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Motivation

•A major task in probabilistic reasoning is to 
evaluate the posterior distribution              of a 

set of latent variables Z given data X (inference) 

However: This is often not tractable, e.g. 
because the latent space is high-dimensional 

•Two different solutions are possible: sampling 
methods (next week) and variational methods. 

•In variational optimization, we seek a tractable 

distribution q that approximates the posterior. 

•Optimization is done using functionals.
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p(Z | X)
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Variational Inference

In general, variational methods are concerned 
with mappings that take functions as input. 

Example: the entropy of a distribution p 
!

!

Variational optimization aims at finding functions 
that minimize (or maximize) a given functional. 

This is mainly used to find approximations to a 
given function by choosing from a family. 

The aim is mostly tractability and simplification.
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H[p] =

Z
p(x) log p(x)dx

“Functional”
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MLE Revisited 

Analogue to the discussion about EM we have: 

!

!

!

Again, maximizing the lower bound is equivalent 
to minimizing the KL-divergence. 

The maximum is reached when the KL-divergence 
vanishes, which is the case for                        . 

However: Often the true posterior is intractable 

and we restrict q to a tractable family of dist.
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log p(X) = L(q) + KL(qkp)

L(q) =
Z

q(Z) log

p(X,Z)

q(Z)

dZ
KL(q) = �

Z
q(Z) log

p(Z | X)

q(Z)

dZ

q(Z) = p(Z | X)
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The KL-Divergence

Given: an unknown distribution p 

We approximate that with a distribution q 

The average additional amount of information is 

!

!

This is known as the Kullback-Leibler divergence 

It has the properties: 

!

This follows from Jensen’s inequality
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�
Z

p(x) log q(x)dx�
✓
�
Z

p(x) log p(x)dx

◆
= �

Z
p(x) log

q(x)

p(x)
dx

KL(qkp) 6= KL(pkq)

= KL(pkq)

KL(pkq) � 0 KL(pkq) = 0 , p ⌘ q
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Factorized Distributions

A common way to restrict q is to partition Z into 

disjoint sets so that q factorizes over the sets: 

!

!

This is the only assumption about q! 

Idea: Optimize        by optimizing wrt. each of the 

factors of q in turn. Setting                  we have  
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q(Z) =
MY

i=1

qi(Zi)

L(q)
qi(Zi) = qi

L(q) =
Z Y

i

qi

 
log p(X,Z)�

X

i

log qi

!
dZ
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Mean Field Theory

This results in: 

!

where 

!

Thus, we have  

I.e., maximizing the lower bound is equivalent to 
minimizing the KL-divergence of a single factor 
and a distribution that can be expressed in terms 
of an expectation:
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L(q) =
Z

qj log p̃(X,Zj)dZj �
Z

qj log qjdZj + const

L(q) = �KL(qjkp̃(X,Zj))

log p̃(X,Zj) = Ei 6=j [log p(X,Z)] + const

Ei 6=j [log p(X,Z)] =

Z
log p(X,Z)

Y

i 6=j

qidZi

+const
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Mean Field Theory

Therefore, the optimal solution in general is 

!

In words: the log of the optimal solution for a  
factor    is obtained by taking the expectation with 
respect to all other factors of the log-joint proba-
bility of all observed and unobserved variables  

The constant term is the normalizer and can be 
computed by taking the exponential and 
marginalizing over  

This is not always necessary.
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log q⇤j (Zj) = Ei 6=j [log p(X,Z)] + const

Zj

qj
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x 2 {0, 1}

Excurse: Conjugacy

Assume we have a binary random variable 
and we are given a parameter   ,                 so that 
 
 
together this gives: 

Now we have a set                           of indepen-
dent binary events. It has the probability:
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µ

p(x = 1 | µ) = µ

0  µ  1

p(x = 0 | µ) = 1� µ

p(x | µ) = µ

x(1� µ)1�x

“Bernoulli 
distribution”

p(D | µ) =
NY

n�1

p(x
n

| µ) =
NY

n=1

µ

xn(1� µ)1�xn

D = {x1, . . . , xN}

=
Y

xn=1

µxn(1� µ)1�xn
Y

xn=0

µxn(1� µ)1�xn
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Some Basics Beforehand

which results in: 
where m is the number of events where           . 

