# The EP Algorithm

Given: a joint distribution over data and variables

$$p(\mathcal{D}, \boldsymbol{\theta}) = \prod_{i=1}^{M} f_i(\boldsymbol{\theta})$$

- Goal: approximate the posterior  $p(\theta \mid D)$  with q
- Initialize all approximating factors  $\tilde{f}_i(\theta)$
- Initialize the posterior approximation  $q(\theta) \propto \prod_i \tilde{f}_i(\theta)$
- Do until convergence:
  - choose a factor  $ilde{f}_j(oldsymbol{ heta})$
  - •remove the factor from q by division:  $q^{\setminus j}(\theta) = \frac{q(\theta)}{\tilde{f}_i(\theta)}$





# The EP Algorithm

• find  $q^{\text{new}}$  that minimizes

$$KL\left(\frac{f_j(\theta)q^{\setminus j}(\boldsymbol{\theta})}{Z_j}\Big|q^{\text{new}}(\boldsymbol{\theta})\right)$$

using moment matching, including the zero-th moment:

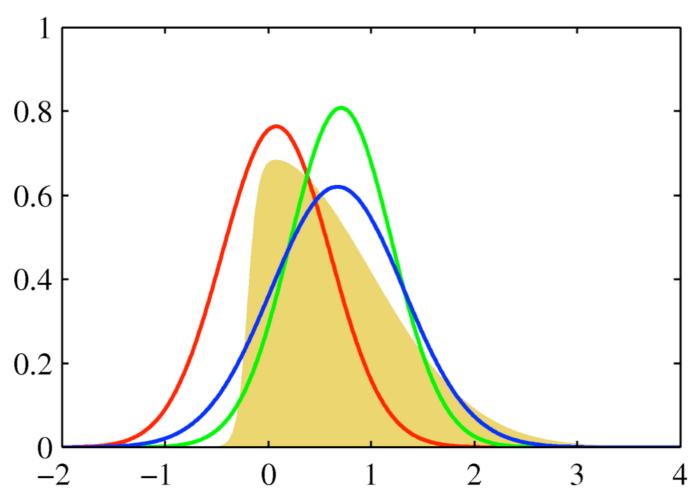
$$Z_j = \int q^{\setminus j}(\boldsymbol{\theta}) f_j(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

evaluate the new factor

$$\tilde{f}_j(\boldsymbol{\theta}) = Z_j \frac{q^{\text{new}}(\boldsymbol{\theta})}{q^{\setminus j}(\boldsymbol{\theta})}$$

• After convergence, we have  $p(\mathcal{D}) pprox \int\limits_{\cdot}^{\cdot} \prod_{i} \widetilde{f}_{j}(m{ heta}) dm{ heta}$ 

# **Example**



yellow: original distribution

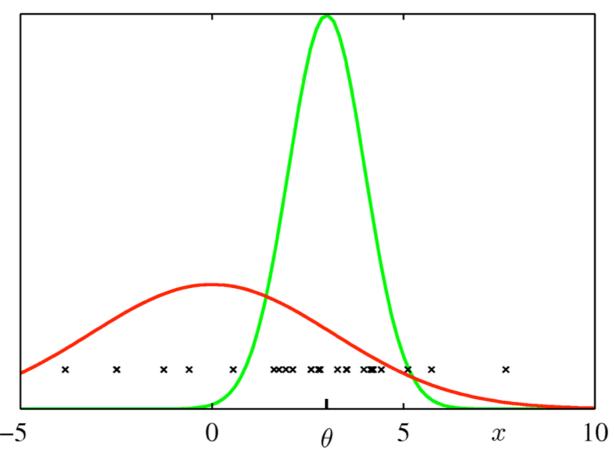
red: Laplace approximation

green: global variation

blue: expectation-propagation



### **The Clutter Problem**



 Aim: fit a multivariate Gaussian into data in the presence of background clutter (also Gaussian)

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = (1 - w)\mathcal{N}(\mathbf{x} \mid \boldsymbol{\theta}, I) + w\mathcal{N}(\mathbf{x} \mid \mathbf{0}, aI)$$

• The prior is Gaussian:

$$p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{0}, bI)$$

#### **The Clutter Problem**

The joint distribution for  $\mathcal{D} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$  is  $p(\mathcal{D}, \boldsymbol{\theta}) = p(\boldsymbol{\theta}) \prod_{n=1}^N p(\mathbf{x}_n \mid \boldsymbol{\theta})$ 

this is a mixture of  $2^N$  Gaussians! This is intractable for large N. Instead, we approximate it using a spherical Gaussian:

$$q(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{m}, vI) = \tilde{f}_0(\boldsymbol{\theta}) \prod_{n=1}^N \tilde{f}_n(\boldsymbol{\theta})$$

the factors are (unnormalized) Gaussians:

$$\tilde{f}_0(\boldsymbol{\theta}) = p(\boldsymbol{\theta})$$
  $\tilde{f}_n(\boldsymbol{\theta}) = s_n \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{m}_n, v_n I)$ 





- First, we initialize  $\tilde{f}_n(\theta) = 1$ , i.e.  $q(\theta) = p(\theta)$
- Iterate:
  - Remove the current estimate of  $\tilde{f}_n(\theta)$  from q by division of Gaussians:

$$q_{-n}(\boldsymbol{\theta}) = \frac{q(\boldsymbol{\theta})}{\tilde{f}_n(\boldsymbol{\theta})}$$

Dr. Rudolph Triebel

**Computer Vision Group** 

- First, we initialize  $\tilde{f}_n(\theta) = 1$ , i.e.  $q(\theta) = p(\theta)$
- Iterate:
  - Remove the current estimate of  $\tilde{f}_n(\theta)$  from q by division of Gaussians:

$$q_{-n}(\boldsymbol{\theta}) = \frac{q(\boldsymbol{\theta})}{\tilde{f}_n(\boldsymbol{\theta})}$$
 
$$q_{-n}(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{m}_{-n}, v_{-n}I)$$

Compute the normalization constant:

$$Z_n = \int q_{-n}(\boldsymbol{\theta}) f_n(\boldsymbol{\theta}) d\boldsymbol{\theta}$$
  
=  $(1 - w) \mathcal{N}(\mathbf{x}_n \mid \mathbf{m}_{-n}, (v_{-n} + 1)I) + w \mathcal{N}(\mathbf{x}_n \mid \mathbf{0}, aI)$ 

- First, we initialize  $\tilde{f}_n(\theta) = 1$ , i.e.  $q(\theta) = p(\theta)$
- Iterate:
  - Remove the current estimate of  $\tilde{f}_n(\theta)$  from q by division of Gaussians:

$$q_{-n}(\boldsymbol{\theta}) = \frac{q(\boldsymbol{\theta})}{\tilde{f}_n(\boldsymbol{\theta})}$$
 
$$q_{-n}(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{m}_{-n}, v_{-n}I)$$

Compute the normalization constant:

$$Z_n = \int q_{-n}(\boldsymbol{\theta}) f_n(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

• Compute mean and variance of  $q^{\text{new}}$  using moment matching with  $q_{-n}(\theta)f_n(\theta)$ 





- First, we initialize  $\tilde{f}_n(\theta) = 1$ , i.e.  $q(\theta) = p(\theta)$
- Iterate:
  - Remove the current estimate of  $\tilde{f}_n(\theta)$  from q by division of Gaussians:

$$q_{-n}(\boldsymbol{\theta}) = \frac{q(\boldsymbol{\theta})}{\tilde{f}_n(\boldsymbol{\theta})}$$
 
$$q_{-n}(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{m}_{-n}, v_{-n}I)$$

