

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

5. Boosting

Repetition: Regression

We start with a set of basis functions

$$\phi(\mathbf{x}) = (\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), \dots, \phi_{M-1}(\mathbf{x})) \qquad \mathbf{x} \in \mathbb{R}^d$$

The goal is to fit a model into the data

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x})$$

To do this, we need to find an error function, e.g.:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}_i) - t_i)^2$$

To find the optimal parameters, we derived E with respect to w and set the derivative to zero.

Some Questions

1.Can we do the same for classification? As a special case we consider two classes: $t_i \in \{-1, 1\} \quad \forall i = 1, \dots, N$

2.Can we use a different (better?) error function?

- 3.Can we learn the basis functions together with the model parameters?
- 4.Can we do the learning sequentially, i.e. one basis function after another?

Answer to all questions: Yes, using Boosting!

The Loss Function

Definition: a real-valued function $L(t, y(\mathbf{x}))$, where *t* is a target value and *y* is a model, is called a loss function.

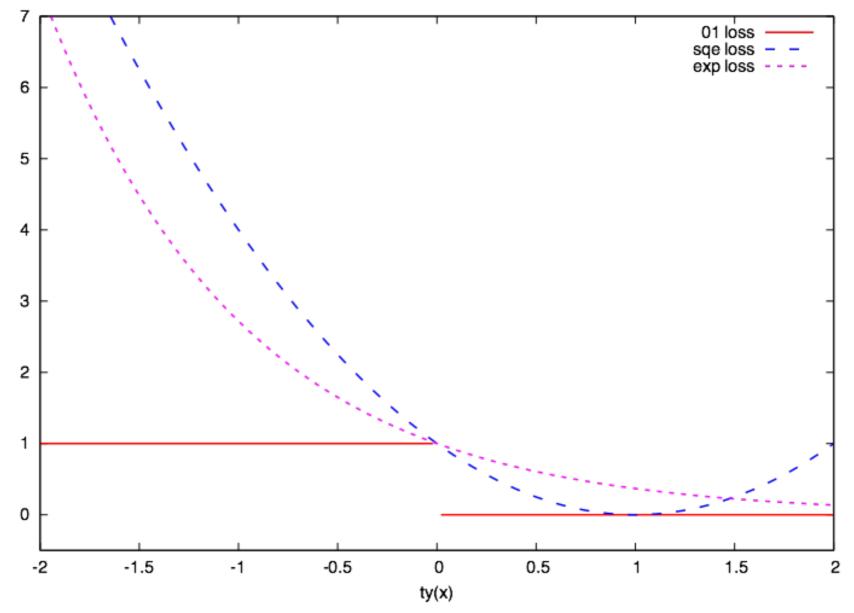
Examples:

01-loss:
$$L_{01}(t, y(\mathbf{x})) = \begin{cases} 0 & \text{if } t = y(\mathbf{x}) \\ 1 & \text{else} \end{cases}$$

squared error loss: $L_{sqe}(t, y(\mathbf{x})) = (t - y(\mathbf{x}))^2$

exponential loss: $L_{exp}(t, y(\mathbf{x})) = \exp(-ty(\mathbf{x}))$

Loss Functions



01-loss is not differentiable squared error loss has only one optimum

Sequential Fitting of Basis Functions

Idea: We start with a basis function $\phi_0(\mathbf{x})$: $y_0(\mathbf{x}, w_0) = w_0 \phi_0(\mathbf{x})$ $w_0 = 1$

Then, at iteration *m*, we add a new basis function $\phi_m(\mathbf{x})$ to the model:

 $y_m(\mathbf{x}, w_0, \dots, w_m) = y_{m-1}(\mathbf{x}, w_0, \dots, w_{m-1}) + w_m \phi_m(\mathbf{x})$

Two questions need to be answered:

1. How do we find a good new basis function?

2.How can we determine a good value for w_m ? Idea: Minimize the exponential loss function

$$(w_m, \phi_m) = \arg\min_{w, \phi} \sum_{i=1}^N L(t_i, y_{m-1}(\mathbf{x}_i) + w\phi(\mathbf{x}_i))$$

where
$$L(t, y) = \exp(-ty)$$

$$(w_m, \phi_m) = \arg\min_{w, \phi} \sum_{i=1}^N L(t_i, y_{m-1}(\mathbf{x}_i) + w\phi(\mathbf{x}_i))$$

where
$$L(t, y) = \exp(-ty)$$

Solution:
$$\phi_m = \arg \min_{\phi} \sum_{i=1}^N v_{i,m} \mathbb{I}(t_i \neq \phi(\mathbf{x}_i))$$

$$(w_m, \phi_m) = \arg\min_{w, \phi} \sum_{i=1}^N L(t_i, y_{m-1}(\mathbf{x}_i) + w\phi(\mathbf{x}_i))$$

where
$$L(t, y) = \exp(-ty)$$

Solution:
$$\phi_m = \arg \min_{\phi} \sum_{i=1}^N v_{i,m} \mathbb{I}(t_i \neq \phi(\mathbf{x}_i))$$

$$w_m = \frac{1}{2}\log\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}$$

$$(w_m, \phi_m) = \arg\min_{w, \phi} \sum_{i=1}^N L(t_i, y_{m-1}(\mathbf{x}_i) + w\phi(\mathbf{x}_i))$$

where
$$L(t, y) = \exp(-ty)$$

Solution:
$$\phi_m = \arg \min_{\phi} \sum_{i=1}^N v_{i,m} \mathbb{I}(t_i \neq \phi(\mathbf{x}_i))$$

$$w_m = \frac{1}{2} \log \frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \qquad v_{i,m+1} = v_{i,m} \exp(2w_m \mathbb{I}(t_i \neq \phi_m(\mathbf{x}_i)))$$