!
There exist            possibilities for     , so 

!

!

is the probability that there are m positive events 

in a set (sequence) of N, where 
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p(D | µ) = µm(1� µ)N�m

xn = 1
✓

N
m

◆

D

p(m | N,µ) =

✓
N
m

◆
µm(1� µ)N�m

“Binomial 
distribution”

✓
N
m

◆
=

N !

(n�m)!m!
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Maximum Likelihood

To find an optimal parameter     we can use MLE:
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µ

log p(D | µ) =
NX

n=1

log p(xn | µ) =
NX

n=1

(xn logµ+ (1� xn) log(1� µ)
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Maximum Likelihood

To find an optimal parameter     we can use MLE: 

!

!

!
and we obtain:                      or, equivalently: 

!

Suppose we observe  “1” in three trials,  
i.e.                         . It follows               . 

This is an example of extreme overfitting due to 
the maximum likelihood approach!
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µ

log p(D | µ) =
NX

n=1

log p(xn | µ) =
NX

n=1

(xn logµ+ (1� xn) log(1� µ)

µ =
1

N

NX

n=1

xn µ =
m

N

x1 = x2 = x3 = 1 µML = 1
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Bayesian Inference

To address the problem of overfitting, we define a 
prior probability for the parameter   and compute: 

!

!

!

Goal: Find a prior distribution so that the posterior 
has the same functional form as the prior! 

Then, the posterior can be used as a new prior 
when new data is observed. 

Such a prior is called conjugate to the likelihood.
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µ

PriorLikelihoodPosterior

p(µ | m,N) = Z�1
p p(m | µ,N)p(µ)

Normalizer
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A Conjugate Prior for the Binomial Dist.

Observation: if prior is proportional to powers of  
         then the posterior will be so, too.  
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µ

1� µ
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A Conjugate Prior for the Binomial Dist.

Observation: if prior is proportional to powers of  
         then the posterior will be so, too.   

Thus, the conjugate prior for the binomial 
distribution is the beta-distribution: 

!

!

!

!

Here, a and b can be interpreted as the assumed 
prior number of positive and negative events
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µ

1� µ

p(µ | a, b) = Z�1
� µa�1(1� µ)b�1 a > 0, b > 0

Z� =
�(a)�(b)

�(a+ b)
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Obtaining the Posterior

Now we can use the prior and the likelihood: 

!

!

This gives another beta-distribution: 

!

!

!

where the effective number of observations for 
         and          has been increased by m and l 
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p(µ | m,N, a, b) / p(m | µ,N)p(µ) / µm+a�1(1� µ)l+b�1

l = N �m

x = 1
x = 0

p(µ | m, l, a, b) =
�(m+ a+ l + b)

�(m+ 1)�(l + b)
µm+a�1(1� µ)l+b�1

m+ a
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p(m | µ,N) = Bin(m = 1 | N = 1, µ) p(µ) = Beta(µ | a = 3, b = 2)

A Simple Example

• Consider the example m=1, N=1 
• The prior is defined by a=2, b=2 

• Using Bayesian inference we obtain the posterior 

that is shifted towards µ =1 

• Overfitting can be avoided!
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p(µ) = Beta(µ | a = 2, b = 2)
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The Same For Multinomial Variables

In the case of K possible states of x we have 
 

The likelihood is then a multinomial distribution: 

!

!

The conjugate prior of that is the Dirichlet 
distribution:
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x = (x1, . . . , xK) µ = (µ1, . . . , µK) µk � 0
KX

k=1

µk = 1

Mult(m1, . . . ,mK | µ, N) =

✓
N

m1, . . . ,mK

◆ KY

k=1

µmk
k

Dir(µ | ↵) =
�(↵0)

�(↵1) · · ·�(↵K)

KY

k=1

µ↵k�1
k
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The Dirichlet Distribution

• Example with three variables 

• The distribution is confined 
to a simplex (in this case a 
triangle)
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Dir(µ | ↵) =
�(↵0)

�(↵1) · · ·�(↵K)

KY

k=1

µ↵k�1
k

µ1

µ2

µ3

↵0 =
KX

k=1

↵k 0  µk  1
KX

k=1

µk = 1
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Variational Mixture of Gaussians

• Again, we have observed data 
and latent variables 

• Furthermore we have 

!