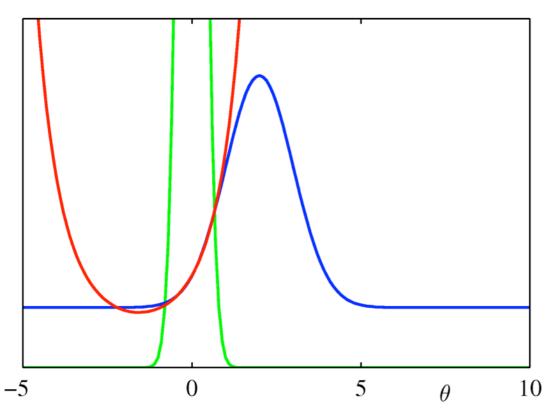
Compute the normalization constant:

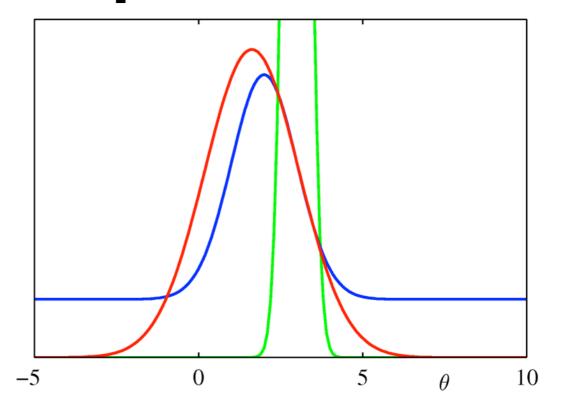
$$Z_n = \int q_{-n}(\boldsymbol{\theta}) f_n(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

- ullet Compute mean and variance of  $q^{
  m new}$
- Update the factor  $\tilde{f}_n(\theta) = Z_n \frac{q^{\text{new}}(\theta)}{q_{-n}(\theta)}$



# A 1D Example





- blue: true factor  $f_n(\theta)$
- red: approximate factor  $\tilde{f}_n(\theta)$
- green: cavity distribution  $q_{-n}(\theta)$

The form of  $q_{-n}(\theta)$  controls the range over which  $\tilde{f}_n(\theta)$  will be a good approximation of  $f_n(\theta)$ 

# Summary

- Variational Inference uses approximation of functions so that the KL-divergence is minimal
- In mean-field theory, factors are optimized sequentially by taking the expectation over all other variables
- Variational inference for GMMs reduces the risk of overfitting; it is essentially an EM-like algorithm
- Expectation propagation minimizes the reverse KL-divergence of a single factor by moment matching; factors are in the exp. family





# 10. Sampling Methods

# **Sampling Methods**

Sampling Methods are widely used in Computer Science

- as an approximation of a deterministic algorithm
- to represent uncertainty without a parametric model

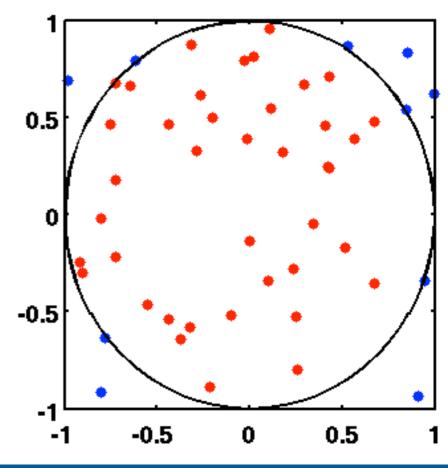
• to obtain higher computational efficiency with a

small approximation error

Sampling Methods are also often called **Monte Carlo Methods** 

Example: Monte-Carlo Integration

- Sample in the bounding box
- Compute fraction of inliers
- Multiply fraction with box size



# Non-Parametric Representation

Probability distributions (e.g. a robot's belief) can be represeted:

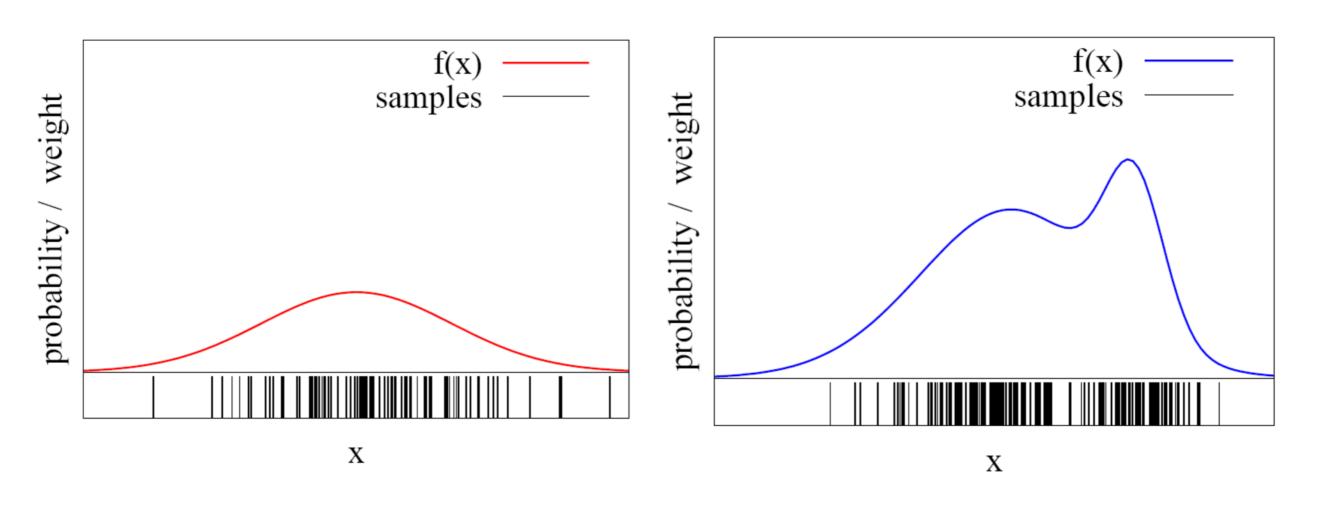
- Parametrically: e.g. using mean and covariance of a Gaussian
- Non-parametrically: using a set of hypotheses (samples) drawn from the distribution

Advantage of non-parametric representation:

 No restriction on the type of distribution (e.g. can be multi-modal, non- Gaussian, etc.)



# Non-Parametric Representation



The more samples are in an interval, the higher the probability of that interval

#### **But:**

How to draw samples from a function/distribution?





