

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

4a. Inference in Graphical Models

• The first values of μ_{α} and μ_{β} are:

$$\mu_{\alpha}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2) \qquad \qquad \mu_{\beta}(x_{N-1}) = \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)$$

• The partition function can be computed at any node:

$$Z = \sum_{x_n} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

• Overall, we have $O(NK^2)$ operations to compute the marginal $p(x_n)$

The message-passing algorithm can be extended to more general graphs:

It is then known as the sum-product algorithm. A special case of this is belief propagation.

The message-passing algorithm can be extended to more general graphs:

An **undirected tree** is defined as a graph that has exactly one path between any two nodes

The message-passing algorithm can be extended to more general graphs:

A directed tree has only one node without parents and all other nodes have exactly one parent

Conversion from a directed to an undirected tree is no problem, because no links are inserted

The same is true for the conversion back to a directed tree

The message-passing algorithm can be extended to more general graphs:

Polytrees can contain nodes with several parents, therefore moralization can remove independence relations Polytree

- The Sum-product algorithm can be used to do inference on undirected and directed graphs.
- A representation that generalizes directed and undirected models is the factor graph.

 $f(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3 \mid x_1, x_2)$ Factor graph

- The Sum-product algorithm can be used to do inference on undirected and directed graphs.
- A representation that generalizes directed and undirected models is the factor graph.

Factor graphs

- can contain multiple factors for the same nodes
- are more general than undirected graphs
- are bipartite, i.e. they consist of two kinds of nodes and all edges connect nodes of different kind

- Directed trees convert to tree-structured factor graphs
- The same holds for undirected trees
- Also: directed polytrees convert to tree-structured factor graphs
- And: Local cycles in a directed graph can be removed by converting to a factor graph

Assumptions:

- all variables are discrete
- the factor graph has a tree structure

The factor graph represents the joint distribution as a product of factor nodes:

$$p(\mathbf{x}) = \prod_{s} f_s(\mathbf{x}_s)$$

The marginal distribution at a given node x is

$$p(x) = \sum_{\mathbf{x} \setminus x} p(\mathbf{x})$$

 $F_s(x, X_s) = f_s(x, x_1, \dots, x_M) G_1(x_1, X_{s_1}) \dots G_M(x_M, X_{s_M})$

The messages can then be computed as

$$\mu_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \operatorname{ne}(f_s) \setminus x} \sum_{X_{s_m}} G_m(x_m, X_{s_m})$$
$$= \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \operatorname{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$
"Messages from nodes to factors"

 x_M

 x_m

 $G_m(x_m, X_{sm})$

 $\mu_{x_M \to f_s}(x_M)$

 $\mu_{f_s \to x}(x)$

Js

The factors *G* of the neighboring nodes can again be factorized further:

$$G_M(x_m, X_{s_m}) = \prod_{l \in \operatorname{ne}(x_m) \setminus f_s} F_l(x_m, X_{m_l})$$

This results in the exact same situation as above! We can now recursively apply the derived rules:

$$\mu_{x_m \to f_s}(x_m) = \prod_{l \in \operatorname{ne}(x_m) \setminus f_s} \sum_{X_{m_l}} F_l(x_m, X_{m_l})$$
$$= \prod_{l \in \operatorname{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)$$

Summary marginalization:

- 1.Consider the node *x* as a root note
- 2.Initialize the recursion at the leaf nodes as:

 $\mu_{f \to x}(x) = 1$ (var) or $\mu_{x \to f}(x) = f(x)$ (fac)

- 3.Propagate the messages from the leaves to the root *x*
- 4.Propagate the messages back from the root to the leaves
- 5.We can get the marginals at every node in the graph by multiplying all incoming messages

Sum-product is used to find the marginal distributions at every node, but:

How can we find the setting of all variables that **maximizes** the joint probability? And what is the value of that maximal probability?

Idea: use sum-product to find all marginals and then report the value for each node *x* that maximizes the marginal p(x)

However: this does not give the **overall** maximum of the joint probability

Observation: the max-operator is distributive, just like the multiplication used in sum-product:

 $\max(ab, ac) = a \max(b, c)$ if $a \ge 0$

Idea: use max instead of sum as above and exchange it with the product

Chain example: $\max_{\mathbf{x}} p(\mathbf{x}) = \frac{1}{Z} \max_{x_1} \dots \max[\psi_{1,2}(x_1, x_2) \dots \psi_{N-1,N}(x_{N-1}, x_N)]$ $= \frac{1}{Z} \max_{x_1} [\psi_{1,2}(x_1, x_2) [\dots \max \psi_{N-1,N}(x_{N-1}, x_N)]]$

Message passing can be used as above!

