4a. Inference in Graphical Models

Inference on a Chain (Rep.)

- The first values of μ_{α} and μ_{β} are:

$$
\mu_{\alpha}\left(x_{2}\right)=\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right) \quad \mu_{\beta}\left(x_{N-1}\right)=\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

- The partition function can be computed at any node:

$$
Z=\sum_{x_{n}} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

- Overall, we have $O\left(N K^{2}\right)$ operations to compute the marginal $\quad p\left(x_{n}\right)$

More General Graphs

The message-passing algorithm can be extended to more general graphs:

Undirected
Tree

Directed
Tree
Polytree

It is then known as the sum-product algorithm.
A special case of this is belief propagation.

More General Graphs

The message-passing algorithm can be extended to more general graphs:

Undirected

More General Graphs

The message-passing algorithm can be extended to more general graphs:

Directed
A directed tree has only one node without parents and all other nodes have exactly one parent

Conversion from a directed to an undirected tree is no problem, because no links are inserted

The same is true for the conversion back to a directed tree

More General Graphs

The message-passing algorithm can be extended to more general graphs:

Polytree
Polytrees can contain nodes with several parents, therefore moralization can remove independence relations

Factor Graphs

- The Sum-product algorithm can be used to do inference on undirected and directed graphs.
- A representation that generalizes directed and undirected models is the factor graph.

$$
\begin{gathered}
p(\mathbf{x})=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \\
\text { Directed graph }
\end{gathered}
$$

$f\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$
Factor graph

Factor Graphs

- The Sum-product algorithm can be used to do inference on undirected and directed graphs.
- A representation that generalizes directed and undirected models is the factor graph.

Undirected graph

Factor graph

Factor Graphs

Factor graphs

- can contain multiple factors for the same nodes
- are more general than undirected graphs
- are bipartite, i.e. they consist of two kinds of nodes and all edges connect nodes of different kind

Factor Graphs

- Directed trees convert to tree-structured factor graphs
- The same holds for undirected trees
- Also: directed polytrees convert to tree-structured factor graphs
- And: Local cycles in a directed graph can be removed by converting to a
 factor graph

The Sum-Product Algorithm

Assumptions:

- all variables are discrete
- the factor graph has a tree structure

The factor graph represents the joint distribution as a product of factor nodes:

$$
p(\mathbf{x})=\prod_{s} f_{s}\left(\mathbf{x}_{s}\right)
$$

The marginal distribution at a given node x is

$$
p(x)=\sum_{\mathbf{x} \backslash x} p(\mathbf{x})
$$

The Sum-Product Algorithm

For a given node x the joint can be written as

$$
p(\mathbf{x})=\prod_{s \in \operatorname{ne}(x)} F_{s}\left(x, X_{s}\right)
$$

Thus, we have $p(x)=\sum_{\mathbf{x} \backslash x} \prod_{s \in \operatorname{ne}(x)} F_{s}\left(x, X_{s}\right)$ factors associated with f_{s}
Key insight: Sum and product can be exchanged!

$$
p(x)=\prod_{s \in \operatorname{ne}(x)} \sum_{X_{s}} F_{s}\left(x, X_{s}\right)=\prod_{s \in \operatorname{ne}(x)} \mu
$$

"Messages from factors to node x "

The Sum-Product Algorithm

The factors in the messages can be factorized further:

$$
F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, \ldots, x_{M}\right) G_{1}\left(x_{1}, X_{s_{1}}\right) \ldots G_{M}\left(x_{M}, X_{s_{M}}\right)
$$

$G_{m}\left(x_{m}, X_{s m}\right)$
The messages can then be computed as

$$
\begin{aligned}
& \mu_{f_{s} \rightarrow x}(x)=\sum_{x_{1}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x X_{s_{m}}} \sum_{m}\left(x_{m}, X_{s_{m}}\right) \\
&=\sum_{x_{1}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \\
& \text { "Messages from } \\
& \text { nodes to factors" }
\end{aligned}
$$