# Sampling from a Distribution

### There are several approaches:

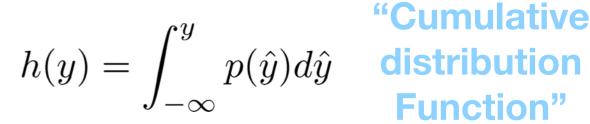
- Probability transformation
  - Uses inverse of the c.d.f h
- Rejection Sampling
- Importance Sampling
- MCMC

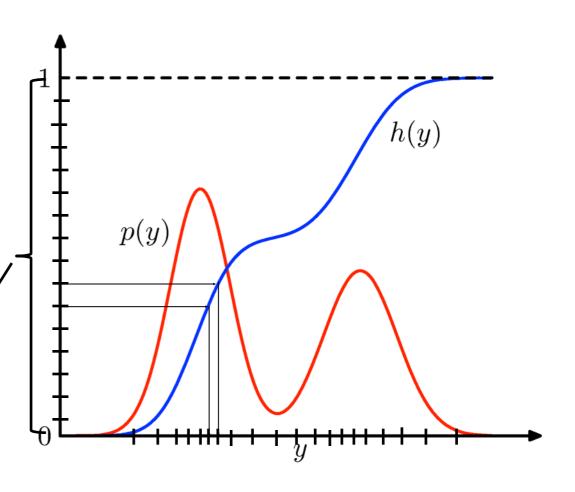
Probability transformation:

- Sample uniformly in [0,1]
- Transform using h-1

#### **But:**

Requires calculation of h and its inverse





# **Rejection Sampling**

#### 1. Simplification:

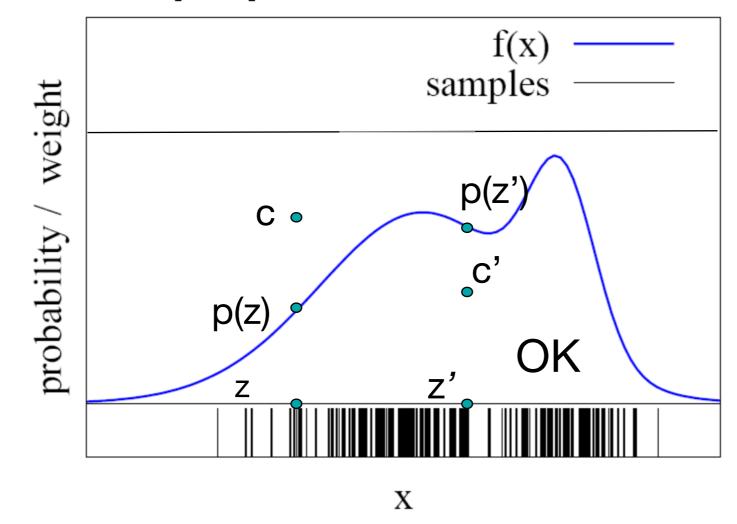
- Assume p(z) < 1 for all z
- Sample z uniformly
- Sample c from [0,1]

• If f(z) > c:

keep the sample

otherwise:

reject the sample



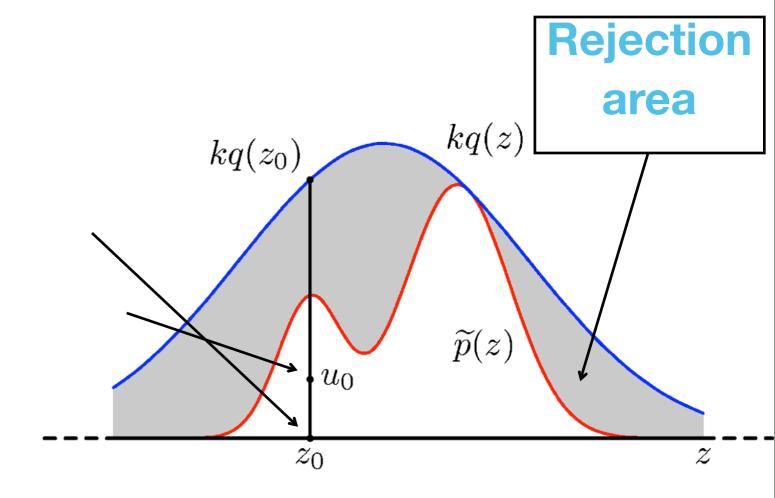


# **Rejection Sampling**

#### 2. General case:

Assume we can evaluate  $p(z) = \frac{1}{Z_p} \tilde{p}(z)$  (unnormalized)

- Find proposal distribution q
  - Easy to sample from q
- Find k with  $kq(z) \geq \tilde{p}(z)$
- Sample from q
- Sample uniformly from [0,kq(z<sub>0</sub>)]
- Reject if  $u_0 > \tilde{p}(z_0)$



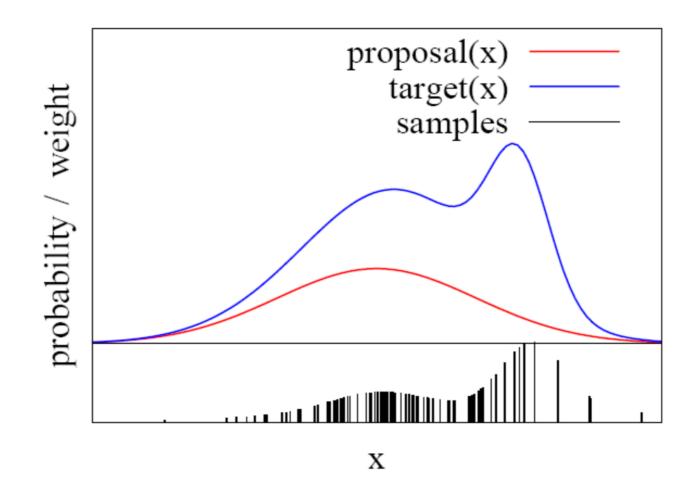
But: Rejection sampling is inefficient.

# Importance Sampling

- Idea: assign an importance weight w to each sample
- With the importance weights, we can account for the "differences between p and q"

$$w(x) = p(x)/q(x)$$

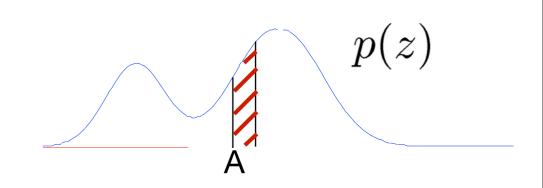
- p is called target
- q is called proposal (as before)



# Importance Sampling

- Explanation: The prob. of falling in an interval A is the area under p
- This is equal to the expectation of the indicator function  $I(x \in A)$

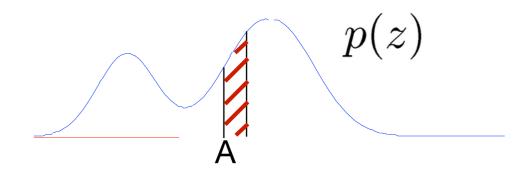
$$E_p[I(z \in A)] = \int p(z)I(z \in A)dz$$



# Importance Sampling

- Explanation: The prob. of falling in an interval A is the area under p
- This is equal to the expectation of the indicator function  $I(x \in A)$

$$E_p[I(z \in A)] = \int p(z)I(z \in A)dz$$



$$= \int \frac{p(z)}{q(z)} q(z) I(z \in A) dz = E_q[w(z) I(z \in A)]$$

Requirement:

$$p(x) > 0 \Rightarrow q(x) > 0$$

Approximation with

Approximation with samples drawn from q: 
$$E_q[w(z)I(z \in A)] \approx \frac{1}{L} \sum_{l=1}^L w(z_l)I(z_l \in A)$$



#### The Particle Filter

- Non-parametric implementation of Bayes filter
- Represents the belief (posterior)  $Bel(x_t)$  by a set of random state samples.
- This representation is approximate.
- Can represent distributions that are not Gaussian.
- Can model non-linear transformations.