The AdaBoost Algorithm

1.For
$$i = 1, ..., N$$
: $v_i \leftarrow 1/N$
2.For $m = 1, ..., M$
Fit a classifier ("basis function") ϕ_m that minimizes

$$\sum_{i=1}^N v_i \mathbb{I}(t_i \neq \phi_m(\mathbf{x}_i))$$
Compute $\operatorname{err}_m = \frac{\sum_{i=1}^N v_i \mathbb{I}(t_i \neq \phi_m(\mathbf{x}_i))}{\sum_{i=1}^N v_i}$ and $\alpha_m = \log \frac{1 - \operatorname{err}_m}{\operatorname{err}_m}$

Update the weights: $v_i \leftarrow v_i \exp(\alpha_m \mathbb{I}(t_i \neq \phi_m(\mathbf{x}_i)))$ 3.Use the resulting classifier:

$$y(\mathbf{x}) = \operatorname{sgn} \sum_{m=1}^{M} \alpha_m \phi_m(\mathbf{x})$$

Λ *Λ*

The "Basis Functions"

- Can be any classifier that can deal with weighted data
- Most importantly: if these "base classifiers" provide a training error that is at most as bad as a random classifier would give (i.e. it is a weak classifier), then AdaBoost can return an arbitrarily small training error (i.e. AdaBoost is a strong classifier)
- Many possibilities for weak classifiers exist, e.g.:
 - Decision stumps
 - Decision trees

Decision Stumps

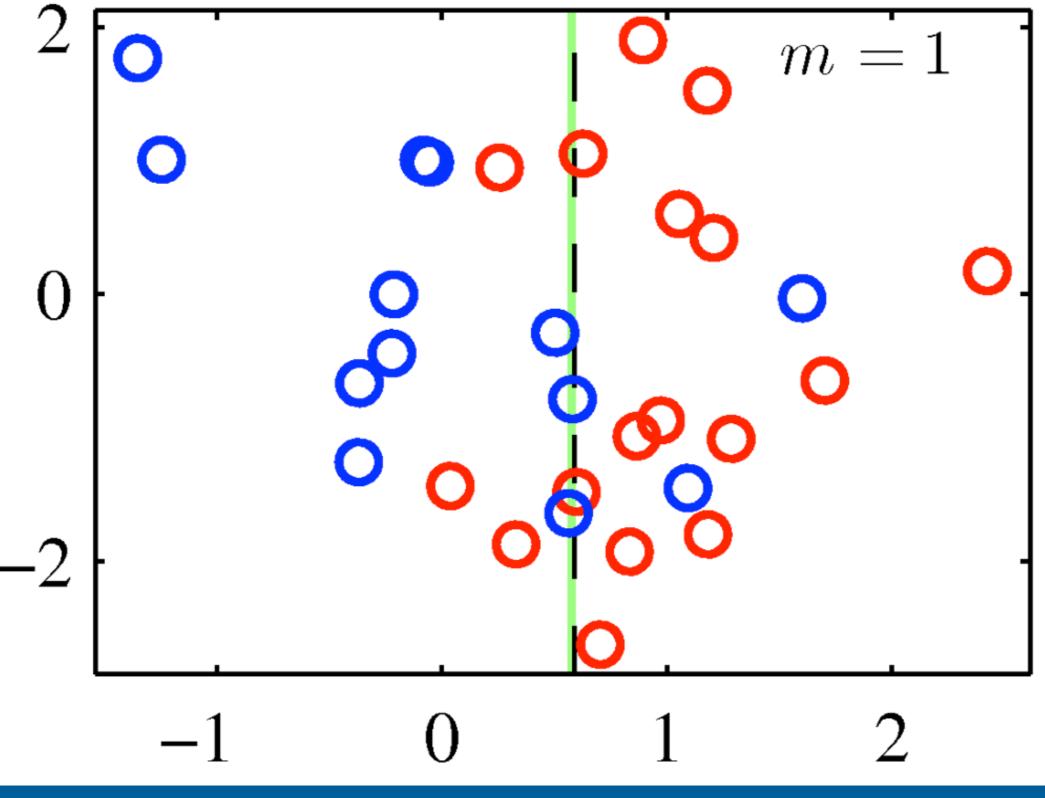
Decision Stumps are a kind of very simple weak classifiers.

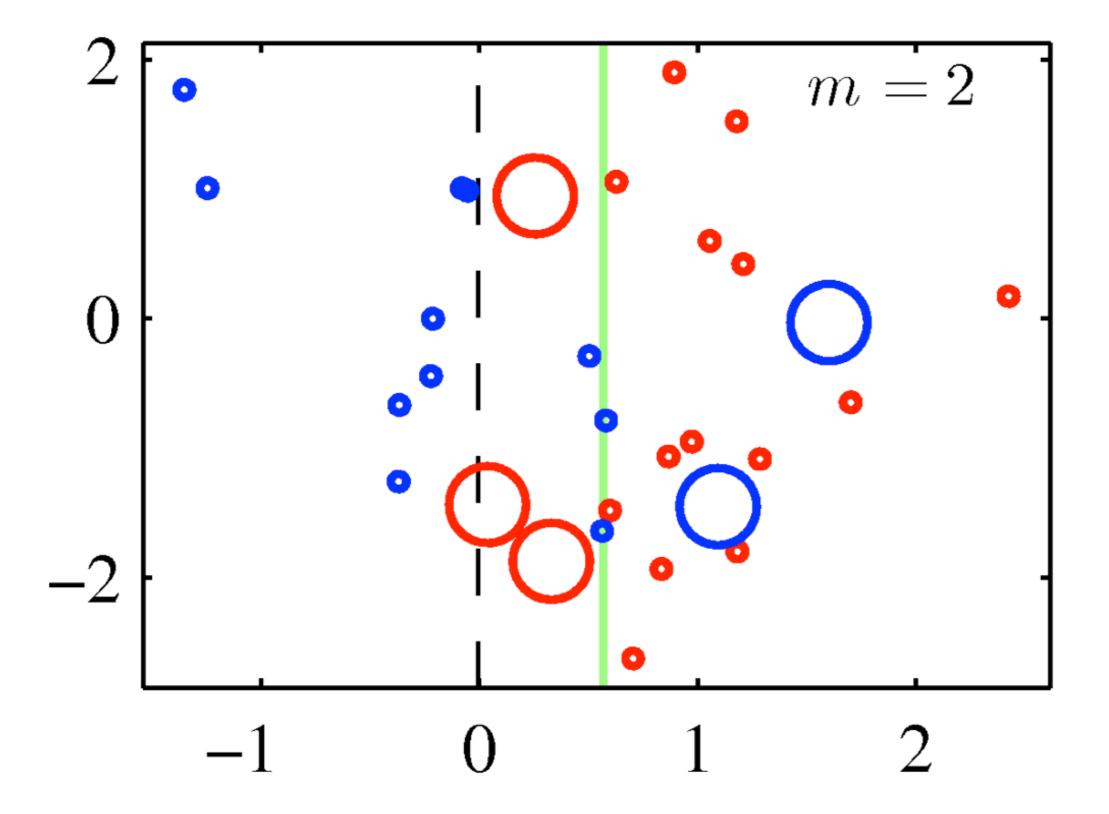
Goal: Find an axis-aligned hyperplane that minimizes the class. error