The Sum-Product Algorithm

The factors G of the neighboring nodes can again be factorized further:

$$
G_{M}\left(x_{m}, X_{s_{m}}\right)=\prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} F_{l}\left(x_{m}, X_{m_{l}}\right)
$$

This results in the exact same situation as above! We can now recursively apply the derived rules:

$$
\begin{aligned}
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) & =\prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \sum_{X_{m_{l}}} F_{l}\left(x_{m}, X_{m_{l}}\right) \\
= & \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
\end{aligned}
$$

The Sum-Product Algorithm

Summary marginalization:
1.Consider the node x as a root note
2.Initialize the recursion at the leaf nodes as:

$$
\mu_{f \rightarrow x}(x)=1 \quad(\text { var }) \text { or } \mu_{x \rightarrow f}(x)=f(x) \quad \text { (fac) }
$$

3.Propagate the messages from the leaves to the root x
4.Propagate the messages back from the root to the leaves
5.We can get the marginals at every node in the graph by multiplying all incoming messages

The Max-Sum Algorithm

Sum-product is used to find the marginal distributions at every node, but:
How can we find the setting of all variables that maximizes the joint probability? And what is the value of that maximal probability?
Idea: use sum-product to find all marginals and then report the value for each node x that maximizes the marginal $p(x)$
However: this does not give the overall maximum of the joint probability

The Max-Sum Algorithm

Observation: the max-operator is distributive, just like the multiplication used in sum-product:

$$
\max (a b, a c)=a \max (b, c) \quad \text { if } \quad a \geq 0
$$

Idea: use max instead of sum as above and exchange it with the product
Chain example:

$$
\begin{aligned}
\max _{\mathbf{x}} p(\mathbf{x}) & =\frac{1}{Z} \max _{x_{1}} \ldots \max \left[\psi_{1,2}\left(x_{1}, x_{2}\right) \ldots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \\
& =\frac{1}{Z} \max _{x_{1}}\left[\psi_{1,2}\left(x_{1}, x_{2}\right)\left[\ldots \max \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right]\right]
\end{aligned}
$$

Message passing can be used as above!

The Max-Sum Algorithm

To find the maximum value of $p(\mathbf{x})$, we start again at the leaves and propagate to the root.
Two problems:

- no summation, but many multiplications; this leads to numerical instability (very small values)
- when propagating back, multiple configurations of \mathbf{x} can maximize $p(\mathbf{x})$, leading to wrong assignments of the overall maximum
Solution to the first:
Transform everything into log-space and use sums

The Max-Sum Algorithm

Solution to the second problem:
Keep track of the arg max in the forward step, i.e. store at each node which value was responsible for the maximum:
$\phi\left(x_{n}\right)=\arg \max _{x_{n-1}}\left[\ln f_{n-1, n}\left(x_{n-1}, x_{n}\right)+\mu_{x_{n-1} \rightarrow f_{n-1, n}}\left(x_{n}\right)\right]$
Then, in the back-tracking step we can recover the arg max by recursive substitution of:

$$
x_{n-1}^{\max }=\phi\left(x_{n}^{\max }\right)
$$

Other Inference Algorithms

Junction Tree Algorithm:

- Provides exact inference on general graphs.
- Works by turning the initial graph into a junction tree and then running a sum-product-like algorithm
- A junction tree is obtained from an undirected model by triangulation and mapping cliques to nodes and connections of cliques to edges
- It is the maximal spanning tree of cliques

Problem: Intractable on graphs with large cliques.
Cost grows exponentially with the number of variables in the largest clique ("tree width").