To find the maximum value of $p(\mathbf{x})$, we start again at the leaves and propagate to the root.

Two problems:

- no summation, but many multiplications; this leads to numerical instability (very small values)
- when propagating back, multiple configurations of x can maximize $p(\mathbf{x})$, leading to wrong assignments of the overall maximum

Solution to the first:

Transform everything into log-space and use sums

Solution to the second problem:

Keep track of the arg max in the forward step, i.e. store at each node which value was responsible for the maximum:

$$\phi(x_n) = \arg\max_{x_{n-1}} \left[\ln f_{n-1,n}(x_{n-1}, x_n) + \mu_{x_{n-1} \to f_{n-1,n}}(x_n) \right]$$

Then, in the back-tracking step we can recover the arg max by recursive substitution of:

$$x_{n-1}^{\max} = \phi(x_n^{\max})$$

Other Inference Algorithms

Junction Tree Algorithm:

- Provides exact inference on general graphs.
- Works by turning the initial graph into a junction
 tree and then running a sum-product-like algorithm
- A junction tree is obtained from an undirected model by triangulation and mapping cliques to nodes and connections of cliques to edges
- It is the maximal spanning tree of cliques

Problem: Intractable on graphs with large cliques.

Cost grows exponentially with the number of variables in the largest clique ("tree width").

Other Inference Algorithms

Loopy Belief Propagation:

- Performs Sum-Product on general graphs, particularly when they have loops
- Propagation has to be done several times, until a convergence criterion is met
- No guarantee of convergence and no global optimum
- Messages have to be scheduled
- Initially, unit messages passed across all edges
- Approximate, but tractable for large graphs

Conditional Random Fields

- Another kind of undirected graphical model is known as Conditional Random Field (CRF).
- CRFs are used for classification where labels are represented as discrete random variables y and features as continuous random variables x
- A CRF represents the conditional probability

$$p(\mathbf{y} \mid \mathbf{x}, \mathbf{w}) = \frac{\prod_{C} \phi_{C}(\mathbf{x}_{C}, \mathbf{y}_{C}; \mathbf{w})}{\sum_{\mathbf{y}'} \prod_{C} \phi_{C}(\mathbf{x}_{C}, \mathbf{y}'_{C}; \mathbf{w})}$$

where w are parameters learned from training data.

CRFs are discriminative and MRFs are generative

Conditional Random Fields

Derivation of the formula for CRFs:

$$p(\mathbf{y} \mid \mathbf{x}, \mathbf{w}) = \frac{p(\mathbf{y}, \mathbf{x} \mid \mathbf{w})}{p(\mathbf{x} \mid \mathbf{w})} = \frac{p(\mathbf{y}, \mathbf{x} \mid \mathbf{w})}{\sum_{y'} p(\mathbf{y}', \mathbf{x} \mid \mathbf{w})} = \frac{\prod_C \phi_C(\mathbf{x}_C, \mathbf{y}_C; \mathbf{w}) \quad Z}{\sum_{y'} \prod_C \phi_C(\mathbf{x}_C, \mathbf{y}'_C; \mathbf{w})}$$

In the training phase, we compute parameters w that maximize the posterior:

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} p(\mathbf{w} \mid \mathbf{x}^*, \mathbf{y}^*) \propto p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{w}) p(\mathbf{w})$$

where (x^*, y^*) is the training data and p(w) is a Gaussian prior. In the inference phase we maximize

$$\arg\max_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}, \mathbf{w}^*)$$

Conditional Random Fields

Note: the definition of $x_{i,j}$ and $y_{i,j}$ is different from the one in C.M. Bishop (pg.389)!

CRF Training

We minimize the negative log-posterior:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \{-\ln p(\mathbf{w} \mid \mathbf{x}^*, \mathbf{y}^*)\} = \arg\min_{\mathbf{w}} \{-\ln p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{w}) - \ln p(\mathbf{w})\}$$

Computing the likelihood is intractable, as we have to compute the partition function for each w. We can approximate the likelihood using **pseudo-likelihood**:

where

$$p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{w}) \approx \prod_i p(y_i^* \mid \mathcal{M}(y_i^*), \mathbf{x}^*, \mathbf{w})$$

$$(\mathbf{y}^*_i \mid \mathbf{M}(y_i^*), \mathbf{x}^*, \mathbf{w}) = \frac{\prod_{C_i} \phi_{C_i}(\mathbf{x}^*_{C_i}, y_i^*, \mathbf{y}^*_{C_i}; \mathbf{w}))}{\sum_{y_i'} \prod_{C_i} \phi_{C}(\mathbf{x}^*_{C_i}, y_i', \mathbf{y}^*_{C_i}; \mathbf{w})}$$