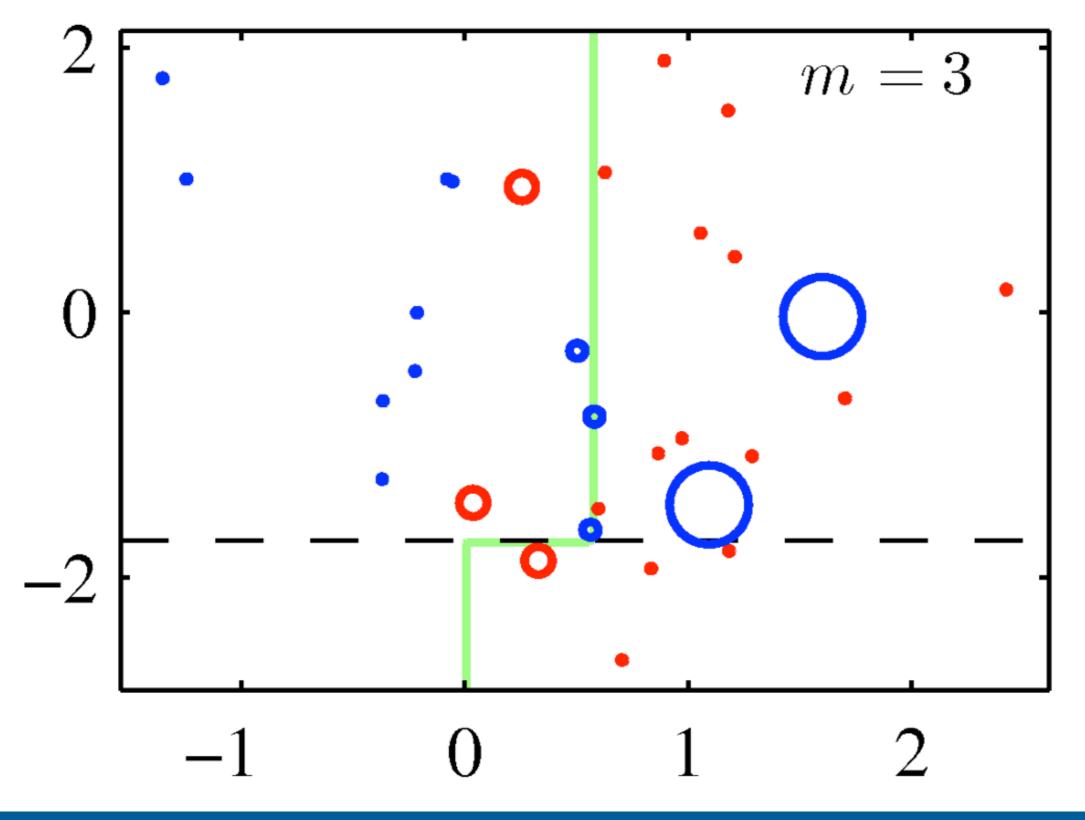
- This can be done for each feature (i.e. for each dimension in feature space)
- It can be shown that the classif. error is always better than 0.5 (random guessing)
- Idea: apply many weak classifiers, where each is trained on the misclassified examples of the previous.