Other Inference Algorithms

Loopy Belief Propagation:

- Performs Sum-Product on general graphs, particularly when they have loops
- Propagation has to be done several times, until a convergence criterion is met
- No guarantee of convergence and no global optimum
- Messages have to be scheduled
- Initially, unit messages passed across all edges
- Approximate, but tractable for large graphs

Conditional Random Fields

- Another kind of undirected graphical model is known as Conditional Random Field (CRF).
- CRFs are used for classification where labels are represented as discrete random variables y and features as continuous random variables \mathbf{x}
- A CRF represents the conditional probability

$$
p(\mathbf{y} \mid \mathbf{x}, \mathbf{w})=\frac{\prod_{C} \phi_{C}\left(\mathbf{x}_{C}, \mathbf{y}_{C} ; \mathbf{w}\right)}{\sum_{\mathbf{y}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{x}_{C}, \mathbf{y}_{C}^{\prime} ; \mathbf{w}\right)}
$$

where \mathbf{w} are parameters learned from training data.

- CRFs are discriminative and MRFs are generative

Conditional Random Fields

Derivation of the formula for CRFs:
$p(\mathbf{y} \mid \mathbf{x}, \mathbf{w})=\frac{p(\mathbf{y}, \mathbf{x} \mid \mathbf{w})}{p(\mathbf{x} \mid \mathbf{w})}=\frac{p(\mathbf{y}, \mathbf{x} \mid \mathbf{w})}{\sum_{y^{\prime}} p\left(\mathbf{y}^{\prime}, \mathbf{x} \mid \mathbf{w}\right)}=\frac{\prod_{C} \phi_{C}\left(\mathbf{x}_{C}, \mathbf{y}_{C} ; \mathbf{w}\right)}{Z \sum_{\mathbf{y}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{x}_{C}, \mathbf{y}_{C}^{\prime} ; \mathbf{w}\right)}$
In the training phase, we compute parameters \mathbf{w} that maximize the posterior:

$$
\mathbf{w}^{*}=\underset{\mathbf{w}}{\arg \max _{\mathrm{w}} p\left(\mathbf{w} \mid \mathbf{x}^{*}, \mathbf{y}^{*}\right) \propto p\left(\mathbf{y}^{*} \mid \mathbf{x}^{*}, \mathbf{w}\right) p(\mathbf{w}), ~\left(\mathbf{w}^{2}\right)}
$$

where $\left(x^{*}, y^{*}\right)$ is the training data and $p(w)$ is a Gaussian prior. In the inference phase we maximize

$$
\arg \max _{\mathbf{y}} p\left(\mathbf{y} \mid \mathbf{x}, \mathbf{w}^{*}\right)
$$

Conditional Random Fields

> Typical example: observed variables
> $x_{i, j}$ are intensity values of pixels in an image and hidden variables $y_{i, j}$ are object labels

Note: the definition of $x_{i, j}$ and $y_{i, j}$ is different from the one in C.M. Bishop (pg.389)!

CRF Training

We minimize the negative log-posterior:

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w}}\left\{-\ln p\left(\mathbf{w} \mid \mathbf{x}^{*}, \mathbf{y}^{*}\right)\right\}=\arg \min _{\mathbf{w}}\left\{-\ln p\left(\mathbf{y}^{*} \mid \mathbf{x}^{*}, \mathbf{w}\right)-\ln p(\mathbf{w})\right\}
$$

Computing the likelihood is intractable, as we have to compute the partition function for each \mathbf{w}. We can approximate the likelihood using pseudo-likelihood:
where

$$
p\left(\mathbf{y}^{*} \mid \mathbf{x}^{*}, \mathbf{w}\right) \approx \prod p\left(y_{i}^{*} \mid \mathcal{M}\left(y_{i}^{*}\right), \mathbf{x}^{*}, \mathbf{w}\right)
$$

Pseudo Likelihood

Pseudo Likelihood

Pseudo-likelihood is computed only on the Markov blanket of y_{i} and its corresp. feature nodes.

Potential Functions

- The only requirement for the potential functions is that they are positive. We achieve that with:

$$
\phi_{C}\left(\mathbf{x}_{C}, \mathbf{y}_{C}, \mathbf{w}\right):=\exp \left(\mathbf{w}^{T} f\left(\mathbf{x}_{C}, \mathbf{y}_{C}\right)\right)
$$

where f is a compatibility function that is large if the labels \mathbf{y}_{C} fit well to the features \mathbf{x}_{C}.

