbb{R}^{n}$ which is known everywhere except in $A \subset \Omega$.
Find: suitable colors $u: \Omega \rightarrow \mathbb{R}^{n}$ in the A region.

Image Inpainting: Energy

Idea

- The image u must be equal to f in $\Omega \backslash A$.
- Inpainted colors should be smooth in the inpainting region, and have a smooth transition to the known colors. Minimize:

$$
R(u):=\int_{\Omega} \phi(|(\nabla u)(x, y)|) d x d y
$$

Inpainting energy

Consists only of the regularizer (same as for denoising, but without λ)

$$
E(u)=\int_{\Omega} \phi(|(\nabla u)(x, y)|) d x d y
$$

subject to $u=f$ in $\Omega \backslash A$ (hard constraint).

Energy Minimization: Methods

Denoising Energy

$$
E(u)=\int_{\Omega}\left((u(x, y)-f(x, y))^{2}+\lambda \phi(|(\nabla u)(x, y)|)\right) d x d y
$$

How to find the minimizer u in practice?

There are many methods. The most common ones are:

1. Gradient descent: Go along the negative "gradient" of the energy.
2. Euler-Lagrange equation: Necessary condition for the minimizers.
3. Primal-dual methods: Very flexible iterative algorithms.

Gradient Descent: Gradient of the Energy

Intuitively: $(\nabla E)(u)$ is the gradient w.r.t. values $u(x, y)$ at each (x, y).
Analogy with finite $e: \mathbb{R}^{k} \rightarrow \mathbb{R}$:

- For $z \in \mathbb{R}^{k}:(\nabla e)(z)$ has ($\left.\operatorname{dim} \mathbb{R}^{k}\right)$-many components.
- If the position z is changed slightly to $z+h$, then $(\nabla e)(z)$ describes the rate of the change of e :

$$
e(z+h) \approx e(x)+\sum_{i=1}^{k}((\nabla e)(z))_{i} \cdot h_{i}
$$

Therefore:

- For $u: \Omega \rightarrow \mathbb{R}:(\nabla E)(u)$ has ($\operatorname{dim}\{\hat{u}: \Omega \rightarrow \mathbb{R}\}$)-many components, i.e. one for every pixel. So $(\nabla E)(u)$ is a function $(\nabla E)(u): \Omega \rightarrow \mathbb{R}$.
- If the image u is changed slightly in each pixel to $u(x, y)+h(x, y)$, then $(\nabla E)(u)$ describes the rate of the change of E :

$$
E(u+h) \approx E(u)+\int_{\Omega}((\nabla E)(u))(x, y) \cdot h(x, y) d x d y
$$

Gradient Descent: Update Equation

Idea

- The gradient is the direction of steepest increase of E.
- The negative gradient is the direction is steepest descent.

Gradient descent equation

$$
\partial_{t} u=-(\nabla E)(u)
$$

So, having computed some candidate u with energy $E(u)$, we can construct a better candidate $u_{\text {new }}$ with a potentially lower energy $E\left(u_{\text {new }}\right)$:

$$
\left(u_{\text {new }}\right)(x, y)=u(x, y)+\tau(-(\nabla E(u))(x, y))
$$

Gradient Descent: Image Denoising

Denoising energy

$$
E(u)=\int_{\Omega}\left((u(x, y)-f(x, y))^{2}+\lambda \phi(|(\nabla u)(x, y)|)\right) d x d y
$$

Functional derivative

$$
(\nabla E)(u)=2(u-f)-\lambda \operatorname{div}\left(\frac{\phi^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u\right)
$$

Gradient descent equation

$$
\partial_{t} u=-(\nabla E)(u)=2(f-u)+\lambda \operatorname{div}\left(\frac{\phi^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u\right)
$$

Observe:

- The structure of the equation is the same as for diffusion with diffusivity $g:=\lambda \frac{\phi^{\prime}(|\nabla u|)}{|\nabla u|}$, but with an additional term $2(f-u)$.

Gradient Descent: Quadratic Regularizer Example

Quadratic regularizer: Set $\phi(s):=\frac{1}{2} s^{2}$.

Denoising energy

$$
E(u)=\int_{\Omega}\left((u(x, y)-f(x, y))^{2}+\frac{\lambda}{2}|(\nabla u)(x, y)|^{2}\right) d x d y
$$

Using this regularizer leads to oversmoothing, solutions are too blurry.

Gradient descent equation

We have $\frac{\phi^{\prime}(s)}{s}=1$, therefore

$$
\partial_{t} u=2(f-u)+\lambda \Delta u
$$

Gradient Descent: Huber Regularizer Example

Huber regularizer: Set $\phi(s):=h_{\varepsilon}(s):=\left\{\begin{array}{ll}\frac{s^{2}}{2 \varepsilon} & \text { if } s<\varepsilon \\ s-\frac{\varepsilon}{2} & \text { else }\end{array}\right\}$.

Denoising energy

$$
E(u)=\int_{\Omega}\left((u(x, y)-f(x, y))^{2}+\lambda h_{\varepsilon}(|(\nabla u)(x, y)|)\right) d x d y
$$

This regularizer is only smooths in flat regions, edges are well preserved.

