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The Bayes Filter (Rep.)
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Graphical Representation (Rep.)

We can describe the overall process using a

e This incorporates the following Markov assumptions:
p(z¢ | Tot, Ur:t, 21:¢) = p(2¢ | @) (MEasurement)

p(% \ L0:t—1, Ul:t, Z1:t) — p(% \ $t—1,ut) (state)
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Definition

A Probabilistic Graphical Model is a diagrammatic
representation of a probability distribution.

e In @ Graphical Model, random variables are
represented as nodes, and statistical dependencies are

represented using edges between the nodes.
o 1he resulting graph can have the following properties:
« Cyclic / acyclic
« Directed / undirected

o 1 he simplest graphs are Directed Acyclig Graphs
(DAQG).
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Simple Example

o Given: 3 random variables a, b, and ¢
o Joint prob: p(a, b, c) = p(cla, b)p(a,b) = p(cl|a, b)p(bla)p(a)

a p(b | a)
p(a) ; Random
variables can be
discrete or
continuous
p(c ‘ a, b) C

A Graphical Model based on a DAG is called a
Bayesian Network
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Simple Example

o In general: K random variables x1,Z2,...,Tk
e JOINnt prob:

p(xlv - - 7$K) — p(xK‘xla L 7xK—1) . . p($2‘$1)p($1)
e Ihis leads to a fully connected graph.

o Note: The ordering of the nodes in such a fully
connected graph is arbitrary. They all represent the
joint probability distribution:
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Bayesian Networks

Statistical independence can be represented by the
absence of edges. This makes the computation
efficient.

p(xl, .. ,337) — p(ﬂi‘l)p(@)p(x:s)p(im\xl, L2, 333)

p($5 \$1, 333)}7(376 \5134)19(% \33‘4, 5135)

Intuitively: only . , andx3

have an influence on s
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Bayesian Networks

We can now define a one-to-one mapping from
graphical models to probabilistic formulations:

(GGeneral Factorization:

K
p(x) = H p(@k|pay)
k=1

where
pap = ancestors of py

and
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Elements of Graphical Models

In case of a series of random variables with equal
dependencies, we can subsume them using a plate:

p(t,w) = p(w) [] pltalw)
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Elements of Graphical Models (2)

We distinguish between input variables and explicit

hyper-parameters:
N
p(t, w|x, a, 0?) = p(w]|a) H (tn|W, Xy, 0
n=1
g L 1 8
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Elements of Graphical Models (3)

We distinguish between observed variables and
hidden variables:

N

p(wlt) o< p(w) ] pltalw)

n=1

(deterministic parameters omitted)

CEEEE—
Ty (84
& &
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Regression as a Graphical Model

Regression: Prediction of a new target value ¢

p(f,t,w | .c’iz,x,oz,aQ) —

s B - N ]
Ln Q0 ~
2 a 2
i ; H p(ty | xn, w,0%) | p(w | a)p(t|z, w,c”)
|l n=1 _
Here: conditioning on all
i deterministic parameters
tr
1 N Using this, we can obtain
the
2" O "z 7 2 t T :
o ~ p(ﬂm,x,t,a,a ) /p(t,t,w|x,x, a,0”)dw
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Two Special Cases

o We consider two special cases:

. All random variables are discrete; i.e. Each Xx;

IS represented by values u1q,...,urg Where
0.5000

. 0.3750
plz | p) = H“ “j—10.25oo
j=1 0.1250
0O ‘M1 M2

o All random variables are Gaussian

0.5
0.45 |
O.4

2 ~ N (i g, 02) |
c MNY . % . 0.3 |
0.2

O.15

O.1

0.05

O
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Discrete Variables: Example

o TWO dependent variables: K2 - 1 parameters | Here: K =2

T T2 | p(z2 | 21)
1 1 0.25 }K 1)
1| p(1) 1 2 0.75 R(K — 1)
1 02 K -1 > : 01 x 1
2 2 2 0.9 |

X(j8 X2
O 'O K-1+KK-1)=K*—-1

o INndependent joint distribution: 2(K- 1) parameters

X1 X5
() ()  K-1+K-1=20-1)
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Discrete Variables: General Case

In a general joint distribution with M variables we need
to store KM -1 parameters

If the distribution can be described by this graph:

O—0O O
then, we have only K-1 + (M -1) K(K -1) parameters.

This graph is called a with M nodes.