- This is called the log-linear model.
- The function f can be, e.g. a local classifier

CRF Training and Inference

Training:

- Using pseudo-likelihood, training is efficient. We have to minimize:

- This is a convex function that can be minimized using gradient descent
Inference:
- Only approximatively, e.g. using loopy belief propagation

Summary

- Undirected Graphical Models represent conditional independence more intuitively using graph separation
- Their factorization is done based on potential functions The normalizer is called the partition function, which in general is intractable to compute
- Inference in graphical models can be done efficiently using the sum-product algorithm (message passing).
- Another inference algorithm is loopy belief propagation, which is approximate, but tractable
- Conditional Random Fields are a special kind of MRFs and can be used for classification

5. Hidden Markov Models

Graphical Representation (Rep.)

We can describe the overall process using a Dynamic Bayes Network:

- This incorporates the following Markov assumptions:

$$
\begin{aligned}
p\left(z_{t} \mid x_{0: t}, u_{1: t}, z_{1: t}\right) & =p\left(z_{t} \mid x_{t}\right) \text { (measurement) } \\
p\left(x_{t} \mid x_{0: t-1}, u_{1: t}, z_{1: t}\right) & =p\left(x_{t} \mid x_{t-1}, u_{t}\right) \quad \text { (state) }
\end{aligned}
$$

Graphical Representation

We can describe the overall process using a Markov chain of latent variables:

- This incorporates the following Markov assumptions:

$$
\begin{aligned}
& p\left(z_{t} \mid x_{0: t}, \quad z_{1: t}\right)=p\left(z_{t} \mid x_{t}\right) \text { (measurement) } \\
& p\left(x_{t} \mid x_{0: t-1}, \quad z_{1: t}\right)=p\left(x_{t} \mid x_{t-1} \quad\right. \text { (state) }
\end{aligned}
$$

Example

"Occasionally dishonest casino":

- observations: faces of a die $z_{t} \in\{1,2, \ldots, 6\}$
- hidden states: two different dice, one fair, one loaded

[^0]Die: LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFLLLLLLLL

Formulation as HMM

1.Discrete random variables

- Observation variables: $\left\{z_{n}\right\}, \mathrm{n}=1 . . \mathrm{N}$
- State variables (unobservable): $\left\{x_{n}\right\}, \mathrm{n}=1$.. N
- Number of states K : $x_{n} \in\{1 . . K\}$
2.Transition model $p\left(x_{i} \mid x_{i-1}\right)$
- Markov assumption (x_{i} only depends on x_{i}
- Represented as a $K \times K$ transition matrix A
- Initial probability: $\mathrm{p}\left(x_{0}\right)$ repr. as $\pi_{1}, \pi_{2}, \pi_{3}$
3.Observation model $\mathrm{p}\left(z_{i} \mid x_{i}\right)$ with parameters φ
- Observation only depends on the current state
- Example: output of a "local" place classifier

The Trellis Representation

Application Example (1)

- Given an observation sequence $z_{1}, z_{2}, z_{3} \ldots$
- Assume that the model parameters $\theta=(\mathrm{A}, \pi, \varphi)$ are known
- What is the probability that the given observation sequence is actually observed under this model, i.e. $p(Z \mid \theta)$?
- If we are given several different models, we can choose the one with highest probability
- Expressed as a supervised learning problem, this can be interpreted as the inference step (classification step)

Application Example (2)

- Given an observation sequence $z_{1}, z_{2}, z_{3} \ldots$
- Assume that the model parameters $\theta=(A, \pi, \varphi)$ are known
- What is the state sequence $x_{1}, x_{2}, x_{3} \ldots$ that explains best the given observation sequence?
- In the case of place recognition: which is the sequence of truly visited places that explains best the sequence of obtained place labels (classifications)?

