TU MÜnchen
FAKULTÄT FÜR Informatik
Dr. Rudolph Triebel
Matthias Vestner

Machine Learning for Robotics and Computer Vision Winter term 2013
 Homework Assignment 5
 Topic: Kernel Methods
 Tutorial December 13th, 2013

Exercise 1: Constructing kernels

Let k_{1} and k_{2} be kernels, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an arbitrary function. Show that we can construct new kernels via

1. $k\left(x_{1}, x_{2}\right)=k_{1}\left(x_{1}, x_{2}\right)+k_{2}\left(x_{1}, x_{2}\right)$
2. $k\left(x_{1}, x_{2}\right)=k_{1}\left(x_{1}, x_{2}\right) k_{2}\left(x_{1}, x_{2}\right)$
3. $k\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) k_{1}\left(x_{1}, x_{2}\right) f\left(x_{2}\right)$
4. $k\left(x_{1}, x_{2}\right)=\exp \left(k_{1}\left(x_{1}, x_{2}\right)\right)$
5. $k\left(x_{1}, x_{2}\right)=x_{1}^{T} A x_{2}, A$ symmetric, positive semi-definit

Exercise 2: Polynomial kernel

Let $x_{i}, x_{j} \in \mathbb{R}^{2}$

1. Show (by induction) that $k_{d}\left(x_{i}, x_{j}\right)=\left(x_{i}^{T} x_{j}\right)^{d}$ is a kernel for every $d \geq 1$.
2. Find $\phi_{d}(x)$ such that $k_{d}\left(x_{i}, x_{j}\right)=\phi_{d}\left(x_{i}\right)^{T} \phi_{d}\left(x_{j}\right)$.
3. Find $\tilde{\phi}_{2}(x)$ for $\tilde{k}_{2}\left(x_{i}, x_{j}\right)=\left(x_{i}^{T} x_{j}+c\right)^{2}(c>0)$.

For downloads of slides and of homework assignments and for further information on the course see

Exercise 3: Programming

Download the files exercise5.m, feature_test.m and feature_plot.m from the website.

1. Implement the function feature_test.
2. Test your code with the script exercise5.m and the following choices for ϕ :
(a) $\phi(x, y)=\left(\begin{array}{lll}x & y & x^{2}+y^{2}\end{array}\right)^{T}$
(b) $\phi(x, y)=\left(\begin{array}{lll}x^{2} & \sqrt{2} x y & y^{2}\end{array}\right)^{T}$
(c) $\phi(x, y)=(\sin (x) \cos (y) \quad \sin (x) \sin (y) \quad \cos (x))^{T}$
(d) $\phi(x, y)=\left(\begin{array}{llll}x^{3} & \sqrt{3} x^{2} y & \sqrt{3} x y^{2} & y^{3}\end{array}\right)^{T}$
(e) $\phi(x, y)=\left(\begin{array}{lllll}x^{2} & \sqrt{2} x y & y^{2} & \sqrt{2} c x & \sqrt{2} c y\end{array} c^{T}\right.$
within appropriate domains and with different choices for n and c.
Hint:
Watching the following video helps understanding the mapping to the feature space: http://youtu.be/3liCbRZPrZA.

For downloads of slides and of homework assignments and for further information on the course see