Pseudo Likelihood

Pseudo Likelihood

 $x_{i,j}$

 $y_{i,j}$

Potential Functions

 The only requirement for the potential functions is that they are positive. We achieve that with:

 $\phi_C(\mathbf{x}_C, \mathbf{y}_C, \mathbf{w}) := \exp(\mathbf{w}^T f(\mathbf{x}_C, \mathbf{y}_C))$

Where f is a compatibility function that is large if the labels y_C fit well to the features x_C .

- This is called the **log-linear model**.
- The function *f* can be, e.g. a local classifier

CRF Training and Inference

Training:

 Using pseudo-likelihood, training is efficient. We have to minimize:

$$L(\mathbf{w}) = -lpl(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{w}) + \frac{1}{2\sigma^2} \mathbf{w}^T \mathbf{w}$$

Log-pseudo-likelihood Gaussian prior

This is a convex function that can be minimized using gradient descent

Inference:

 Only approximatively, e.g. using loopy belief propagation

Summary

- Undirected Graphical Models represent conditional independence more intuitively using graph separation
- Their factorization is done based on potential functions The normalizer is called the partition function, which in general is intractable to compute
- Inference in graphical models can be done efficiently using the sum-product algorithm (message passing).
- Another inference algorithm is loopy belief propagation, which is approximate, but tractable
- Conditional Random Fields are a special kind of MRFs and can be used for classification

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

ПП

5. Hidden Markov Models

Graphical Representation (Rep.)

We can describe the overall process using a *Dynamic Bayes Network*:

• This incorporates the following Markov assumptions:

$$p(z_t \mid x_{0:t}, u_{1:t}, z_{1:t}) = p(z_t \mid x_t) \text{ (measurement)}$$

$$p(x_t \mid x_{0:t-1}, u_{1:t}, z_{1:t}) = p(x_t \mid x_{t-1}, u_t) \text{ (state)}$$

Graphical Representation

We can describe the overall process using a *Markov* chain of latent variables:

• This incorporates the following Markov assumptions:

Computer Vision

$$p(z_t \mid x_{0:t}, \quad z_{1:t}) = p(z_t \mid x_t) \text{ (measurement)}$$

$$p(x_t \mid x_{0:t-1}, \quad z_{1:t}) = p(x_t \mid x_{t-1}) \text{ (state)}$$
Machine Learning for

Computer Vision Group

Example

"Occasionally dishonest casino":

- observations: faces of a die $z_t \in \{1, 2, \dots, 6\}$
- hidden states: two different dice, one fair, one loaded

Formulation as HMM

- 1.Discrete random variables
 - Observation variables: $\{z_n\}, n = 1..N$
 - State variables (unobservable): $\{x_n\}, n = 1..N$
 - Number of states *K*: $x_n \in \{1..K\}$
- 2. Transition model $p(x_i | x_{i-1})$
 - Markov assumption (x_i only depends on x_i)
 - Represented as a *K*×*K* transition matrix *A*
 - Initial probability: $p(x_0)$ repr. as π_1, π_2, π_3

3. Observation model $p(z_i|x_i)$ with parameters φ

- Observation only depends on the current state
- Example: output of a "local" place classifier

Model Parameters

θ

The Trellis Representation

Application Example (1)

- Given an observation sequence $z_1, z_2, z_3...$
- Assume that the model parameters $\theta = (A, \pi, \phi)$ are known
- What is the probability that the given observation sequence is actually observed under this model,
 i.e. *p*(*Z*| *θ*)?
- If we are given several different models, we can choose the one with highest probability
- Expressed as a supervised learning problem, this can be interpreted as the inference step (classification step)

Application Example (2)

- Given an observation sequence $z_1, z_2, z_3...$
- Assume that the model parameters $\theta = (A, \pi, \varphi)$ are known
- What is the state sequence $x_1, x_2, x_3...$ that explains best the given observation sequence?
- In the case of place recognition: which is the sequence of truly visited places that explains best the sequence of obtained place labels (classifications)?