Application Example (3)

- Given an observation sequence $z_{1}, z_{2}, z_{3} \ldots$
- What are the optimal model parameters
$\theta=(\mathrm{A}, \pi, \varphi) ?$
- This can be interpreted as the training step
- It is in general the most difficult problem

Summary: 3 Operations on HMMs

1. Compute data likelihood $p(Z \mid \theta)$ from a known model

- Can be computed with the forward-backward algorithm

2. Compute optimal state sequence with a known model

- Can be computed with the Viterbi-Algorithm

3. Learn model parameters for an observation sequence

- Can be computed using Expectation-Maximization (or Baum-Welch)

1. Computing the Data Likelihood

- Assume: given a state sequence $x_{1}, x_{2}, x_{3} \ldots$

Two possible operations:

- Filtering: computes $p\left(x_{t} \mid \mathbf{z}_{1: t}\right)$, i.e. state probability only based on previous observations
- Smoothing: computes $p\left(x_{t} \mid \mathbf{z}_{1: T}\right)$, state probability based on all observations (including those from the future)

The Forward Algorithm

- First, we compute the prediction from the last time step:

$$
p\left(x_{t}=j \mid \mathbf{z}_{1: t-1}\right)=\sum_{i} p\left(x_{t}=j \mid x_{t-1}=i\right) p\left(x_{t-1}=i \mid \mathbf{z}_{1: t-1}\right)
$$

- Then, we do the update using Bayes rule:

$$
\begin{aligned}
\alpha_{t}(j) & :=p\left(x_{t}=j \mid \mathbf{z}_{1: t}\right)=p\left(x_{t}=j \mid z_{t}, \mathbf{z}_{1: t-1}\right) \\
& =\frac{1}{Z_{t}} p\left(\mathbf{z}_{t} \mid x_{t}=j, \mathbf{z}_{y}: t-1\right) p\left(x_{t}=j \mid \mathbf{z}_{1: t-1}\right)
\end{aligned}
$$

- This is exactly the same as the Bayes filter from the first lecture!

The Forward-Backward Algorithm

- As before we set $\alpha_{t}(j):=p\left(x_{t}=j \mid \mathbf{z}_{1: t}\right)$
- We also define $\beta_{t}(j):=p\left(\mathbf{z}_{t+1: T} \mid x_{t}=j\right)$

The Forward-Backward Algorithm

- As before we set $\alpha_{t}(j):=p\left(x_{t}=j \mid \mathbf{z}_{1: t}\right)$
- We also define $\beta_{t}(j):=p\left(\mathbf{z}_{t+1: T} \mid x_{t}=j\right)$
- This can be recursively computed (backwards):

$$
\begin{aligned}
& \beta_{t-1}(i)=p\left(\mathbf{z}_{t: T} \mid x_{t-1}=i\right) \\
& =\sum_{j} p\left(x_{t}=j, z_{t}, \mathbf{z}_{t+1: T} \mid x_{t-1}=i\right) \\
= & \sum_{j} p\left(\mathbf{z}_{t+1: T} \mid x_{t}=j, x_{t} / 1=i, \not \partial t\right) p\left(x_{t}=j, z_{t} \mid x_{t-1}=i\right) \\
= & \sum_{j} p\left(\mathbf{z}_{t+1: T} \mid x_{t}=j\right) p\left(z_{t} \mid x_{t}=j, x_{t-} \leqslant i\right) p\left(x_{t}=j \mid x_{t-1}=i\right) \\
= & \sum_{j} \beta_{t}(j) p\left(z_{t} \mid x_{t}=j\right) p\left(x_{t}=j \mid x_{t-1}=i\right)
\end{aligned}
$$

The Forward-Backward Algorithm

- As before we set $\alpha_{t}(j):=p\left(x_{t}=j \mid \mathbf{z}_{1: t}\right)$
- We also define $\beta_{t}(j):=p\left(\mathbf{z}_{t+1: T} \mid x_{t}=j\right)$
- This can be recursively computed (backwards):

$$
\begin{aligned}
\beta_{t-1}(i) & =p\left(\mathbf{z}_{t: T} \mid x_{t-1}=i\right) \\
& =\sum_{j} \beta_{t}(j) p\left(z_{t} \mid x_{t}=j\right) p\left(x_{t}=j \mid x_{t-1}=i\right)
\end{aligned}
$$