#### **Basic principle:**

- Set of state hypotheses ("particles")
- Survival-of-the-fittest

# The Bayes Filter Algorithm (Rep.)

$$Bel(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Algorithm Bayes\_filter (Bel(x), d)

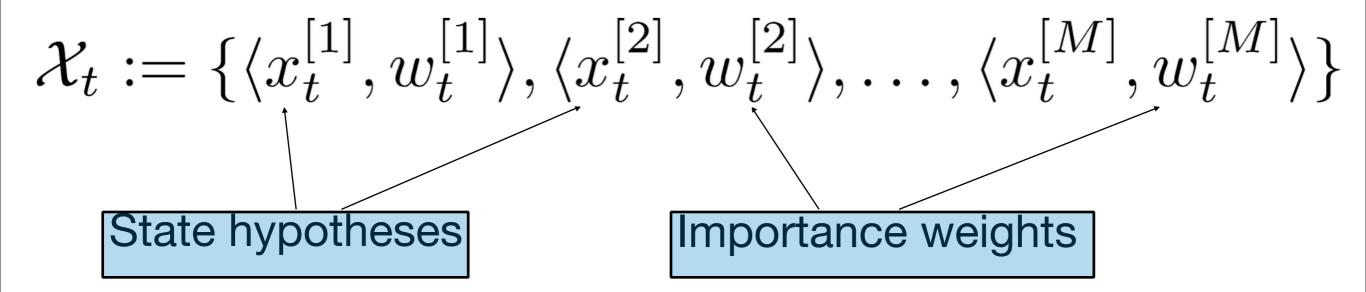
- 1. If d is a sensor measurement z then
- 2.  $\eta = 0$
- 3. for all x do
- 4. Bel' $(x) \leftarrow p(z \mid x)$ Bel(x)
- 5.  $\eta \leftarrow \eta + \mathrm{Bel}'(x)$
- 6. for all x do  $Bel'(x) \leftarrow \eta^{-1}Bel'(x)$
- 7. else if d is an action u then
- 8. for all x do  $Bel'(x) \leftarrow \int p(x \mid u, x')Bel(x')dx'$
- 9. return Bel'(x)





# **Mathematical Description**

Set of weighted samples:



The samples represent the probability distribution:

$$p(x) = \sum_{i=1}^{M} w_t^{[i]} \cdot \delta_{x_t^{[i]}}(x)$$
 Point mass distribution ("Dirac")



# The Particle Filter Algorithm

#### Algorithm $Particle\_filter(\mathcal{X}_{t-1}, u_t, z_t)$ :

1. 
$$\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$$
2. **for**  $m = 1$  **to**  $M$  **do**

3. sample  $x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$ 
4.  $w_t^{[m]} \leftarrow p(z_t \mid x_t^{[m]})$ 
5.  $\bar{\mathcal{X}}_t \leftarrow \bar{\mathcal{X}}_t \cup \langle x_t^{[m]}, w_t^{[m]} \rangle$ 
6. **for**  $m = 1$  **to**  $M$  **do**

draw  $i$  with prob.  $\propto w_t^{[i]}$ 
 $\mathcal{X}_t \leftarrow \mathcal{X}_t \cup \langle x_t^{[i]}, 1/M \rangle$ 
Resampling

 $\mathcal{X}_t \leftarrow \mathcal{X}_t \cup \langle x_t^{[i]}, 1/M \rangle$ 



#### **Localization with Particle Filters**

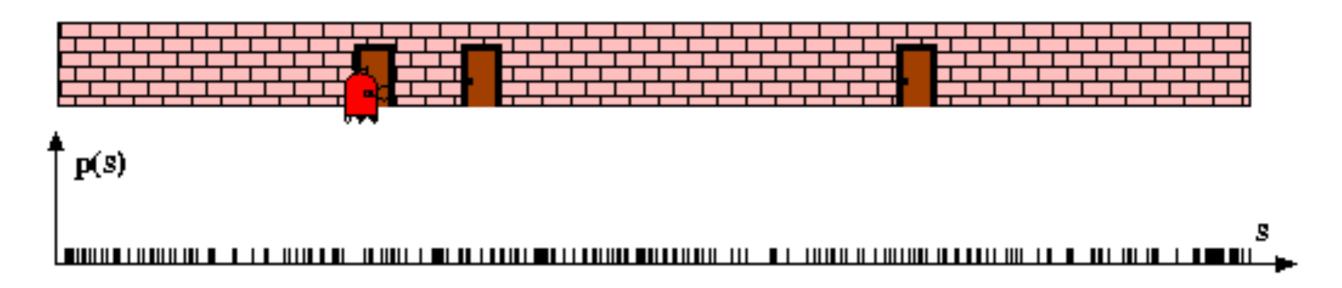
- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

Randomized algorithms are usually called Monte Carlo algorithms, therefore we call this:

**Monte-Carlo Localization** 



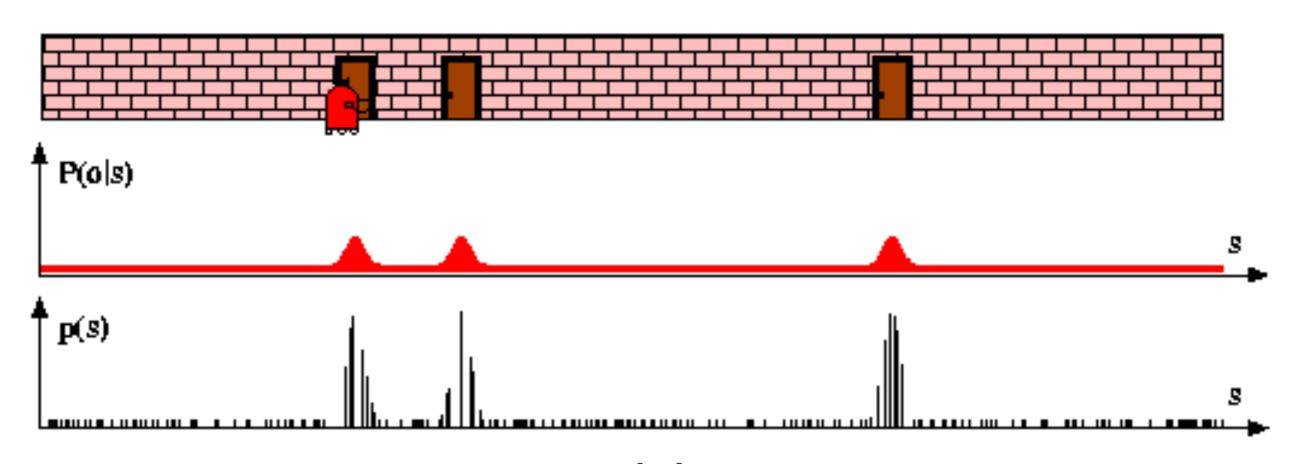
### A Simple Example



- The initial belief is a uniform distribution (global localization).
- This is represented by an (approximately) uniform sampling of initial particles.



