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Markov Chain Monte Carlo

• In high-dimensional spaces, rejection sampling 
and importance sampling are very inefficient 

• An alternative is Markov Chain Monte Carlo 
(MCMC) 

• It keeps a record of the current state and the 
proposal depends on that state 

• Most common algorithms are the Metropolis-
Hastings algorithm and Gibbs Sampling
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Markov Chains Revisited

A Markov Chain is a distribution over discrete-
state random variables                 so that 

!

The graphical model of a Markov chain is this:  

  

!

We will denote                  as a row vector   

A Markov chain can also be visualized as a state 
transition diagram.
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The State Transition Diagram
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Some Notions

• The Markov chain is said to be homogeneous if 
the transitions probabilities are all the same at 
every time step t (here we only consider 
homogeneous Markov chains) 

• The transition matrix is row-stochastic, i.e. all 
entries are between 0 and 1 and all rows sum 
up to 1 

• Observation: the probabilities of reaching the 
states can be computer using a vector-matrix 
multiplication
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The Stationary Distribution

The probability to reach state k is 

Or, in matrix notation: 

We say that      is stationary if  

!

Questions: 

•How can we know that a stationary distributions 
exists? 

•And if it exists, how do we know that it is 
unique?
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The Stationary Distribution (Existence)

To find a stationary distribution we need to  
solve the eigenvector problem               

The stationary distribution is then            where   
is the eigenvector for which the eigenvalue is 1. 

This eigenvector needs to be normalized so that 
it is a valid distribution.  

Theorem (Perron-Frobenius): Every row-
stochastic matrix has such an eigen vector, but 
this vector may not be unique.
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Stationary Distribution (Uniqueness)

• A Markov chain can have many stationary 
distributions 

• Sufficient for a unique stationary distribution: 
we can reach every state from any other state in 
finite steps at non-zero probability  
(i.e. the chain is ergodic) 

• This is equivalent to the property that the 
transition matrix is irreducible:
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Main Idea of MCMC

• So far, we specified the transition probabilities 
and analyses the resulting distribution 

• This was used, e.g. in HMMs 

Now:  

• We want to sample from an arbitrary distribution  

• To do that, we design the transition probabilities 
so that the resulting stationary distribution is our 
desired (target) distribution!
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Detailed Balance
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Definition: A transition distribution    satisfies the 
property of detailed balance if 

The chain is then said to be reversible.
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Making a Distribution Stationary

Theorem: If a Markov chain with transition matrix 

A is irreducible and satisfies detailed balance wrt. 
the distribution   , then    is a stationary 
distribution of the chain. 

Proof:  

!

it follows              . 

!

This is a sufficient, but not necessary condition.
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Sampling with a Markov Chain 

The idea of MCMC is to sample state transitions 
based on a proposal distribution q. 

The most widely used algorithm is the 
Metropolis-Hastings (MH) algorithm. 

In MH, the decision whether to stay in a given 
state is based on a given probability. 

If the proposal distribution is            , then we 
stay in state     with probability   
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The Metropolis-Hastings Algorithm

• Initialize 

• for 

•define 

•sample 

•compute acceptance probability 

!

!

•compute  

•sample 

•set new sample to
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Why Does This Work?

We have to prove that the transition probability of 
the MH algorithm satisfies detailed balance wrt 
the target distribution. 

Theorem: If                   is the transition 
probability of the MH algorithm, then   

!

!

Proof:
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pMH(x0 | x)
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Why Does This Work?

We have to prove that the transition probability of 
the MH algorithm satisfies detailed balance wrt 
the target distribution. 

Theorem: If                   is the transition 
probability of the MH algorithm, then   

!

!

!

Note: All formulations are valid for discrete 
and for continuous variables!
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pMH(x0 | x)
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Choosing the Proposal

• A proposal distribution is valid if it gives a non-
zero probability of moving to the states that 
have a non-zero probability in the target. 

• A good proposal is the Gaussian, because it 
has a non-zero probability for all states. 

• However: the variance of the Gaussian is 
important! 

•with low variance, the sampler does not explore 
sufficiently, e.g. it is fixed to a particular mode 

•with too high variance, the proposal is rejected too 
often, the samples are a bad approximation

16



Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Example

Target is a mixture of 2 
1D Gaussians. 

Proposal is a Gaussian 
with different variances.
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Gibbs Sampling

• Initialize 

• For  

•Sample 

•Sample 

•... 

•Sample  

!

Idea: sample from the full conditional 

This can be obtained, e.g. from the Markov 
blanket in graphical models.
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{zi : i = 1, . . . ,M}
⌧ = 1, . . . , T

z(⌧+1)
1 ⇠ p(z1 | z(⌧)2 , . . . , z(⌧)M )

z(⌧+1)
2 ⇠ p(z2 | z(⌧+1)

1 , . . . , z(⌧)M )
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Gibbs Sampling: Example

• Use an MRF on a binary image with edge 
potentials                                   (“Ising model”) 
and node potentials

19

 (xt) = N (yt | xt,�
2)

 (xs, xt) = exp(Jxsxt)

xt
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Gibbs Sampling: Example

• Use an MRF on a binary image with edge 
potentials                                   (“Ising model”) 
and node potentials 

• Sample each pixel in turn 
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 (xt) = N (yt | xt,�
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Gibbs Sampling for GMMs

• Again, we start with the full joint distribution:  
 
 
(semi-conjugate prior) 

• It can be shown that the full conditionals are:
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p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡)
KY

k=1

p(µk)p(⌃k)

p(zi = k | xi,µ,⌃,⇡) / ⇡kN (xi | µk,⌃k)

p(⇡ | z) = Dir({↵k +
NX

i=1

zik}Kk=1)

p(µk | ⌃k, Z,X) = N (µk | mk, Vk) (linear-Gaussian)

p(⌃k | µk, Z,X) = IW(⌃k | Sk, ⌫k)
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Gibbs Sampling for GMMs

• First, we initialize all variables 

• Then we iterate over sampling from each 
conditional in turn 

• In the end, we look at      and  

22
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How Often Do We Have To Sample?

• Here: after 50 sample rounds the values don’t 
change any more 

• In general, the mixing time     is related to the 
eigen gap                  of the transition matrix:

23

� = �1 � �2

⌧✏

⌧✏  O(

1

�
log

n

✏
)



Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Gibbs Sampling is a Special Case of MH

• The proposal distribution in Gibbs sampling is 

!

• This leads to an acceptance rate of: 

!

!

!

• Although the acceptance is 100%, Gibbs 
sampling does not converge faster, as it only 
updates one variable at a time.
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q(x0 | x) = p(x0
i | x�i)I(x0

�i = x�i)
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p(x0)q(x | x0)

p(x)q(x0 | x) =
p(x0
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Summary

• Markov Chain Monte Carlo is a family of sampling 
algorithms that can sample from arbitrary 
distributions by moving in state space 

• Most used methods are the Metropolis-Hastings 
(MH) and  the Gibbs sampling method 

• MH uses a proposal distribution and accepts a 
proposed state randomly 

• Gibbs sampling does not use a proposal 
distribution, but samples from the full conditionals
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