- This is exactly the same as the message-passing algorithm (sum-product)!
- forward messages α_{t} (vector of length K)
- backward messages $\boldsymbol{\beta}_{t}$ (vector of length K)

2. Computing the Most Likely States

- Goal: find a state sequence $x_{1}, x_{2}, x_{3} \ldots$ that maximizes the probability $\mathrm{p}(\mathrm{X}, \mathrm{Z} \mid \theta)$
- Define $\delta_{t}(j):=\max _{x_{1}, \ldots, x_{t-1}} p\left(\mathbf{x}_{1: t-1}, x_{t}=j \mid \mathbf{z}_{1: t}\right)$

This is the probability of state j by taking the most probable path.

2. Computing the Most Likely States

- Goal: find a state sequence $x_{1}, x_{2}, x_{3} \ldots$ that maximizes the probability $\mathrm{p}(\mathrm{X}, \mathrm{Z} \mid \theta)$
- Define $\delta_{t}(j):=\max _{x_{1}, \ldots, x_{t-1}} p\left(\mathbf{x}_{1: t-1}, x_{t}=j \mid \mathbf{z}_{1: t}\right)$

This can be computed recursively:

$$
\delta_{t}(j):=\max _{i} \delta_{t-1}(i) p\left(x_{t} \mid x_{t-1}\right) p\left(z_{t} \mid x_{t}\right)
$$

we also have to compute the argmax:

$$
a_{t}(j):=\arg \max _{i} \delta_{t-1}(i) p\left(x_{t} \mid x_{t-1}\right) p\left(z_{t} \mid x_{t}\right)
$$

The Viterbi algorithm

- Initialize:
- $\delta\left(x_{0}\right)=\mathrm{p}\left(x_{0}\right) \mathrm{p}\left(z_{0} \mid x_{0}\right)$
- $\psi\left(x_{0}\right)=0$
- Compute recursively for $n=1 \ldots N$:
- $\delta\left(x_{n}\right)=p\left(z_{n} \mid x_{n}\right) \max _{x_{n-1}}\left[\delta\left(x_{n-1}\right) p\left(x_{n} \mid x_{n-1}\right)\right]$
- $\mathrm{a}\left(x_{n}\right)=\underset{x_{n-1}}{\operatorname{argmax}}\left[\delta\left(x_{n-1}\right) \mathrm{p}\left(x_{n} \mid x_{n-1}\right)\right]$
- On termination:
- $p(Z, X \mid \theta)=\max _{x_{N}} \delta\left(x_{N}\right)$
- $\mathrm{x}_{N}^{*}=\operatorname{argmax} \delta\left(x_{N}\right)$
- Backtracking:
- $x_{n}^{*}=\mathrm{a}\left(x_{n+1}\right)$

3. Learning the Model Parameters

- Given an observation sequence $z_{1}, z_{2}, z_{3} \ldots$
- Find optimal model parameters θ
- We need to maximize the likelihood $p(Z \mid \theta)$
- Can not be solved in closed form
- Iterative algorithm:

Expectation Maximization (EM) or for the case of HMMs: Baum-Welch algorithm

Expectation Maximisation

- Objective: Find the model parameters knowing the observations: π, A, ϕ
- Result:
- Train the HMM to recognize sequences of input
- Train the HMM to generate sequences of input
- Technique: Expectation Maximisation
-E: Find the best state sequence given the parameters
- M : Find the parameters using the state sequence
- Maximisation of the log-likelihood:

$$
\arg \max _{p i, A, \phi}-\log \left(P\left(\left\{Z_{i}\right\}^{\prime \prime} \pi, A \Phi\right)\right)
$$