 X_1

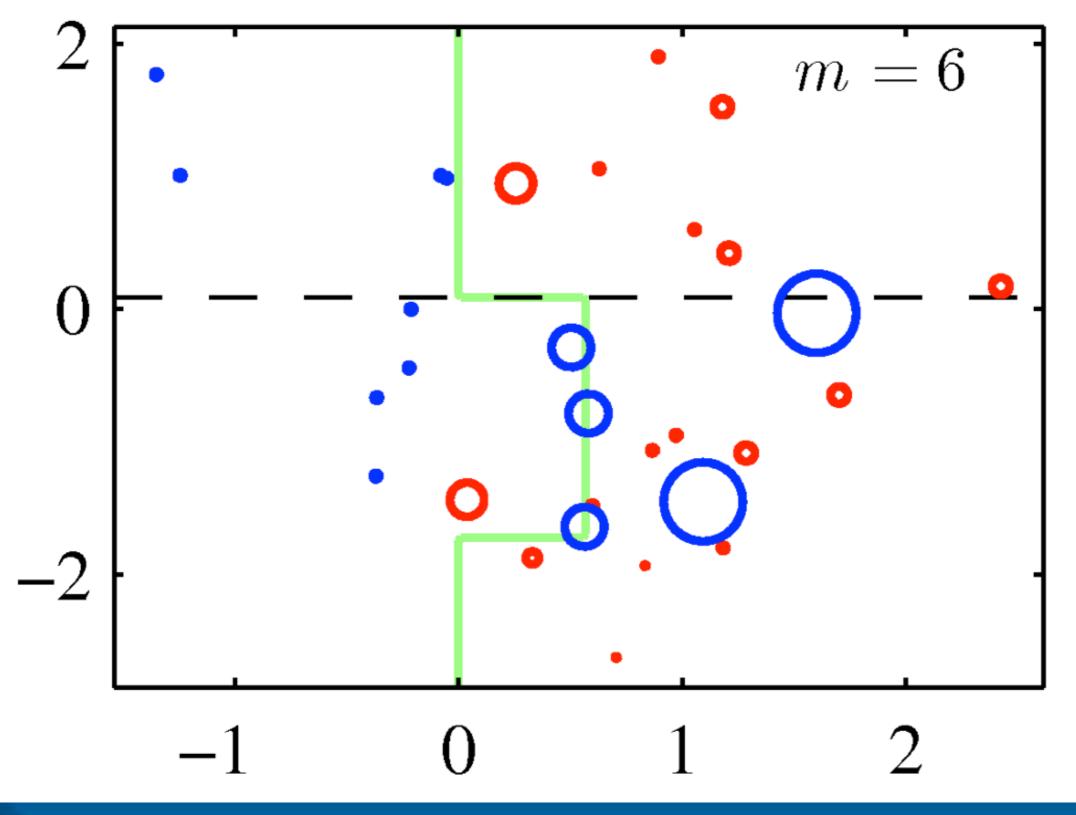
θ

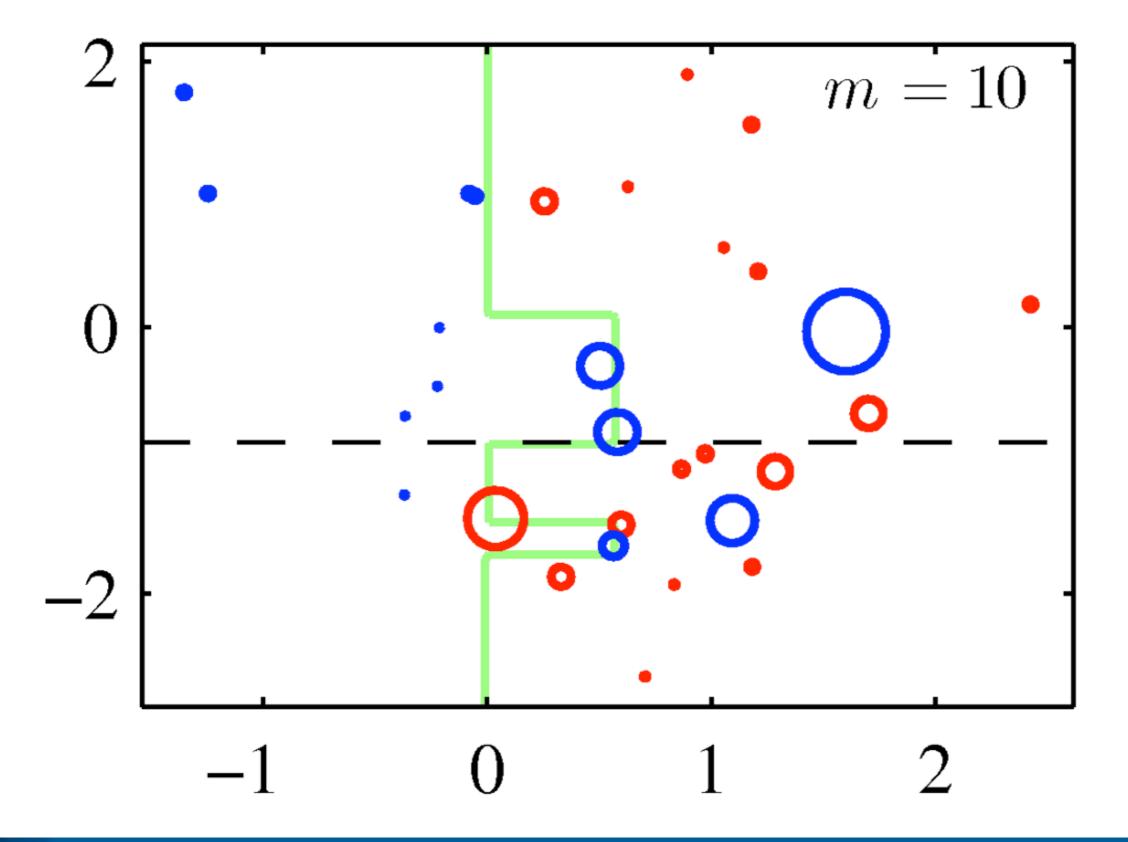


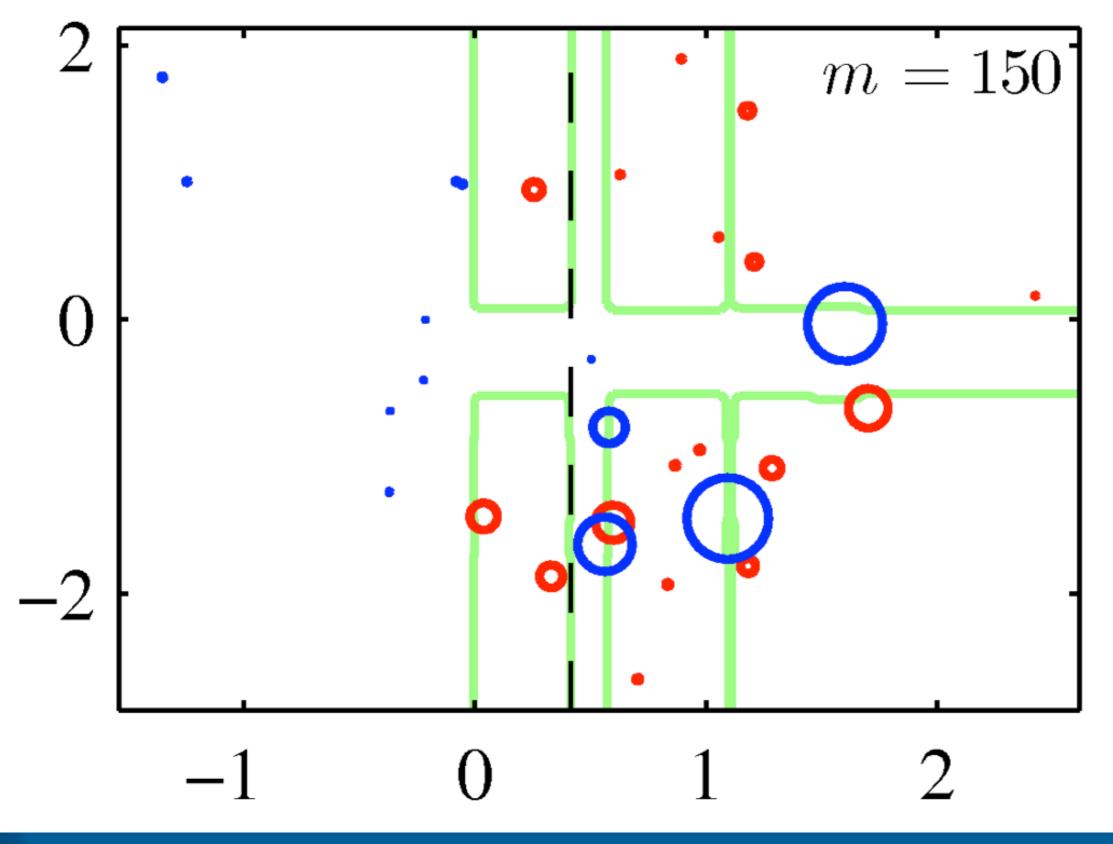




Machine Learning for Computer Vision Dr. Rudolph Triebel Computer Vision Group

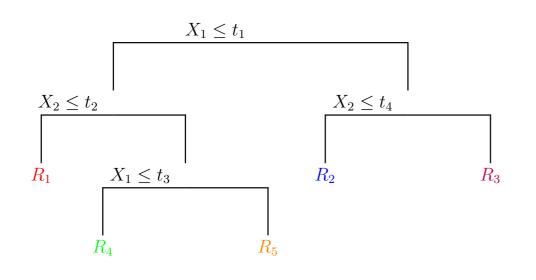


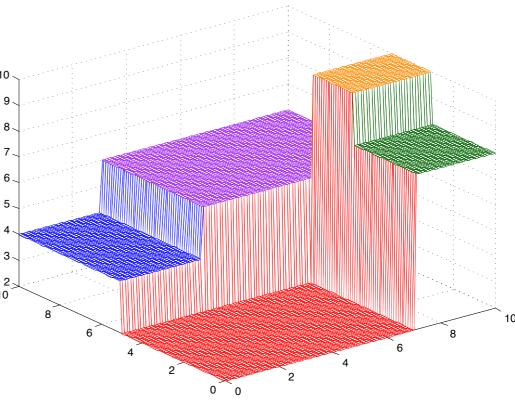




Decision Trees

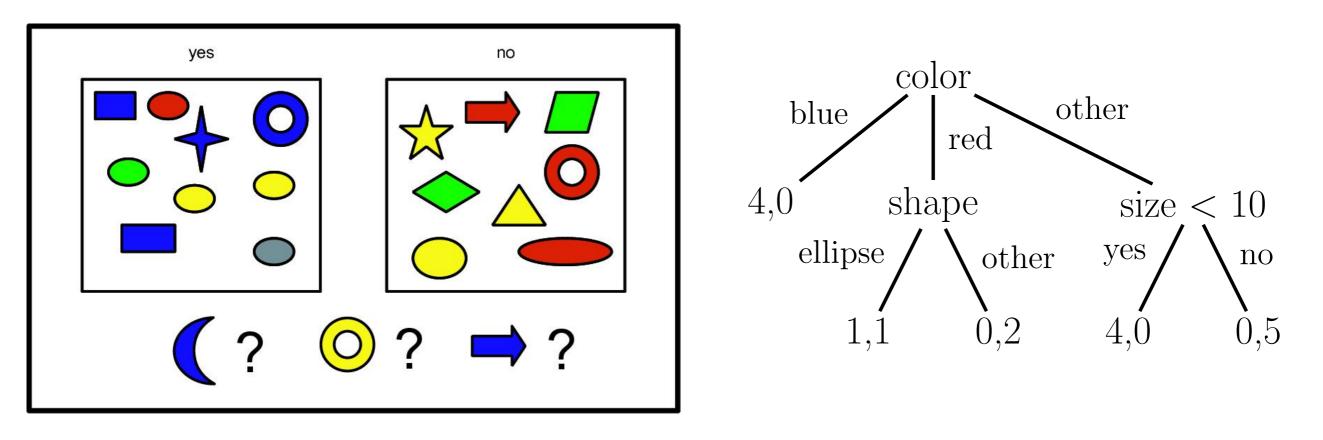
 A more general version of decision stumps are decision trees:





- At every node, a decision is made
- Dan be used for classification and for regression (Classification And Regression Trees CART)

Decision Trees for Classification



- Stores the distribution over class labels in each leaf (number of positives and negatives)
- With these, we can class label probabilities, e.g. $p(y = 1 \mid \mathbf{x}) = 1/2$ if we have a red ellipse

Growing a Decision Tree

- Finding the optimal partition of the data is an NP-complete problem!
- Instead: use a greedy strategy:

function fitTree(node, D, depth):