Gradient descent equation
We have $\frac{\phi^{\prime}(s)}{s}=\frac{1}{\max (\varepsilon, s)}$, therefore

$$
\partial_{t} u=2(u-f)-\lambda \operatorname{div}\left(\frac{1}{\max (\varepsilon,|\nabla u|)} \nabla u\right)
$$

Euler-Lagrange Equation

Idea

Setting the gradient to zero, i.e. considering $(\nabla E)(u)=0$, yields a necessary optimality condition for the minimizers u.

Euler-Lagrange equation

$$
2(u-f)-\lambda \operatorname{div}\left(\frac{\phi^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u\right)=0
$$

For convex energies:
Any image u with fulfilling the equation is a minimizer of the energy.

Solving:

- discretize
- apply fixed-point iteration

Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity $g:=\widehat{g}\left(\left|\nabla^{+} u\right|\right), \widehat{g}(s):=\frac{\phi^{\prime}(s)}{s}$. Forward differences for ∇, backward differences for div:

$$
2(u-f)-\lambda \operatorname{div}^{-}\left(g \nabla^{+} u\right)=0 .
$$

Fully written out, this is

$$
\left.\begin{array}{rl}
2(u-f)-\lambda(& g_{r} u(x+1, y)+g_{l} u(x-1, y) \\
+ & g_{u} u(x, y+1)+g_{d} u(x, y-1) \\
-\left(g_{r}+g_{l}+g_{u}+g_{d}\right) u(x, y)
\end{array}\right)=0
$$

with

$$
\begin{array}{lll}
g_{r}:=\mathbf{1}_{x+1<w} \cdot g(x, y), & g_{1}:=\mathbf{1}_{x>0} \cdot g(x-1, y), \\
g_{u}:=\mathbf{1}_{y+1<H} \cdot g(x, y), & g_{d}:=\mathbf{1}_{y>0} \cdot g(x, y-1) .
\end{array}
$$

This is a nonlinear equations system. Use a fixed point iteration scheme.

Euler-Lagrange Equation: Fixed-Point Iteration

1. Start with an image u^{0}.
2. Compute the diffusivity $g=\widehat{g}\left(\left|\nabla^{+} u^{0}\right|\right)$ at the current iterate u^{k}. Compute $g_{r}, g_{l}, g_{u}, g_{d}$ in each pixel.
3. Solve the following linear system for u^{k+1} : for all $(x, y) \in \Omega$,

$$
\begin{aligned}
(2 & \left.+\lambda\left(g_{r}+g_{l}+g_{u}+g_{d}\right)\right) u^{k+1}(x, y) \\
& -\lambda g_{r} u^{k+1}(x+1, y)-\lambda g_{l} u^{k+1}(x-1, y) \\
& -\lambda g_{u} u^{k+1}(x, y+1)-\lambda g_{d} u^{k+1}(x, y-1)=2 f(x, y) .
\end{aligned}
$$

4. Iterate until convergence.

Linear Equation Systems: Jacobi Method

Jacobi Method

To solve $A z=b$: split $A=D+R$ with diagonal D and off-diagonal R :

$$
D=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & a_{n n}
\end{array}\right), R=\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
a_{21} & 0 & & \vdots \\
\vdots & & \ddots & a_{n-1, n} \\
a_{n 1} & \ldots & a_{n, n-1} & 0
\end{array}\right)
$$

$(D+R) z=b$, so $z=D^{-1}(b-R z)$. One iteration leads to the update:

$$
z_{i}^{k+1}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j \neq i} a_{i j} z_{j}^{k}\right)
$$

Update for the Euler-Lagrange equation

$$
u^{k+1}(x, y)=\frac{2 f(x, y)+\lambda g_{r} u^{k}(x+1, y)+\lambda g_{I} u^{k}(x-1, y)+\lambda g_{u} u^{k}(x, y+1)+\lambda g_{d} u^{k}(x, y-1)}{2+\lambda\left(g_{r}+g_{l}+g_{u}+g_{d}\right)}
$$

Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method

Split $A=L_{*}+U$, with L_{*} lower triangular and U upper triangular:

$$
L_{*}=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & & \vdots \\
\vdots & & \ddots & 0 \\
a_{n 1} & \cdots & a_{n, n-1} & a_{n n}
\end{array}\right), U=\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & 0 & & \vdots \\
\vdots & & \ddots & a_{n-1, n} \\
0 & \ldots & 0 & 0
\end{array}\right)
$$

$\left(L_{*}+U\right) z=b$, so $z=L_{*}^{-1}(b-U x)$. One iteration leads to the update:

$$
z_{i}^{k+1}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j>i} a_{i j} z_{j}^{k}-\sum_{j<i} a_{i j} z_{j}^{k+1}\right)
$$

This is exactly the Jacobi update, but with new values z^{k+1} if available.

Red-black scheme

To parallelize the Gauss-Seidel update: First: update only at pixels (x, y) with $(x+y) \% 2=0$. Then: only with $(x+y) \% 2=1$.

Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)
Accelerates the Gauss-Seidel by linear extrapolation.

SOR update step

Let \bar{z}^{k+1} be the result of one Gauss-Seidel iteration applied to z^{k}.
Compute

$$
z^{k+1}=\bar{z}^{k+1}+\theta\left(\bar{z}^{k+1}-z^{k}\right)
$$

where $\theta \in[0,1)$ is a fixed parameter.

Convergence SOR converges for any $\theta \in[0,1)$. The optimal θ depends on A. In practice, one uses values near 1 , typically $0.5-0.9$, or $0.9-0.98$.