!

• We introduce priors for all parameters, e.g.
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X = {x1, . . . ,xN}
Z = {z1, . . . , zN}

p(Z | ⇡) =
NY

n=1

KY

k=1

⇡znk
k p(X | Z,µ,⇤) =

NY

n=1

KY

k=1

N (xn | µk,⇤
�1)znk

p(⇡) = Dir(⇡ | ↵0)

p(µ,⇤) =
KY

k=1

N (µk | m0, (�0⇤k)
�1)W(⇤k | W0, ⌫0)
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Variational Mixture of Gaussians

• The joint probability is then: 

!

• We consider a distribution q so that 

!

• Using our general result: 

!

• Plugging in: 

!

• From this it can be shown that 
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p(X,Z,⇡,µ,⇤) = p(X | Z,µ,⇤)p(Z | ⇡)p(⇡)p(µ | ⇤)p(⇤)

q(Z,⇡,µ,⇤) = q(Z)q(⇡,µ,⇤)

log q⇤(Z) = E⇡,µ,⇤[log p(X,Z,⇡,µ,⇤)] + const

log q⇤(Z) = E⇡[log p(Z | ⇡)] + Eµ,⇤[log p(X | Z,µ,⇤)] + const

q⇤(Z) =
NY

n=1

KY

k=1

rznk
nk
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Variational Mixture of Gaussians

This means: the optimal solution to the factor 

has the same functional form as the prior of Z.  

It turns out, this is true for all factors. 

However: the factors q depend on moments 
computed with respect to the other variables, i.e. 
the computation has to be done iteratively. 

This results again in an EM-style algorithm, with 
the difference, that here we use conjugate priors 
for all parameters. This reduces overfitting.
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q(Z)
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The Same Example Again
• 6 Gaussians 

• After convergence, 
only two compo-
nents left 

• Complexity is tra-
ded off with data 
fitting 

• This behaviour 
depends on a 
parameter of the 
Dirichlet prior
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Expectation Propagation

In mean-field we minimized            . But: we can 

also minimize            . Assume q is from the 
exponential family: 

!

!

!

!

Then we have:
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KL(qkp)
KL(pkq)

q(z) = h(z)g(⌘) exp(⌘Tu(z))

natural parameters

g(⌘)

Z
h(x) exp(⌘T

u(z))dx = 1

normalizer

KL(pkq) = �
Z

p(x) log

h(z)g(⌘) exp(⌘T
u(z))

p(x)z
z
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Expectation Propagation

This results in 

We can minimize this with respect to  


25

⌘

KL(pkq) = � log g(⌘)� ⌘TEp[u(x)] + const

�r log g(⌘) = Ep[u(x)]
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Expectation Propagation

This results in 

We can minimize this with respect to  

!

which is equivalent to  

!

Thus: the KL-divergence is minimal if the exp. 

sufficient statistics are the same between p and q! 

For example, if q is Gaussian: 

Then, mean and covariance of q must be the 

same as for p (moment matching) 
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⌘

KL(pkq) = � log g(⌘)� ⌘TEp[u(x)] + const

�r log g(⌘) = Ep[u(x)]

Eq[u(x)] = Ep[u(x)]

u(x) =

✓
x

x

2

◆
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Expectation Propagation

Assume we have a factorization 

and we are interested in the posterior: 

!

!

we use an approximation  

!

Aim: minimize 

!

Idea: optimize each of the approximating factors 
in turn, assume exponential family
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p(D,✓) =
MY

i=1

fi(✓)

p(✓ | D) =
1

p(D)

MY

i=1

fi(✓)

KL

 
1

p(D)

MY

i=1

fi(✓)
���
1

Z

MY

i=1

f̃i(✓)

!

q(✓) =
1

Z

MY

i=1

f̃i(✓)
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The EP Algorithm

• Given: a joint distribution over data and variables 

!