The number of parameters grows only with
the number of variables.
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Gaussian Variables

Assume all random variables are Gaussian and we

define
p(z; | pa;) =N | zi; Z wi; T + bi, v;
JEP,

Then one can show that the joint probability p(x) is a
multivariate Gaussian. Furthermore:

Xr; = Z Wi 4 -+ bj -+ \/57;67; €; ~ _/\/'(()7 1)
JEPa;

Thus:

jEPai

l.e., we can compute the mean values recursively.
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Gaussian Variables

Assume all random variables are Gaussian and we

define
p(z; | pa,) =N | x;; E Wi i + by, v;
JEP,

The same can be shown for the covariance. Thus:
* Mean and covariance can be calculated recursively
Furthermore it can be shown that:

e The fully connected graph corresponds to a Gaussian
with a general symmetric covariance matrix

* The non-connected graph corresponds to a diagonal
covariance matrix
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Independence (Rep.)

Definition 1.4: Two random variables X and Y are

1 p(x,y) = p(x)p(y)
For independent random variables y and y~ we have:

_p@y) _pl@ply) _ o
plz|y) = ply)  p(y) =P

Notation: Ay |0

Independence does not imply conditional independence.
The same is true for the opposite case.
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Conditional Independence (Rep.)

Definition 1.5: Two random variables X and Y are
given a third random
variable 7 Iff:

p(x,y | z) =plx|2)ply | 2)

This is equivalent to:

p(x | z) =p(x|y,z) and
ply|z)=pyl|xz)

Notation: rll ylz

Dr. Rudolph Triebel
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Conditional Independence: Example 1

This graph represents the
c probabillity distribution:

p(a,b,c) = plale)p(blc)p(c)
Marginalizing out ¢ on
both sides gives

p(a,b) = plalc)p(blc)p(c)
This is in general not equal to p(a)p(b).

Thus: « and b are not independent: ¢ f b | ()
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Conditional Independence: Example 1

o NOw, we condition on ¢ (it is assumed to be known):

C

p(a,b,c)
p(c)
4 ; = plale)p(blc)

p(a, b‘C) —

Thus: o and b are conditionally independent given c: o 1L b | ¢

We say that the node at c is a on the
path between ¢ andb
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Conditional Independence: Example 2
This graph represents the

a c b distribution:
O—0O—=0 = p(a)p(cla)p(blc)

p(a, b, c)

Again, we marginalize over c:

Zp (c|la)p(blc) = Zp cla)p(blc, a)

Zp pbca Zpbc\

a)p(c
= pla)p (b|a)
And we obtain: , i 4 | ¢
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Conditional Independence: Example 2

As before, now we condition on ¢ :

‘C _‘C _O’ p(a,blc) = (0

And we obtain: o 1L b | ¢

We say that the node at cis a
on the path between ¢ and .
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Conditional Independence: Example 3

Now consider this graph:
pla, b, ¢) = pa)p(b)p(c|a, b)

using:

Zp(abc Zp a,b)

C

we obtain:

p(a,b) = p(a)p(b)

And the resultis: a 1. 6|0
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Conditional Independence: Example 3

Again, we condition on.

a , ey — p(a,b,c)
p( 76‘ ) p(C)
~ p(a)p(b)p(cla, )
p(c)
c Thisresults in: 1 e

We say that the node at ¢ is a
on the path between ¢ and ».
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To Summarize

o When does the graph represent (conditional)
independence?

Tail-to-tail case: if we condition on the tail-to-tail node
Head-to-tail case: if we cond. on the head-to-tail node

Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants)

In general, this leads to the notion of D-separation for
directed graphical models.
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D-Separation

Say: A, B, and C are non-intersecting subsets of
nodes in a directed graph.

A path from A to B is blocked by C if it contains
a nhode such that either

a) the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or

b) the arrows meet head-to-head at the node, and neither
the node, nor any of its descendants, are in the set C.

o|f all paths from A to B are blocked, A is said to
be d-separated from B by C.

Notation: dsep(A, B|C)
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D-Separation is a
property of graphs
and not of
probability
distributions

dsep(A, B|C)




D-Separation: Example

. f a /
€ b ¢ b
C
C
—dsep(a, b|c) dsep(a, b|f)

We condition on a descendant We condition on a tail-to-talil
of e, I.e. it does not block the  node on the only path from a
path from a to b. to b, I.e f blocks the path.
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I-Map

Definition 4.1: A graph G is called an for a
distribution p if every D-separation of G corresponds
to a conditional independence relation satisfied by p:

VA,B,C :dsep(A,B,C)= A1l B|C

Example: The fully connected graph is an |-map for any
distribution, as there are no D-separations in that
graph.
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D-Map

Definition 4.2: A graph G is called an for a
distribution p if for every conditional independence
relation satisfied by p there is a D-separation in G :

VA,B,C : A 1L B|C = dsep(A, B,C)

Example: The graph without any edges is a D-map for
any distribution, as all pairs of subsets of nodes are
D-separated in that graph.
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Perfect Map

Definition 4.3: A graph G is called a for a
distribution p if it is a D-map and an |I-map of p.