Application Example (3)

- Given an observation sequence $z_1, z_2, z_3...$
- What are the optimal model parameters $\theta = (A, \pi, \phi)$?
- This can be interpreted as the training step
- It is in general the most difficult problem

Summary: 3 Operations on HMMs

- 1. Compute data likelihood $p(Z|\theta)$ from a known model
 - Can be computed with the forward-backward algorithm
- 2. Compute optimal state sequence with a known model
 - Can be computed with the Viterbi-Algorithm
- 3. Learn model parameters for an observation sequence
 - Can be computed using Expectation-Maximization (or Baum-Welch)

1. Computing the Data Likelihood

- Assume: given a state sequence $x_1, x_2, x_3...$ Two possible operations:
- Filtering: computes $p(x_t | \mathbf{z}_{1:t})$, i.e. state probability only based on previous observations
- Smoothing: computes $p(x_t | \mathbf{z}_{1:T})$, state probability based on all observations (including those from the future)

The Forward Algorithm

 First, we compute the prediction from the last time step:

$$p(x_t = j \mid \mathbf{z}_{1:t-1}) = \sum_i p(x_t = j \mid x_{t-1} = i)p(x_{t-1} = i \mid \mathbf{z}_{1:t-1})$$

- Then, we do the update using Bayes rule: $\alpha_t(j) := p(x_t = j \mid \mathbf{z}_{1:t}) = p(x_t = j \mid z_t, \mathbf{z}_{1:t-1})$ $= \frac{1}{Z_t} p(\mathbf{z}_t \mid x_t = j, \mathbf{z}_{1:t-1}) p(x_t = j \mid \mathbf{z}_{1:t-1})$
- This is exactly the same as the Bayes filter from the first lecture!

The Forward-Backward Algorithm

- As before we set $\alpha_t(j) := p(x_t = j | \mathbf{z}_{1:t})$
- We also define $\beta_t(j) := p(\mathbf{z}_{t+1:T} \mid x_t = j)$

The Forward-Backward Algorithm

- As before we set $\alpha_t(j) := p(x_t = j \mid \mathbf{z}_{1:t})$
- We also define $\beta_t(j) := p(\mathbf{z}_{t+1:T} \mid x_t = j)$
- This can be recursively computed (backwards): $\beta_{t-1}(i) = p(\mathbf{z}_{t:T} \mid x_{t-1} = i)$

$$= \sum_{j} p(x_{t} = j, z_{t}, \mathbf{z}_{t+1:T} \mid x_{t-1} = i)$$

$$= \sum_{j} p(\mathbf{z}_{t+1:T} \mid x_{t} = j, x_{t-1} = i, \mathbf{z}_{t}) p(x_{t} = j, z_{t} \mid x_{t-1} = i)$$

$$= \sum_{j} p(\mathbf{z}_{t+1:T} \mid x_{t} = j) p(z_{t} \mid x_{t} = j, x_{t-1} = i) p(x_{t} = j \mid x_{t-1} = i)$$

$$= \sum_{j} \beta_{t}(j) p(z_{t} \mid x_{t} = j) p(x_{t} = j \mid x_{t-1} = i)$$

The Forward-Backward Algorithm

- As before we set $\alpha_t(j) := p(x_t = j \mid \mathbf{z}_{1:t})$
- We also define $\beta_t(j) := p(\mathbf{z}_{t+1:T} \mid x_t = j)$
- This can be recursively computed (backwards): $\beta_{t-1}(i) = p(\mathbf{z}_{t:T} \mid x_{t-1} = i)$

$$= \sum_{j} \beta_{t}(j) p(z_{t} \mid x_{t} = j) p(x_{t} = j \mid x_{t-1} = i)$$

- This is exactly the same as the message-passing algorithm (sum-product)!
 - forward messages α_t (vector of length K)
 - backward messages β_t (vector of length K)

2. Computing the Most Likely States

• Goal: find a state sequence $x_1, x_2, x_3...$ that maximizes the probability $p(X,Z|\theta)$

• **Define**
$$\delta_t(j) := \max_{x_1, \dots, x_{t-1}} p(\mathbf{x}_{1:t-1}, x_t = j \mid \mathbf{z}_{1:t})$$

This is the probability of state j by taking the most probable path.