#### **Sensor Information**

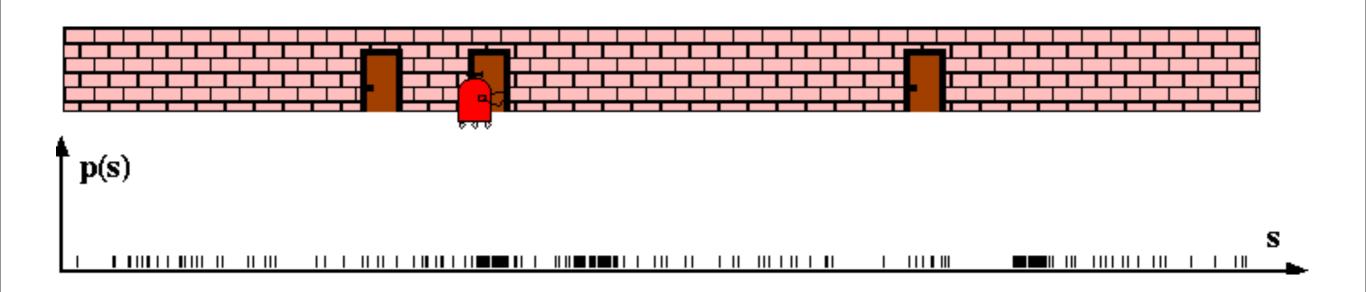


The sensor model  $p(z_t \mid x_t^{[m]})$  is used to compute the new importance weights:

$$w_t^{[m]} \leftarrow p(z_t \mid x_t^{[m]})$$



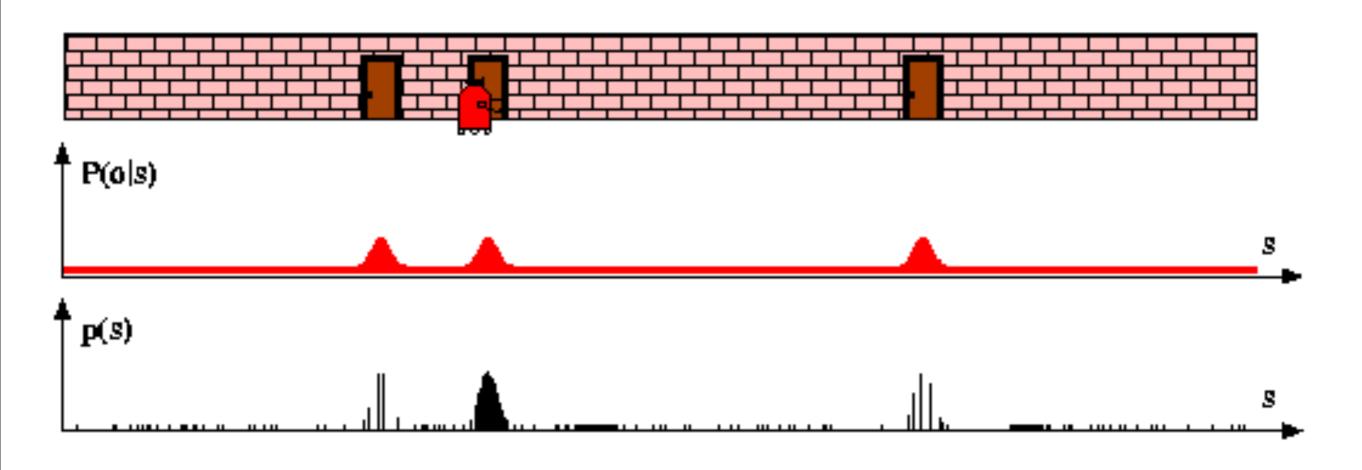
#### **Robot Motion**



After resampling and applying the motion model  $p(x_t \mid u_t, x_{t-1}^{[m]})$  the particles are distributed more densely at three locations.



#### **Sensor Information**



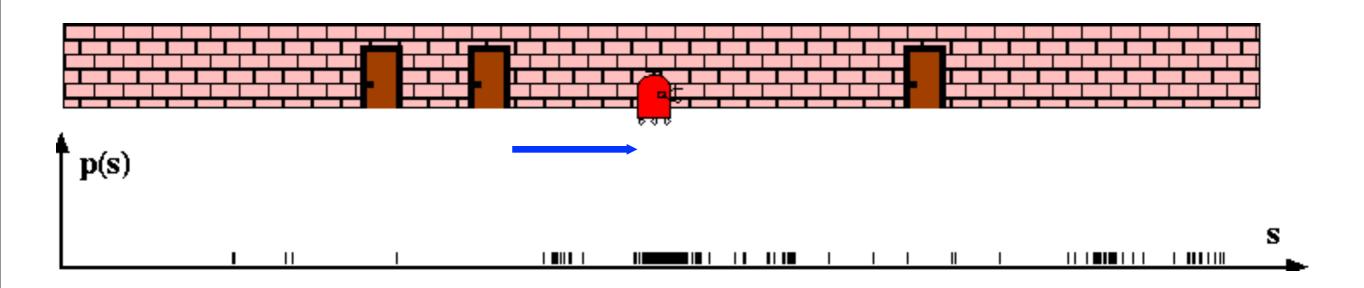
Again, we set the new importance weights equal to the sensor model.

$$w_t^{[m]} \leftarrow p(z_t \mid x_t^{[m]})$$





#### **Robot Motion**



Resampling and application of the motion model:

One location of dense particles is left.

The robot is localized.



# A Closer Look at the Algorithm...

#### Algorithm $Particle\_filter_{(\mathcal{X}_t, u_t, z_t)}$ Sample from $\mathcal{X}_t = \mathcal{X}_t = \emptyset$ for m=1 tc<sub>M</sub> proposal sample $x_{t}^{[m]} \sim p(x_{t} \mid u_{t}, x_{t-}^{[m]})$ Compute sample weights 6. Resampling draw i with prob. $\propto w_t^{[i]}$ $\mathcal{X}_t \leftarrow \mathcal{X}_t \cup x_t^{[i]}$ return

# Sampling from Proposal

#### This can be done in the following ways:

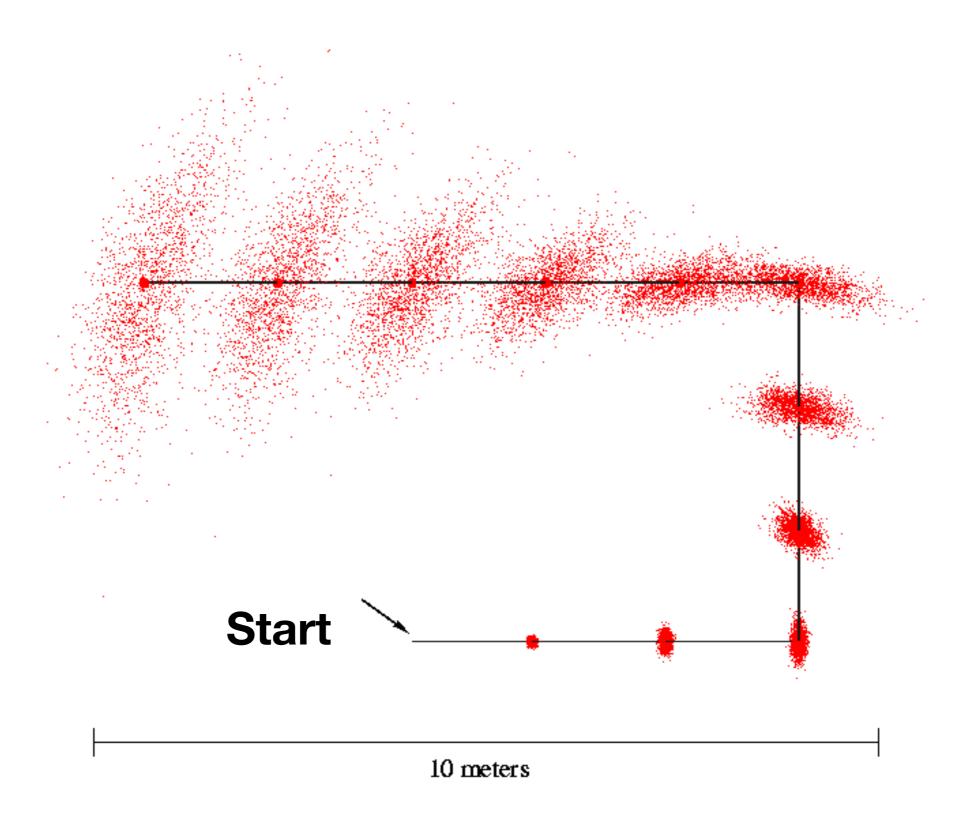
- Adding the motion vector to each particle directly (this assumes perfect motion) [m]
- Sampling from the motion model , e.g. for a 2D motion with translation velocity v and rotation velocity w we have:  $p(x_t \mid u_t, x_{t-1}^{[m]})$