VA,B,C : A1l B|(C < dsep(A, B,C)

A perfect map uniquely defines a probability distribution.
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The Markov Blanket

e Consider a distribution of a node x 1 conditioned on

all other nodes:
p(xla”'vXM)

/p(xl, X )dX;
HP(Xk’Pak:>

k
. / | [ p(xxIpay,)dx;
k

— p(X’i ‘ X./\/l'i)

p(Xilxgjziy) =

Factors independent of x;

Ll t hf.}a‘z‘ at cancel between numerator
Xi - all parents, chiidren and denominator.

and co-parents of x;.
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Summary

« Graphical models represent joint probability
distributions using nodes for the random variables
and edges to express (conditional) (in)dependence

« A prob. dist. can always be represented using a fully
connected graph, but this is inefficient

o In a directed acyclic graph, conditional indepen-
dence is determined using D-separation

« A perfect map implies a one-to-one mapping
between c.I. relations and D-separations

« The Markov blanket is the minimal set of observed
nodes to obtain conditional independence
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Repetition: Bayesian Networks

Directed graphical models
can be used to represent
probability distributions

This is useful to do
iInference and to generate
samples from the
distribution efficiently

p(z1,...,x7) = p(x1)p(x2)p(xs)p(@4|T1, T2, T3)
p(xs|x1, x3)p(xs|Te)p(T7|24, T5)
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Repetition: D-Separation

O—@—O

&

e D-separation is a property of graphs that can be
easily determined

 An |-map assigns every d-separation a c.l. rel
A D-map assigns every c.i. rel a d-separation
e Every Bayes net determines a unique prob. dist.
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In-depth: The Head-to-Head Node

; : Example:

a. Battery charged (0 or 1)

b: Fuel tank full (O or 1)

c. Fuel gauge says full (O or 1)
We can compute p(—c¢) =0.315

a ‘ b ‘ p(c)

] ’ — and p(—c|—-b) =0.81

I 0 0.2 and obtain p(=b | —¢) =~ 0.257

0 I 0.2 similarly: p(=b | —¢, —a) =~ 0.111
’ N “a explains c away”
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Repetition: D-Separation

a f a f
e b e b
C C
—~dsep(a, b|c) dsep(a, b| f)
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Directed vs. Undirected Graphs

Using D-separation we can identify conditional
independencies In directed graphical models, but:

o |Is there a simpler, more intuitive way to express
conditional independence in a graph?

« Can we find a representation for cases where an
,ordering” of the random variables is inappropriate
(e.g. the pixels in a camera image)?

Yes, we can: by removing the directions of the
edges we obtain an Undirected Graphical Model,
also known as a Markov Random Field

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group




Example: Camera Image

e directions are counter-intuitive for images

e Markov blanket is not just the direct neighbors
when using a directed model

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group




haat A ALLB|C

All paths from 4 to B go

through C, i.e. C blocks all
paths.

Machine Learning for

Markov Random Fields

Markov
Blanket

We only need to condition
on the of

x to get c.I., because these
already block every path

from x to any other node.

Computer Vision
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Factorization of MRFs

Any two nodes x; and x; that are not connected in an
MRF are conditionally independent given all other nodes:

p(xis x5 | X\fi51) = P2 | X\(a,53)P(T5 | X\ (i 53)
In turn: each factor contains only nodes that are
connected

This motivates the consideration Clique
of cligues in the graph:

e A clique is a fully connected subgraph.

o A maximal cligue can not be extended
with another node without loosing the
property of full connectivity.

Maximal Clique
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Factorization of MRFs
In general, a Markov Random Field is factorized as

<) — Hc¢C(XC X
pix) = > x 1o bo(x¢) H¢C ) (4D

where C is the set of all (maximal) cliqgues and @, is a

positive function of a given cligue x. of nodes, called
the clique potential. Z is called the partition function.
Theorem (Hammersley/Clifford): Any undirected

model with associated clique potentials @ is a perfect

map for the probability distribution defined by Equation
(4.1).