The Baum-Welsh algorithm

- E-Step (assuming we know π, A, ϕ, i.e. ${ }^{\text {old }}$)
- Define the posterior probability of being in state i at step k:
- Define $\gamma\left(x_{n}\right)=p\left(x_{n} \mid Z\right)$

The Baum-Welsh algorithm

- E-Step (assuming we know π, A, ϕ, i.e. Old $^{\text {(}}$)
- Define the posterior probability of being in state i at step k:
- Define $\gamma\left(x_{n}\right)=p\left(x_{n} \mid Z\right)$
- It follows that $\gamma\left(x_{n}\right)=\alpha\left(x_{n}\right) \beta\left(x_{n}\right) / p(Z)$

The Baum-Welsh algorithm

- E-Step (assuming we know π, A, ϕ, i.e. $\left.\theta^{\text {old }}\right)$
- Define the posterior probability of being in state i at step k:
- Define $\gamma\left(x_{n}\right)=p\left(x_{n} \mid Z\right)$
- It follows that $\gamma\left(x_{n}\right)=\alpha\left(x_{n}\right) \beta\left(x_{n}\right) / p(Z)$
- Define $\xi\left(x_{n-1}, x_{n}\right)=\mathrm{p}\left(x_{n-1}, x_{n} \mid Z\right)$
- It follows that $\xi\left(x_{n-1}, x_{n}\right)=\alpha\left(x_{n-1}\right) \mathrm{p}\left(z_{n} \mid x_{n}\right) \mathrm{p}\left(x_{n} \mid x_{n-1}\right) \beta\left(x_{n}\right) / \mathrm{p}(Z)$
- We need to compute:
$Q(\theta, \theta$ old $)=\sum_{x} p(X \mid Z, \theta$ old $) \log p(Z, X \mid \theta)$

Expected complete data log-likelihood

The Baum-Welsh algorithm

- Maximizing Q also maximizes the likelihood: $p(Z \mid \theta) \geq p\left(Z \mid \theta^{\text {old }}\right)$
- M-Step:

$$
\pi_{k}=\frac{\sum_{\mathbf{x}} \gamma(\mathbf{x}) x_{1 k}}{\sum_{j=1} \sum_{\mathbf{x}} \gamma(\mathbf{x}) x_{1 j}}
$$

here, we need forward and backward step!

$$
A_{j k}=\frac{\sum_{t=2}^{T} \xi\left(x_{t-1, j}, x_{t k}\right)}{\sum_{l=1}^{K} \sum_{t=2}^{T} \xi\left(x_{t-1, j}, x_{t l}\right)}
$$

- With these new values, Q is recomputed
- This is done until the likelihood does not increase anymore (convergence)

The Baum-Welsh algorithm - summary

- Start with an initial estimate of $\theta=(\pi, A, \varphi)$ e.g. uniformly and k-means for φ
- Compute Q($\theta, \theta^{\text {old }}$) (E-Step)
- Maximize Q (M-step)
- Iterate E and M until convergence
- In each iteration one full application of the forward-backward algorithm is performed
- Result gives a local optimum
- For other local optima, the algorithm needs to be started again with new initialization

The Scaling problem

- Probability of sequences

$$
\prod_{i} p\left(x_{i} \mid \ldots\right) \ll 1
$$

- Probabilities are very small
- The product of the terms soon is very small
- Usually: converting to log-space works
- But: we have sums of products!
- Solution: Rescale/Normalise the probability during the computation, e.g.:

$$
\hat{\alpha}\left(x_{n}\right)=\alpha\left(x_{n}\right) / p\left(z_{1}, z_{2}, \ldots, z_{n}\right)
$$

Summary

- HMMs are a way to model sequential data
- They assume discrete states
- Three possible operations can be performed with HMMs:
- Data likelihood, given a model and an observation
- Most likely state sequence, given a model and an observation
- Optimal Model parameters, given an observation
- Appropriate scaling solves numerical problems
- HMMs are widely used, e.g. in speech recognition

[^0]: Rolls: 664153216162115234653214356634261655234232315142464156663246