$$\mathbf{u}_t = \left( \begin{array}{c} v_t \\ w_t \end{array} \right)$$
  $\mathbf{x}_t = \left( \begin{array}{c} x_t \\ y_t \\ \theta_t \end{array} \right)$  Orientation





# Motion Model Sampling (Example)





# **Computation of Importance Weights**

#### Computation of the sample weights:

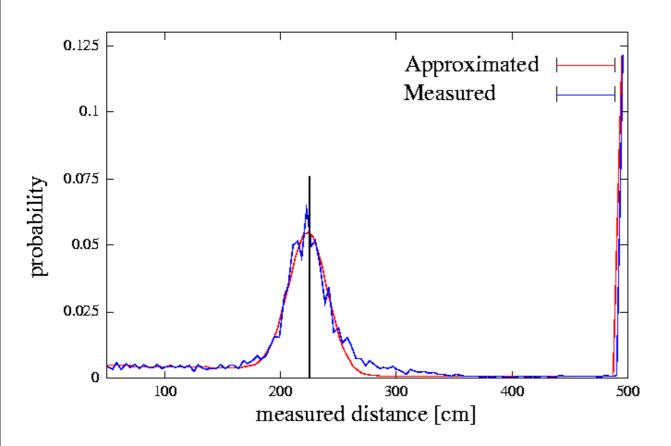
- Proposal distribution:  $g(x_t^{[m]}) = p(x_t^{[m]} \mid u_t, x_{t-1}^{[m]}) \operatorname{Bel}(x_{t-1}^{[m]})$  (we sample from that using the motion model)
- Target distribution (new belief):  $f(x_t^{[m]}) = \operatorname{Bel}(x_t^{[m]})$  (we can not directly sample from that  $\to$  importance sampling)
- Computation of importance weights:

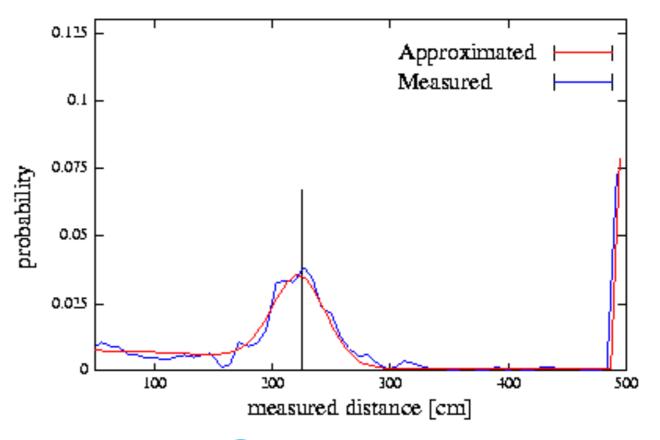
$$w_t^{[m]} = \frac{f(x_t^{[m]})}{g(x_t^{[m]})} \propto \frac{p(z_t \mid x_t^{[m]})p(x_t^{[m]} \mid u_t, x_{t-1}^{[m]}) \operatorname{Bel}(x_{t-1}^{[m]})}{p(x_t^{[m]} \mid u_t, x_{t-1}^{[m]}) \operatorname{Bel}(x_{t-1}^{[m]})} = p(z_t \mid x_t^{[m]})$$



# **Proximity Sensor Models**

- ullet How can we obtain the sensor model  $p(z_t \mid x_t^{[m]})$
- Sensor Calibration:



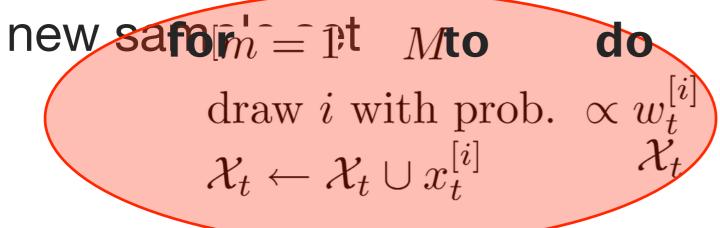


Laser sensor

Sonar sensor

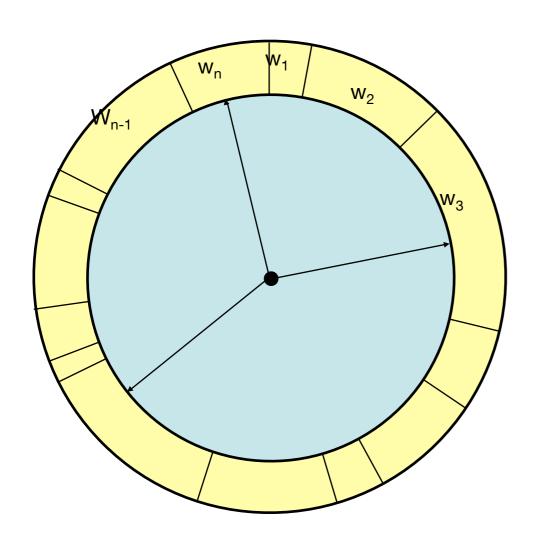
### Resampling

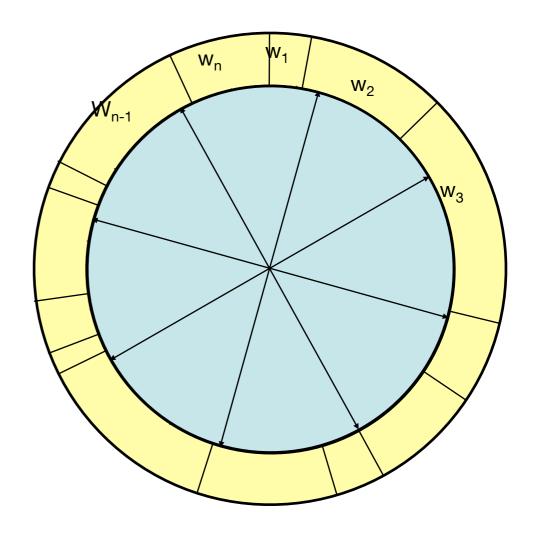
- Given: Set  $\bar{\mathcal{X}}_t$  of weighted samples.
- Wanted: Random sample, where the probability of drawing x<sub>i</sub> is equal to w<sub>i</sub>.
- Typically done M times with replacement to generate