!

• Goal: approximate the posterior              with q 

• Initialize all approximating factors 

• Initialize the posterior approximation 

• Do until convergence: 

•choose a factor  

•remove the factor from q by division:
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p(D,✓) =
MY

i=1

fi(✓)

f̃i(✓)

q(✓) /
Y

i

f̃i(✓)

f̃j(✓)

q\j(✓) =
q(✓)

f̃j(✓)

p(✓ | D)
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The EP Algorithm

•find         that minimizes  
 
 
 
using moment matching, including the zeroth order 
moment: 

!

•evaluate the new factor  

!

!

• After convergence, we have  
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KL

✓
fj(✓)q\j(✓)

Zj

���qnew(✓)
◆

qnew

Zj =

Z
q\j(✓)fj(✓)d✓

f̃j(✓) = Zj
qnew(✓)

q\j(✓)

p(D) ⇡
Z Y

i

f̃j(✓)d✓
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Properties of EP

• There is no guarantee that the iterations will 
converge 

• This is in contrast to variational Bayes, where 
iterations do not decrease the lower bound 

• EP minimizes              where variational Bayes 
minimizes
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KL(pkq)

KL(qkp)KL(pkq)

KL(qkp)
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Example

yellow: original distribution 

red: Laplace approximation 

green: global variation 

blue: expectation-propagation
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p(✓) = N (✓ | 0, bI)

The Clutter Problem

• Aim: fit a multivariate Gaussian into data in the 
presence of background clutter (also Gaussian) 

!

• The prior is Gaussian:
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p(x | ✓) = (1� w)N (x | ✓, I) + wN (x | 0, aI)
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The Clutter Problem

The joint distribution for                          is 

!

!

this is a mixture of       Gaussians! This is 

intractable for large N. Instead, we approximate 
it using a spherical Gaussian: 

!

!
the factors are (unnormalized) Gaussians:
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D = (x1, . . . ,xN )

p(D,✓) = p(✓)
NY

n=1

p(xn | ✓)

2N

f̃n(✓) = snN (✓ | mn, vnI)

q(✓) = N (✓ | m, vI) = f̃0(✓)
NY

n=1

f̃n(✓)

f̃0(✓) = p(✓)
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EP for the Clutter Problem

• First, we initialize                , i.e.  

• Iterate:  

•Remove the current estimate of           from q by 
division of Gaussians:
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f̃n(✓) = 1 q(✓) = p(✓)

f̃n(✓)

q�n(✓) =
q(✓)

f̃n(✓)
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EP for the Clutter Problem

• First, we initialize                , i.e.  

• Iterate:  

•Remove the current estimate of           from q by 
division of Gaussians: 

!

!

•Compute the normalization constant: 

!

!
•Compute mean and variance of  

• Update the factor
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f̃n(✓) = 1 q(✓) = p(✓)

f̃n(✓)

q�n(✓) =
q(✓)

f̃n(✓)
q�n(✓) = N (✓ | m�n, v�nI)

Zn =

Z
q�n(✓)fn(✓)d✓

qnew = q�n(✓)fn(✓)

f̃n(✓) = Zn
qnew(✓)

q�n(✓)
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q�n(✓)

A 1D Example

• blue: true factor 

• red: approximate factor  

• green: cavity distribution   

The form of             controls the range over which 
         will be a good approximation of  
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f̃n(✓)

fn(✓)

q�n(✓)

f̃n(✓) fn(✓)
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Summary

• Variational Inference uses approximation of 
functions so that the KL-divergence is minimal 

• In mean-field theory, factors are optimized 
sequentially by taking the expectation over all 
other variables 

• Variational inference for GMMs reduces the risk 
of overfitting; it is essentially an EM-like 
algorithm 

• Expectation propagation minimizes the reverse 
KL-divergence of a single factor by moment 
matching; factors are in the exp. family
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