2. Computing the Most Likely States

• Goal: find a state sequence x_1, x_2, x_3 ... that maximizes the probability $p(X,Z|\theta)$

• Define
$$\delta_t(j) := \max_{x_1, \dots, x_{t-1}} p(\mathbf{x}_{1:t-1}, x_t = j \mid \mathbf{z}_{1:t})$$

This can be computed recursively:

$$\delta_t(j) := \max_i \delta_{t-1}(i) p(x_t \mid x_{t-1}) p(z_t \mid x_t)$$

we also have to compute the argmax:

$$a_t(j) := \arg\max_i \delta_{t-1}(i) p(x_t \mid x_{t-1}) p(z_t \mid x_t)$$

The Viterbi algorithm

- Initialize:
 - $\delta(x_0) = p(x_0) p(z_0 | x_0)$
 - $\psi(x_0) = 0$
- Compute recursively for *n*=1...*N*:
 - $\delta(x_n) = p(z_n | x_n) \max_{x_{n-1}} [\delta(x_{n-1}) p(x_n | x_{n-1})]$
 - $a(x_n) = \arg_{x_{n-1}} \left[\delta(x_{n-1}) p(x_n | x_{n-1}) \right]$
- On termination:
 - $p(Z,X|\theta) = \max_{x_N} \delta(x_N)$ • $x_N^* = \operatorname*{argmax}_{x_N} \delta(x_N)$
- Backtracking:

•
$$x_n^* = a(x_{n+1})$$

3. Learning the Model Parameters

- Given an observation sequence z_1, z_2, z_3 ...
- Find optimal model parameters θ
- We need to maximize the likelihood $p(Z|\theta)$
- Can not be solved in closed form
- Iterative algorithm: Expectation Maximization (EM) or for the case of HMMs: Baum-Welch algorithm

Expectation Maximisation

- Objective: Find the model parameters knowing the observations: π , A, ϕ
- Result:
 - Train the HMM to recognize sequences of input
 - Train the HMM to generate sequences of input
- Technique: Expectation Maximisation
 - E: Find the best state sequence given the parameters
 - M: Find the parameters using the state sequence
 - Maximisation of the log-likelihood: $\arg \max_{pi,A,\phi} - \log \left(P\left(\{Z_i\}^{,\pi}, A, \varphi\right) \right)$

- E-Step (assuming we know π , A, ϕ , i.e. θ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(x_n) = p(x_n|Z)$

- E-Step (assuming we know π , A, ϕ , i.e. θ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(x_n) = p(x_n|Z)$
- It follows that $\gamma(x_n) = \alpha(x_n) \beta(x_n) / p(Z)$

- E-Step (assuming we know π ,A, ϕ , i.e. θ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(x_n) = p(x_n|Z)$
- It follows that $\gamma(x_n) = \alpha(x_n) \beta(x_n) / p(Z)$
- Define $\xi(x_{n-1}, x_n) = p(x_{n-1}, x_n | Z)$
- It follows that

 $\xi(x_{n-1}, x_n) = \alpha(x_{n-1}) p(z_n | x_n) p(x_n | x_{n-1}) \beta(x_n) / p(Z)$

• We need to compute: $Q(\theta, \theta^{old}) = \sum_{X} p(X|Z, \theta^{old}) \log p(Z, X|\theta)$ Expected complete data log-likelihood

- Maximizing Q also maximizes the likelihood: $p(Z|\theta) \ge p(Z|\theta^{old})$
- M-Step:

$$\pi_k = \frac{\sum_{\mathbf{x}} \gamma(\mathbf{x}) x_{1k}}{\sum_{j=1} \sum_{\mathbf{x}} \gamma(\mathbf{x}) x_{1j}}$$

here, we need forward and backward step!

$$A_{jk} = \frac{\sum_{t=2}^{T} \xi(x_{t-1,j}, x_{tk})}{\sum_{l=1}^{K} \sum_{t=2}^{T} \xi(x_{t-1,j}, x_{tl})}$$

- With these new values, Q is recomputed
- This is done until the likelihood does not increase anymore (convergence)

The Baum-Welsh algorithm - summary

- Start with an initial estimate of $\theta = (\pi, A, \phi)$ e.g. uniformly and k-means for ϕ
- Compute Q(θ,θ^{old}) (E-Step)
- Maximize Q (M-step)
- Iterate E and M until convergence
- In each iteration one full application of the forward-backward algorithm is performed
- Result gives a local optimum
- For other local optima, the algorithm needs to be started again with new initialization

The Scaling problem

Probability of sequences

Probabilities are very small

- The product of the terms soon is very small
- Usually: converting to log-space works
- But: we have sums of products!
- Solution: Rescale/Normalise the probability during the computation, e.g.:

$$\hat{\alpha}(x_n) = \alpha(x_n) / p(z_1, z_2, \dots, z_n)$$

Summary

- HMMs are a way to model sequential data
- They assume discrete states
- Three possible operations can be performed with HMMs:
 - Data likelihood, given a model and an observation
 - Most likely state sequence, given a model and an observation
 - Optimal Model parameters, given an observation
- Appropriate scaling solves numerical problems
- HMMs are widely used, e.g. in speech recognition