### Resampling



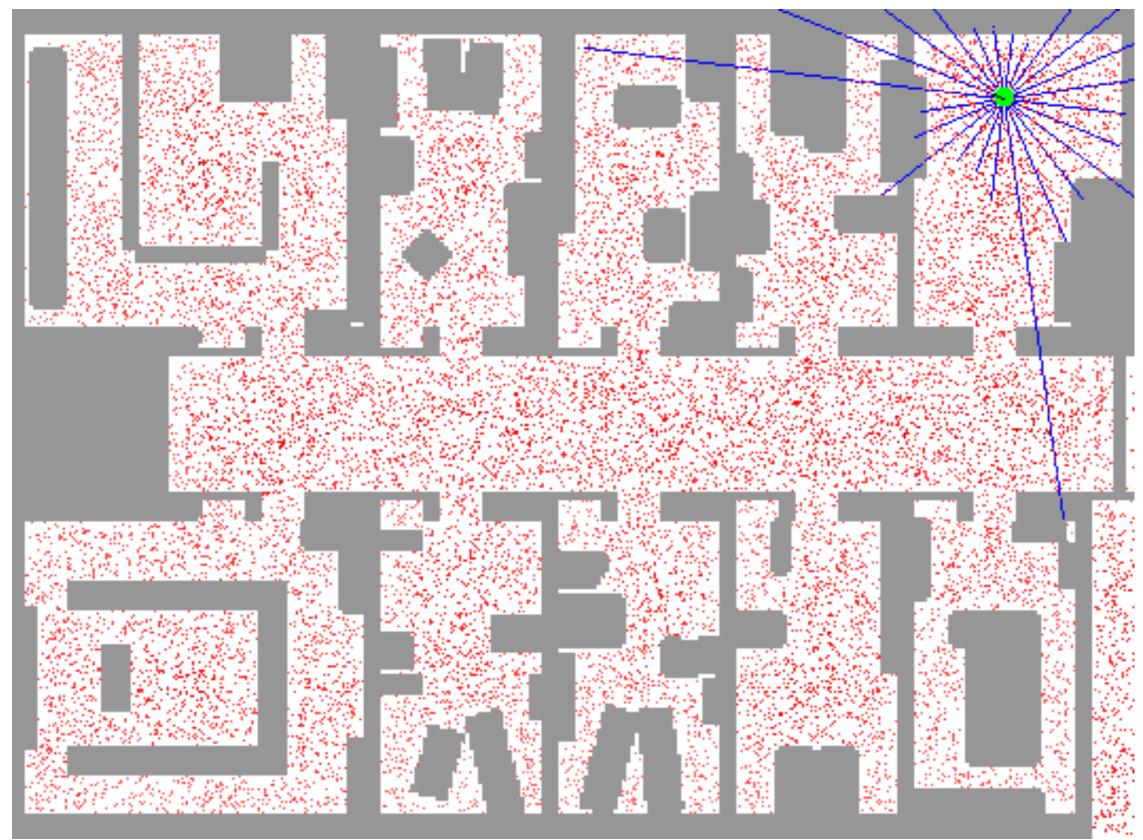


- Standard n-times sampling results in high variance
- This requires more particles
- O(nlog n) complexity

- Instead: low variance sampling only samples once
- Linear time complexity
- Easy to implement



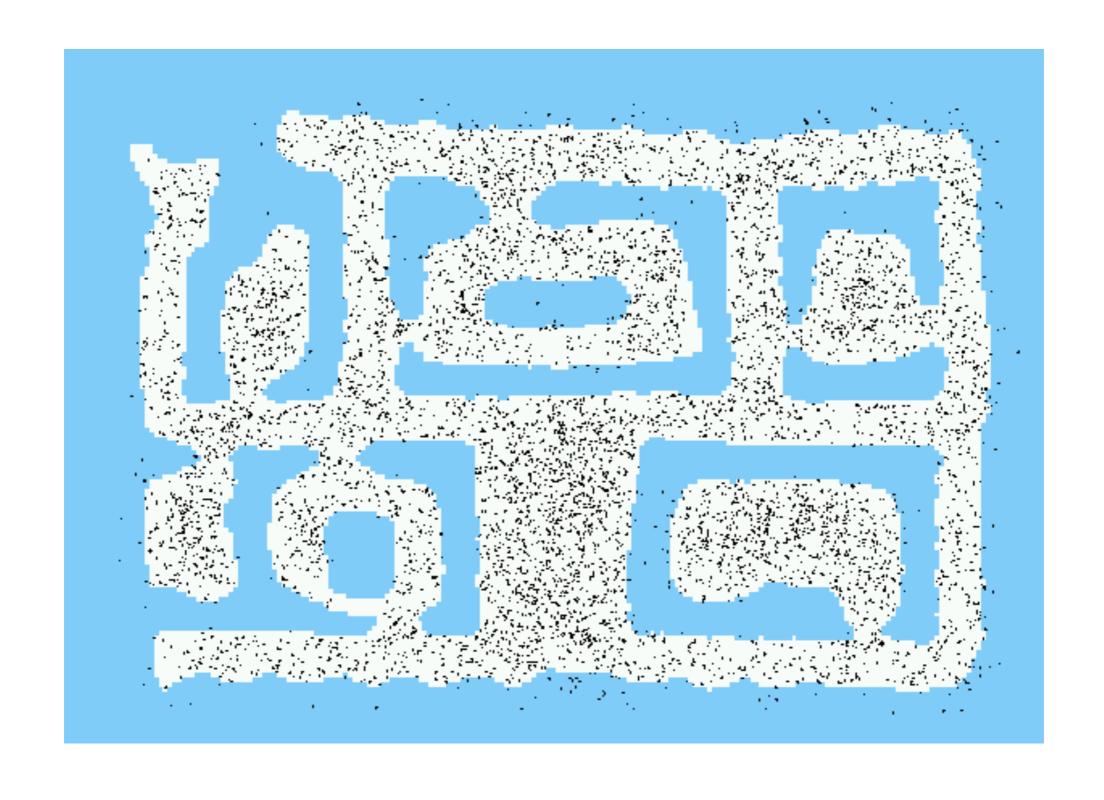
# Sample-based Localization (sonar)







