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Motivation

• Usually learning algorithms assume that some 
kind of feature function is given 

• Reasoning is then done on a feature vector of a 
given (finite) length 

• But: some objects are hard to represent with a 
fixed-size feature vector, e.g. text documents, 
molecular structures, evolutionary trees 

• Idea: use a way of measuring similarity without 
the need of features, e.g. the edit distance for 
strings 

• This we will call a kernel function
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

                                               

!

!

3

J(w) =
1

2

NX

n=1

(wT�(xn)� tn)
2 +

�

2
w

T
w �(xn) 2 RD



Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

if we write this in vector form, we get 
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

if we write this in vector form, we get 

!

!

and the solution is 
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

However, we can express this result in a different 
way using the matrix inversion lemma: 

!
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

However, we can express this result in a different 
way using the matrix inversion lemma: 

!
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

!

Plugging               into          gives:
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

!

This is called the dual formulation. 

Note:  

!

!
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

!

This is called the dual formulation. 

The solution to the dual problem is: 

!

!
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

!

!

This we can use to make predictions: 

!

(now x is unknown and a is given from training)
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y(x) = k(x)T (K + �IN )�1
t

Dual Representation

where:  

!

!

!

Thus, y is expressed only in terms of dot products 
between different pairs of        , or in terms of the 
kernel function  
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Representation using the Kernel

Now we have to invert a matrix of size            , 

before it was             where            , but: 

By expressing everything with the kernel 
function, we can deal with very high-dimensional 
or even infinite-dimensional feature spaces! 

Idea: Don’t use features at all but simply define a 
similarity function expressed as the kernel!
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Constructing Kernels

The straightforward way to define a kernel function is to 
first find a basis function        and to define: 

!

This means, k is an inner product in some space    , i.e: 

1.Symmetry: 

2.Linearity: 

3.Positive definite:                       , equal if  

!

Can we find conditions for k under which there is a 
(possibly infinite dimensional) basis function into    , 

where k is an inner product? 
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Constructing Kernels

Theorem (Mercer): If k is  

1.symmetric, i.e.                                 and 

2.positive definite, i.e.  
 
 
 
 
is positive definite, then there exists a mapping       

into a feature space     so that k can be expressed 
as an inner product in    . 

This means, we don’t need to find         explicitly! 

We can directly work with k 
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Constructing Kernels

Finding valid kernels from scratch is hard, but: 

A number of rules exist to create a new valid kernel k 

from given kernels k1 and k2. For example:
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Examples of Valid Kernels

• Polynomial Kernel: 

!

• Gaussian Kernel:  

!

• Kernel for sets: 

!

• Matern kernel:
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A Simple Example

Define a kernel function as 

!

This can be written as: 

!

!

!

!

It can be shown that this holds in general for  
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Visualization of the Example

Original decision 
boundary is an ellipse

Decision boundary 
becomes a hyperplane
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Application Examples

Kernel Methods can be applied for many different 
problems, e.g.: 

• Density estimation (unsupervised learning) 

• Regression 

• Principal Component Analysis (PCA) 

• Classification 

Most important Kernel Methods are 

• Support Vector Machines 

• Gaussian Processes
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Kernelization

• Many existing algorithms can be converted into 
kernel methods 

• This process is called “kernelization” 

Idea: 

• express similarities of data points in terms of an 
inner product (dot product) 

• replace all occurrences of that inner product by 
the kernel function 

This is called the kernel trick 
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Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance

22
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Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance 

!

!

• We can now replace the dot products by a valid 
Mercer kernel and we obtain: 

!

• This is a kernelized nearest-neighbor classifier 

• We do not explicitly compute feature vectors!
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• Given: data set  

• Project data onto a subspace of dimension M 
so that the variance is maximized 
(“decorrelation”) 

• For now: assume M is equal to 1 

• Thus: the subspace can be described by a D-
dimensional unit vector     , i.e.: 

• Each data point is projected onto the subspace 
using the dot product: 

Example: Principal Component Analysis

24
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Visualization: 

!

!

!

!

Mean: 

!

Variance: 

xn

S

Principal Component Analysis
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Principal Component Analysis

Goal: Maximize            s.t.   

Using a Lagrange multiplier: 

!

!

Setting the derivative wrt.     to 0 we obtain:  

!

Thus:      must be an eigenvector of S. 
Multiplying with      from left gives: 

Thus:      is largest if      is the eigenvector of the 

largest eigenvalue of S   
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Principal Component Analysis

We can continue to find the best one-
dimensional subspace that is orthogonal to  

If we do this M times we obtain: 

!

                are the eigenvectors of the M largest 

eigenvalues of S: 
To project the data onto the M-dimensional 
subspace we use the dot-product:
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Reconstruction using PCA

• We can interpret the vectors                 as a 

basis if M = D  
• A reconstruction of a data point x into an M-

dimensional subspace (M<D) can be written: 

!

• Goal is to minimize the squared error: 

!

• This results in: 

!

These are the coefficients of the eigenvectors
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Reconstruction using PCA

Plugging in, we have:

29

x̃n =
MX

i=1

(xT
nui)ui +

DX

i=M+1

(x̄T
ui)ui

=
DX

i=1

(x̄T
ui)ui �

MX

i=1

(x̄T
ui)ui +

MX

i=1

(xT
nui)ui

= x̄+
MX

i=1

(xT
nui � x̄

T
ui)ui

= x̄+
MX

i=1

((xn � x̄)Tui)ui

1. Substract mean 2. Project onto first 

M eigenvectors

3. Back-project
4. Add mean



Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Application of PCA: Face Recognition

Database
Image to identify

Identification
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Approach: 

•Convert the image into a nm vector by stacking the 
columns: 

!