1. node.prediction = class label distribution

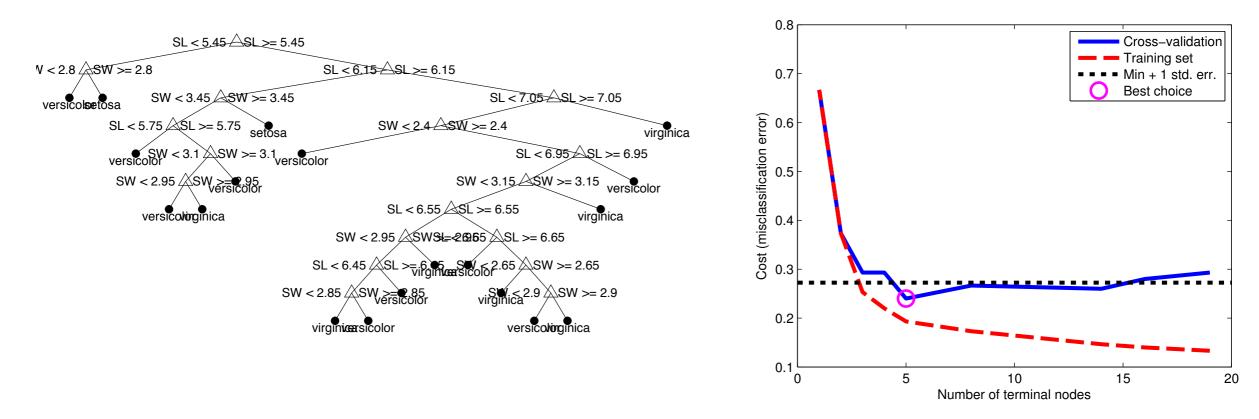
2. $(j^*, t^*, \mathcal{D}_L, \mathcal{D}_R) = \operatorname{split}(\mathcal{D})$

- 3. if not worth splitting then return node
- 4. node.test $\leftarrow x_{j^*} < t^*$
- 5. node.left = fitTree(node, \mathcal{D}_L , depth +1)
- 6. node.right = fitTree(node, \mathcal{D}_R , depth +1)

Growing a Decision Tree

- The Split-function finds an optimal feature and an optimal value for that feature
- For classification, it finds a split that minimizes some cost function, e.g. misclassification
- A decision stump is a decision tree with depth 1
- Stopping criteria for growing the tree are:
 - reduction of cost too small?
 - maximum depth reached?
 - is the distribution in the sub-trees homogenous?
 - is the number of samples in the sub-trees too small?

Tree Pruning



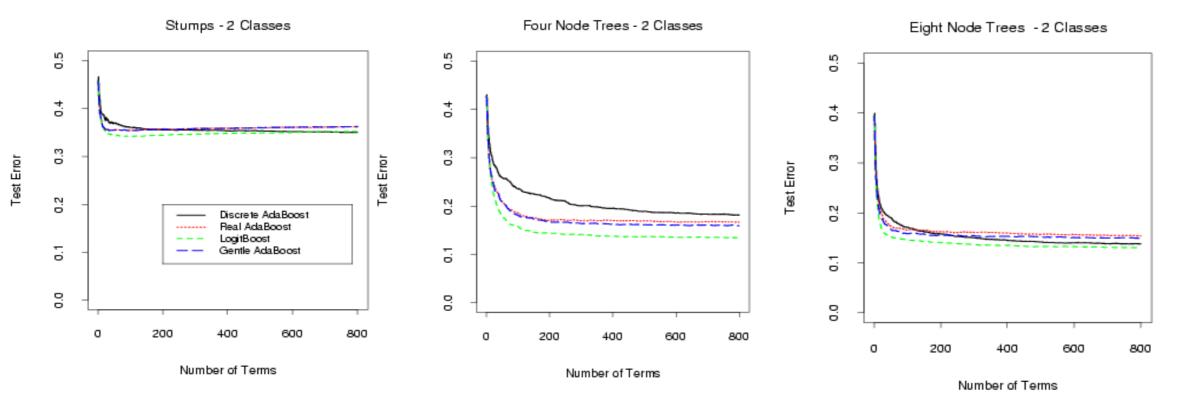
- If the tree grows too large, the algorithm overfits
- Simply stopping to grow can lead to situations where the tree is not expressive enough
- Idea: Build first full tree and then prune it
- Pruning can be done using cross-validation

Random Forests

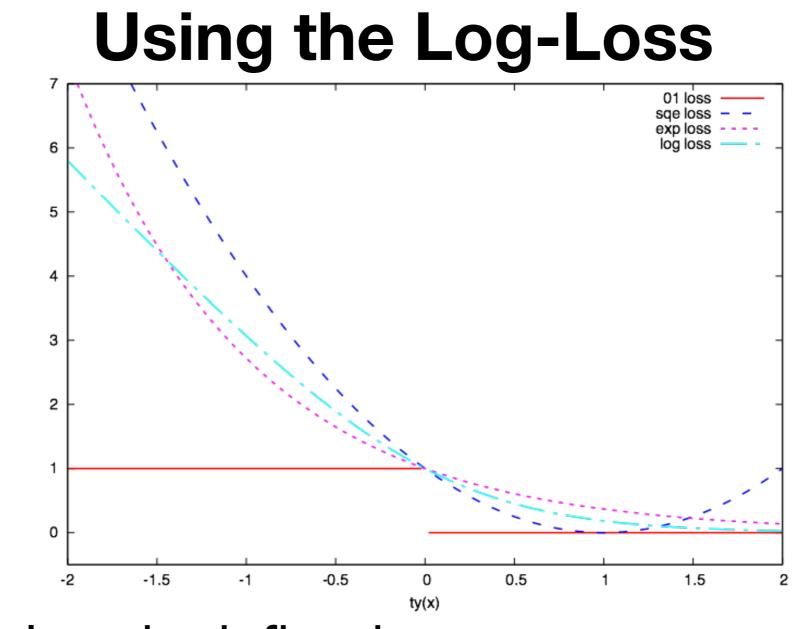
- To reduce the variance of the classification estimate, we can train several trees on randomly sampled subsets of the data
- However, this can result in correlated classifiers, limiting the reduction in variance
- Idea: chose data subset and variable (feature) subset randomly
- The resulting algorithm is known as Random Forests
- Random Forests have very good accuracy and are widely used, e.g. body pose recognition

Back to Boosting

 AdaBoost has been shown to perform very well, especially when using decision trees as weak classifiers



 However: the exponential loss weighs misclassified examples very high!