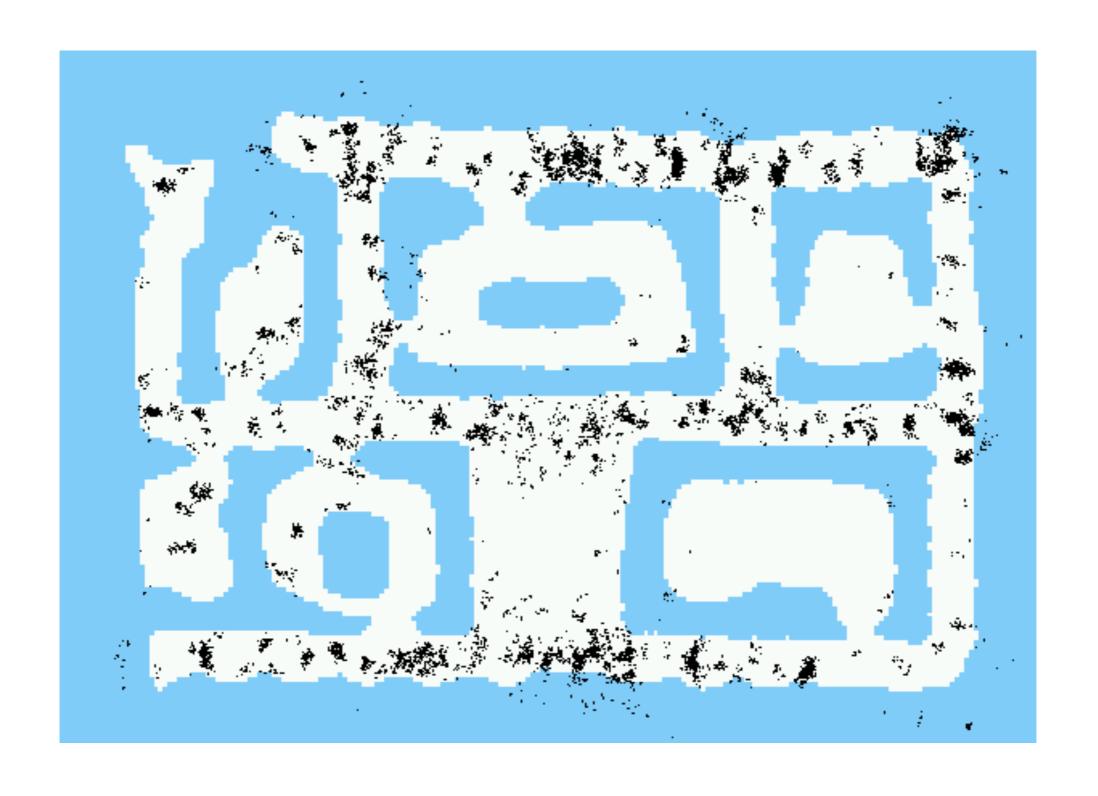
### **Initial Distribution**



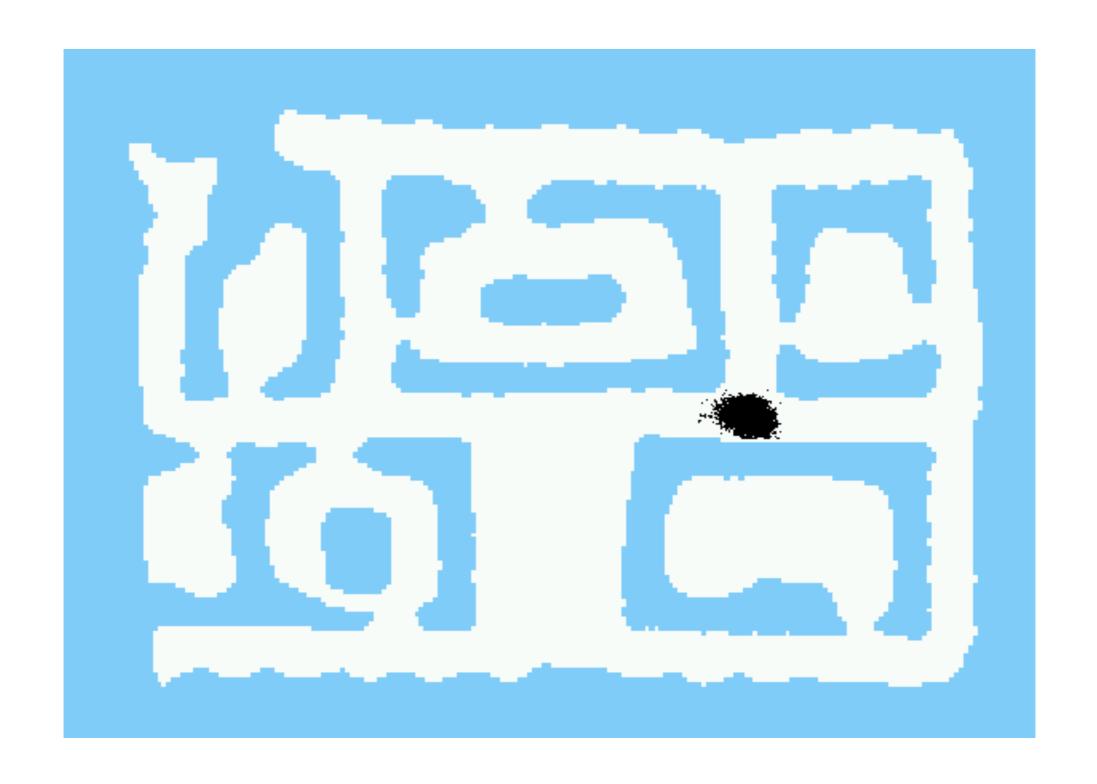




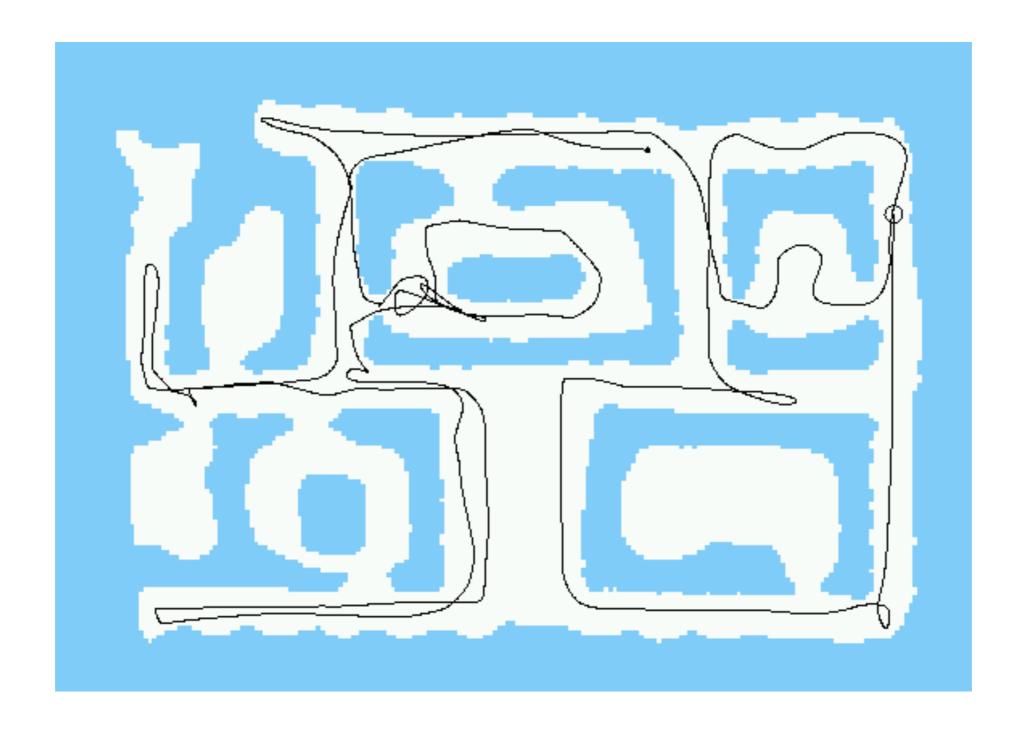
#### **After Ten Ultrasound Scans**



### **After 65 Ultrasound Scans**



#### **Estimated Path**



# **Kidnapped Robot Problem**

The approach described so far is able to

- track the pose of a mobile robot and to
- globally localize the robot.

 How can we deal with localization errors (i.e., the kidnapped robot problem)?

Idea: Introduce uniform samples at every resampling step

This adds new hypotheses and reduces the



### **Summary**

- There are mainly 4 different types of sampling methods: Transformation method, rejections sampling, importance sampling and MCMC
- Transformation only rarely applicable
- Rejection sampling is often very inefficient
- Importance sampling is used in the particle filter which can be used for robot localization
- An efficient implementation of the resampling step is the low variance sampling