As a conclusion, all probabillity distributions that can be
factorized as in (4.1), can be represented as an MRF.
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Converting Directed to Undirected Graphs (1)

CEC mz: Cle CQ:N

p(X) 562\5131 p($3!332 33N|£EN 1)
1
p(X) — E $1,£132 ¢23 $2,$3 PN 1,N($N—1axN)
L1 Lo ITN—-1 TN

In this case: Z=1
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Converting Directed to Undirected Graphs (2)

L L3 T1 T3

p(x) = p(x1)p(z2)p(w2)p(T4 | 71,72, 73)

In general: conditional distributions in the directed graph
are mapped to cliques in the undirected graph

However: the variables are not conditionally independent
given the head-to-head node

Therefore: Connect all parents of head-to-head nodes with
each other (moralization)
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Converting Directed to Undirected Graphs (2)

£z L3 Tq T3
L2
—_—
L4 T4
p(x) = p(z1)p(z2)p(z2)p(xs | T1, 22, T3) p(x) = ¢(x1, 22,23, T4)

Problem: This process can remove conditional
independence relations (inefficient)

Generally: There is no one-to-one mapping between the
distributions represented by directed and by undirected

graphs.
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Representability

o As for DAGs, we can define an I-map, a D-map
and a perfect map for MRFs.

e 1 he set of all distributions for which a DAG

exists that is a perfect map is different from
that for MRFs.
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Directed vs. Undirected Graphs

C
A B
A
C
D
A1l B¢ Al B0
AU B|C AL B|CUD

Cl1D|AUB
Both distributions can not be represented in the other

framework (directed/undirected) with all conditional
iIndependence relations.
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Using Graphical Models

We can use a graphical model to do inference:

« Some nodes in the graph are observed, for others
we want to find the posterior distribution

« Also, computing the local marginal distribution p(x )
at any node x, can be done using inference.

Question: How can inference be done with a
graphical model?

We will see that when exploiting conditional
independences we can do efficient inference.
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Inference on a Chain

The joint probability is given by

p(x) = %101,2(961,$2)¢2,3($2,5133)%03,4(333,334)104,5(%4,$5)
The marginal at x;is  p(zs)=> > > > px)

1 5] 4 Iy

In the general case with N nhodes we have

p(x) = E¢1,2($1,$2)¢2,3(5E2, x3) - YN—1 N(TN-1,TN)

and plan) =) - Zp
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Inference on a Chain

=2.2.2.2 v

1 45 4 Iy

e This would mean KY computations! A more efficient
way Is obtained by rearranging:

p(xs) = % D3N N 1 o(wr, m2)2,3(w2, 13) s (@3, T4) a5 (24, T5)

1 ) L4 Iy

— % 2 §§1 >: > : ¢1,2($1 ; $2)¢2,3(ﬂ72, $3)¢3,4($37 :z:4)¢4,5(x4, x5)

r2 1 T4 b

= —szs (2, 3) Z% (w1, 32) Y h3.4(x3,4) 21045 (T4, 5)

X2 ) | L4 J

Tl (x3)<— Vectors of size K —>,u5(553)
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Inference on a Chain

Ho (3771—1) Na(xn) 205 (mn) 205, ($n+1)

In general, we have

p(Tn) = % > Unim(@no1,mn) | Y Y12(@1, 32)

Ln—1 . T
. =
"

Z 7wbn,n—l—l(mna xn—l—l) "o ZwN—l,N(xN—la CCN)
TN

Ln+1

N _J/
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Inference on a Chain

The messages x, and u; can be computed
recursively: i

Z 7»b'n,—l,'n,(xrn,—l,.’lin) Z ces

fa(Tn)

Z wn—l,n(xn—l 9 xn)ﬂa (xn—l)-

Ln—1

Z wn,n—l—l(xn, CEn_|_1) Z co

Ln+1 Ln+2

18 (Zn )

Z wn,n—l—l (xna Ln+1 )HB (xn—l—l)-

Ln+1

Computation of u, starts at the first node and
computation of u;, starts at the last node.
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Inference on a Chain

Ho (ivn—l) Ma(xn) 205 (xn) 205, (anrl)

07 ..... _O O 07 ..... 40

L1 Ln—1 Ln, LTn+1 TN

e The first values of u, and u; are:

=Z¢1,2($1,$2) Ha(TN—1) Zle LN (TN-1,2N)
L1

e 1he partition function can be computed at any node:

e Overall, we have O(NK-?) operations to compute the
marginal  p(z,)
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Inference on a Chain

To compute local marginals:
.Compute and store all forward messages, (o (Zn).
-Compute and store all backward messages, ug(zn)

-Compute Z atanodex,: Z=)_ talTm)us(zm)

Lm

-Compute 1
p(Tn) = E“a (Tn) s (Tn)

for all variables required.
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Summary

e Undirected Models (also known as Markov
random fields) provide a simpler method to
check for conditional independence

e A MRF iIs defined as a factorization over cligue
potentials and normalized globally

* Directed models can be converted Into
undirected ones, but there are distributions that
can be represented only in one kind of model

e For undirected Markov chains there Is a very
efficient inference method based on message
passing
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