• The log-loss is defined as:

$$L(t, y(\mathbf{x})) = \log_2(1 + \exp(-2ty(\mathbf{x})))$$

It penalizes misclassifications only linearly

The LogitBoost Algorithm

1.For i = 1, ..., N: $v_i \leftarrow 1/N$ $\pi_i \leftarrow 1/2$ **2.For** m = 1, ..., MCompute the working response $z_i = \frac{t_i - \pi_i}{\pi_i(1 - \pi_i)}$ Compute the weights $v_i = \pi_i(1 - \pi_i)$ Find ϕ_m that minimizes $\sum_{i=1}^{N} v_i (z_i - \phi(\mathbf{x}_i))^2$ Update $y(\mathbf{x}) \leftarrow y(\mathbf{x}) + \frac{1}{2} \phi_m(\mathbf{x})$ and $\pi_i \leftarrow \frac{1}{1 + \exp(-2y(\mathbf{x}_i))}$ 3.Use the resulting classifier: $y(\mathbf{x}) = \operatorname{sgn} \sum \phi_m(\mathbf{x})$

m=1

Weighted Least-Squares Regression

- Instead of a weak classifier, LogitBoost uses "weighted least-squares regression"
- This is very similar to standard least-squares regression:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} v_i (\mathbf{w}^T \phi(\mathbf{x}_i) - t_i)^2$$

• This results in a matrix $\hat{\Phi} = V^{1/2} \Phi$ where $V^{1/2} = \operatorname{diag}(\sqrt{v_1}, \dots, \sqrt{v_N})$

The solution is

$$\mathbf{w} = (\hat{\Phi}^T \hat{\Phi})^{-1} \hat{\Phi}^T \mathbf{t}$$

GentleBoost

Gentle AdaBoost

- 1. Start with weights $w_i = 1/N, i = 1, 2, ..., N, F(x) = 0.$
- 2. Repeat for m = 1, 2, ..., M:
 - (a) Fit the regression function $f_m(x)$ by weighted least-squares of y_i to x_i with weights w_i .
 - (b) Update $F(x) \leftarrow F(x) + f_m(x)$
 - (c) Update $w_i \leftarrow w_i e^{-y_i f_m(x_i)}$ and renormalize.
- 3. Output the classifier sign $[F(x)] = sign[\sum_{m=1}^{M} f_m(x)]$

Algorithm 4: A modified version of the Real AdaBoost algorithm, using Newton stepping rather than exact optimization at each step

- Numerically more stable than LogitBoost
- Tends to perform better than AdaBoost and LogitBoost

Generalization: Gradient Boost

• Initialize $f_0(\mathbf{x}) = \arg \min_{\gamma} \sum_{i=1}^N L(t_i, \phi(\mathbf{x}_i, \gamma))$ • for m = 1

• for m = 1, ..., M

Compute the gradient residual

$$r_{im} = -\left[\frac{\partial L(t_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\right]_{f(\mathbf{x}_i)=f_{m-1}(\mathbf{x}_i)}$$

- Use the weak learner to compute that minimizes $\sum_{i=1}^{N} (r_{im} - \phi(\mathbf{x}_i; \gamma_m))^2$ • Update $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \nu \phi(\mathbf{x}, \gamma)$
- Return $f(\mathbf{x}) = f_M(\mathbf{x})$

Application of AdaBoost: Face Detection

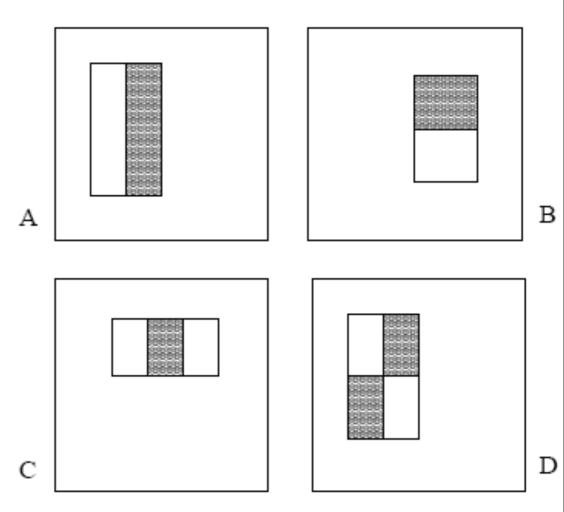
- The biggest impact of AdaBoost was made in face detection
- Idea: extract features ("Haar-like features") and train AdaBoost, use a cascade of classifiers
- Features can be computed very efficiently
- Weak classifiers can be decision stumps or decision trees
- As inference in AdaBoost is fast, the face detector can run in real-time!