!

!

•A small image is 100x100 -> a 10000 element vector, 
i.e. a point in a 10000 dimension space 

•Then compute covariance matrix and eigenvectors 

•Select number of dimensions in subspace 

•Find nearest neighbor in subspace for a new image

Application of PCA: Face Recognition
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• 30% of faces used for testing, 70% for learning.

Results of Face Recognition
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�(xn)

Can We Use Kernels in PCA?

• What if data is distributed along non-linear 
principal components? 

• Idea: Use non-linear kernel to map into a space 
where PCA can be done
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Kernel PCA

Here, assume that the mean of the data is zero:  

!

Then, in standard PCA we have the eigenvalue 
problem: 

!

Now, we use a non-linear transformation  
and we assume             . We define C as   
 
                                    , with  
 
Goal: find eigenvalues without using features!
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1

N
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T
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Kernel PCA

Plugging in: 

!

This means, there are values       so that                         . 
With this we have: 

!

!

Multiplying both sides by           gives:  

!

!

where                                       . This is our expression in 
terms of the kernel function!
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The problem can be cast as finding eigenvectors 

of the kernel matrix K: 

!

!

With this, we can find the projection of the image 

of x onto a given principal component as: 

!

!

Again, this is expressed in terms of the kernel 
function.  
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ain�(x)
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Kernel PCA
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Kernel PCA: Example

37
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Example: Classification

• We have seen kernel methods for density 
estimation, PCA and regression 

• For classification there are two major kernel 
methods: Support Vector Machines (SVMs) and 
Gaussian Processes 

• SVMs are probably the most used classification 
algorithm 

• Main idea: use kernelisation to map into a high-
dimensional feature space, where a linear 
separation between the classes can be found 
(“hyper-plane”) 
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Support Vector Machines

Support Vector Machines learn a linear discriminant 
function (“hyper-planes”): 

!

!

!

!

!

Assumptions for now: Data is linearly separable,  
Binary classification (                      ). 

“Maximum Margin”: find the decision boundary that 
maximizes the distance to the closest data point

parameters of the 
hyperplane (normal vector)

feature 
function

 data 
point

Bias parameter

39
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Maximum Margin

margin

linear decision 
boundary

Points with 
minimal distance

“Support  
Vectors”
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Maximum Margin

• The distance of a point      to the decision hyperplane is 

!

!

• This distance is independent of the scale of      and  

!

!

• Maximum margin is found by 

!

!

• Rescaling: We can choose α so that

41
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Rescaling

42
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Rescaling
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Maximum Margin

For all data points we have the constraint 

!

This means we have to maximize:  

!

       s.th.   

!

which is equivalent to 

!

      s.th.
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Maximum Margin
!

                         s.th. 

!

This is a constrained optimization problem.  
It can be solved with a technique called quadratic 
programming.
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Dual Formulation

For the constrained minimization we can introduce 

Lagrange multipliers  an: 

!

!

Setting the derivatives of this wrt.      and b to 0 yields: 

!

!

If we plug these constraints back into                     :

min
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Dual Formulation

!

subject to the constraints 

!

This is called the dual formulation of the constrained 
optimization problem. The function k is again the kernel 
function and is defined as: 

!

The simplest example of a kernel function is given for 

Φ= I. It is also known as the linear kernel.
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The Kernel Trick in SVMs

• Other kernels are possible, e.g. the polynomial: 

!

!

Kernel Trick for SVMs: If we find an optimal solution 
to the dual form of our constrained optimization 
problem, then we can replace the kernel by any other 
valid kernel and obtain again an optimal solution. 

• Consequence: Using a non-linear feature transform Φ 
we obtain non-linear decision boundaries.
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Observations and Remarks

• The kernel function is evaluated for each pair of 
training data points during training 

• It can be shown that for every training data point it 
holds either              or                 . In the latter case, 
they are support vectors. 

• For classifying a new feature vector     we evaluate: 

!

!

!

We only need to compute that for the support vectors
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Multiple Classes

We can generalize the binary classification 
problem for the case of multiple classes. 

This can be done with: 

•one-to-many classification  

•Defining a single objective function for all 
classes 

•Organizing pairwise classifiers in a directed acyclic 
graph (DAGSVM) 
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Extension: Non-separable problems

margin
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Slack Variables

• The slack variable      is defined as follows: 

• For all points on the correct side:  

• For all other points:  

• This means that points with                    are correct 
classified, but inside the margin, points with  
are misclassified.    

• In the optimization, we modify the constraints: 

!

• and                               
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Summary 

• Kernel methods are used to solve problems by 
implicitly mapping the data into a (high-dimensional) 
feature space 

• The feature function itself is not used, instead the 
algorithm is expressed in terms of the kernel 

• Applications are manifold, including density 
estimation, regression, PCA and classification 

• An important class of kernelized classification 
algorithms are Support Vector Machines 

• They learn a linear discriminative function, which is 
called a hyper-plane 

• Learning in SVMs can be done efficiently
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