Haar-like Features

- Defined as difference of rectangular integral area:
 - The sum of the pixels which lie within the white rectangles are subtracted from the sum of pixels in the grey rectangles.

$$\left(\iint_{White} I(x, y) dx dy\right) - \left(\iint_{Grey} I(x, y) dx dy\right)$$

- One feature defined as:
 - Feature type: A,B,C or D
 - Feature position and size



The integral image

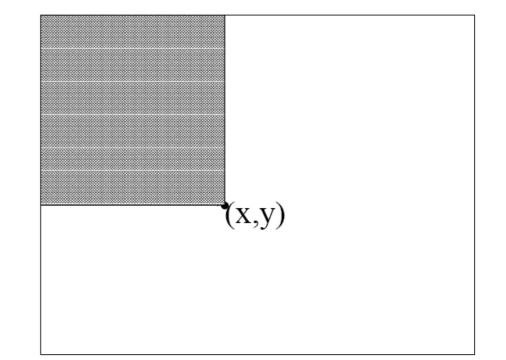
• Defined as :

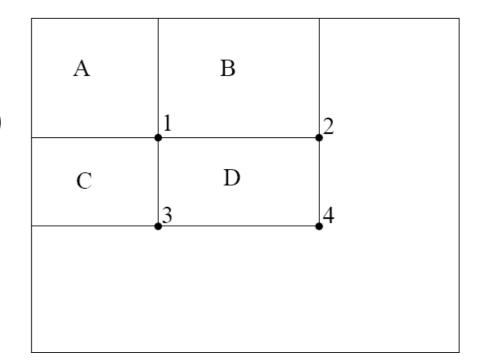
$$I_{int}(X,Y) = \int_{x \le X} \int_{y \le Y} I(x,y) \, dy \, dx$$

 Integral on rectangle D can be computed in 4 access to I_{int}:

$$\iint_{D} I(x, y) = I_{int}(4) + I_{int}(1) - I_{int}(2) - I_{int}(3)$$

 Very efficient way to compute features





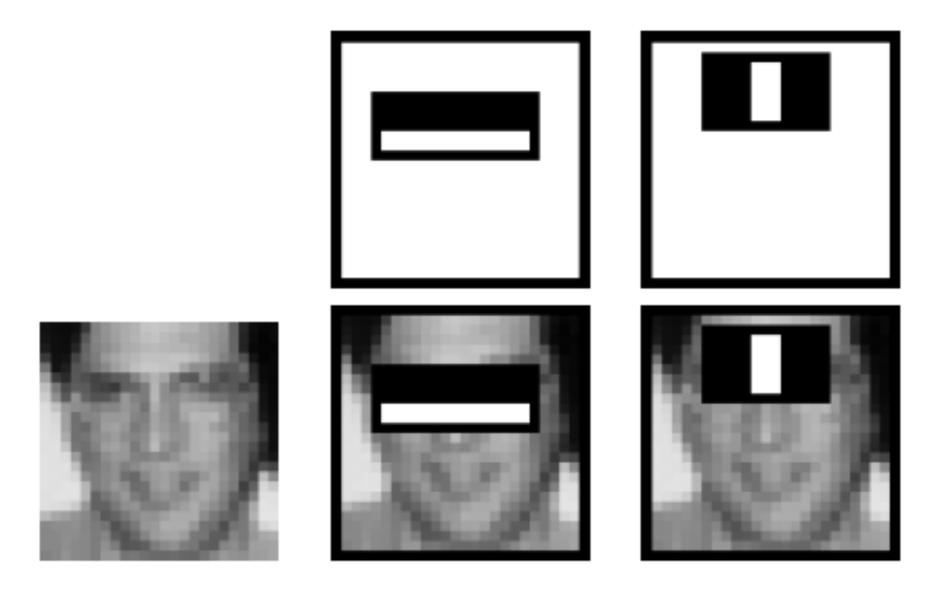
Weak Classifiers Used

- A weak classifier has 3 attributes:
 - A feature f_j (type, size and position)
 - A threshold θ_j
 - A comparison operator op_j = '<' or '>'
- The resulting weak classifier is:

$$h_j(x) = f_j(x) \quad op_j \quad \theta_j$$

• x is a 24x24 pixels window in the image

Two First Classifiers Selected by AdaBoost



A classifier with only this two features can be trained to recognise 100% of the faces, with 40% of false positives

The Inference Algorithm

- scale = 24x24
- Do {

}

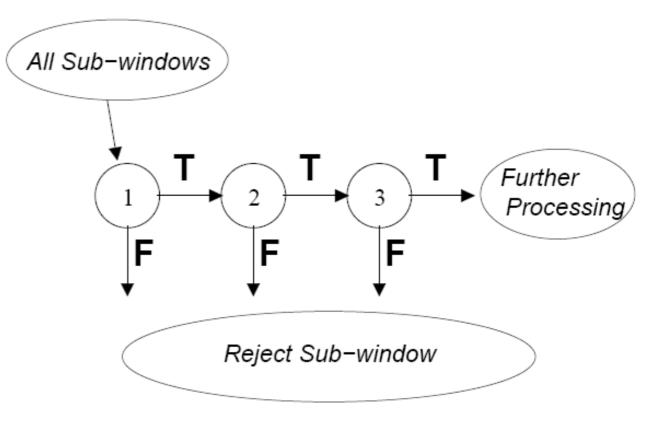
For each position in the image {

 Try classifying the part of the image starting at this position, with the current scale, using the classifier selected by AdaBoost

- Scale = Scale x 1.5
- } until maximum scale

Another Improvement: the Cascade

- Basic idea:
 - It is easy to detect that something is not a face
 - Tune(boost) classifier to be very reliable at saying
 NO (i.e. very low false negative)
 - Stop evaluating the cascade of classifier
 if one classifier says NO



Advantage of the Cascade

- Faster processing
 - Quick elimination of useless windows
- Each individual classifier is trained to deal only with the example that the previous ones could not process
 - Very specialised
- The deeper in the cascade, the more complex (the more features) in the classifiers.

Results (1)

Results (2)

Machine Learning for Computer Vision Dr. Rudolph Triebel Computer Vision Group

Summary

- Boosting is a method to use a weak classifier and turn it into a strong one (arbitrarily small training error!)
- AdaBoost minimizes the exponential loss
- To be more robust against outliers, we can use LogitBoost or GentleBoost
- Weak learners can be decision stumps or decision trees
- Face detection can be solved with Boosting

