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Inference on a Chain (Rep.)

• The first values of µα and µβ are:

• The partition function can be computed at any node:

• Overall, we have O(NK2) operations to compute the 
marginal 
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree PolytreeUndirected 

Tree

It is then known as the sum-product algorithm. 
A special case of this is belief propagation. 
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Undirected 
Tree

An undirected tree is defined 
as a graph that has exactly one 
path between any two nodes
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree
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A directed tree has 
only one node 
without parents and 
all other nodes 
have exactly one 
parent

Conversion from 
a directed to an 
undirected tree is 
no problem, 
because no links 
are inserted

The same is true for the 
conversion back to a 
directed tree
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Polytree
Polytrees can contain nodes with 
several parents, therefore 
moralization can remove 
independence relations
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs.

• A representation that generalizes directed and 
undirected models is the factor graph.

Directed graph Factor graph
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs.

• A representation that generalizes directed and 
undirected models is the factor graph.

Undirected graph Factor graph
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Factor Graphs

Factor graphs 

• can contain multiple factors 
for the same  nodes

• are more general than 
undirected graphs

• are bipartite, i.e. they consist 
of two kinds of nodes and all 
edges connect nodes of 
different kind
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Factor Graphs

• Directed trees convert to 
tree-structured factor graphs

• The same holds for 
undirected trees

• Also: directed polytrees 
convert to tree-structured 
factor graphs

• And: Local cycles in a 
directed graph can be 
removed by converting to a 
factor graph
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The Sum-Product Algorithm

Assumptions: 

• all variables are discrete

• the factor graph has a tree structure

The factor graph represents the joint distribution 
as a product of factor nodes:

The marginal distribution at a given node x is
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The Sum-Product Algorithm

For a given node x the joint 
can be written as 
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Product of all 
factors associated 

with  fs
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Thus, we have

Key insight: Sum and product can be exchanged!

“Messages from 

factors to node x”
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The Sum-Product Algorithm

The factors in the messages 
can be factorized further:
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The messages can then be computed as

“Messages from 
nodes to factors”

Fs(x,Xs) = fs(x, x1, . . . , xM )G1(x1, Xs1) . . . GM (xM , XsM )
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The Sum-Product Algorithm

The factors G of the 
neighboring nodes can 
again be factorized further:
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This results in the exact same situation as above! 
We can now recursively apply the derived rules: 
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The Sum-Product Algorithm
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Summary marginalization:

1.Consider the node x as a root note

2.Initialize the recursion at the leaf nodes as:
                          (var)  or                          (fac)

3.Propagate the messages from the leaves to the 

root x
4.Propagate the messages back from the root to 

the leaves

5.We can get the marginals at every node in the 
graph by multiplying all incoming messages 

µ

f!x

(x) = 1 µ

x!f

(x) = f(x)
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The Max-Sum Algorithm

Sum-product is used to find the marginal 
distributions at every node, but:

How can we find the setting of all variables that 
maximizes the joint probability? And what is the 
value of that maximal probability?

Idea: use sum-product to find all marginals and 

then report the value for each node x that 

maximizes the marginal p(x)
However: this does not give the overall 
maximum of the joint probability
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The Max-Sum Algorithm

Observation: the max-operator is distributive, just 
like the multiplication used in sum-product: 

Idea: use max instead of sum as above and 
exchange it with the product

Chain example:

Message passing can be used as above!
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The Max-Sum Algorithm

To find the maximum value of p(x), we start again 
at the leaves and propagate to the root.

Two problems:

• no summation, but many multiplications; this 
leads to numerical instability (very small values)

• when propagating back, multiple configurations 

of x can maximize p(x), leading to wrong 
assignments of the overall maximum

Solution to the first:

Transform everything into log-space and use sums
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The Max-Sum Algorithm

Solution to the second problem:

Keep track of the arg max in the forward step, 
i.e. store at each node which value was 
responsible for the maximum:

Then, in the back-tracking step we can recover 
the arg max by recursive substitution of:

19

�(x

n

) = argmax

xn�1

[ln f

n�1,n(xn�1, xn

) + µ

xn�1!fn�1,n(xn

)]

x

max

n�1 = �(x

max

n )



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Other Inference Algorithms

Junction Tree Algorithm:

• Provides exact inference on general graphs.

• Works by turning the initial graph into a junction 
tree and then running a sum-product-like algorithm

• A junction tree is obtained from an undirected 
model by triangulation and mapping cliques to 
nodes and connections of cliques to edges

• It is the maximal spanning tree of cliques

Problem: Intractable on graphs with large cliques.

Cost grows exponentially with the number of 
variables in the largest clique (“tree width”).
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Other Inference Algorithms

Loopy Belief Propagation:

• Performs Sum-Product on general graphs, 
particularly when they have loops

• Propagation has to be done several times, until a 
convergence criterion is met

• No guarantee of convergence and no global 
optimum

• Messages have to be scheduled

• Initially, unit messages passed across all edges 

• Approximate, but tractable for large graphs
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Conditional Random Fields

• Another kind of undirected graphical model is known 
as Conditional Random Field (CRF).

• CRFs are used for classification where labels are 

represented as discrete random variables y and 

features as continuous random variables x
• A CRF represents the conditional probability

where w are parameters learned from training data.

• CRFs are discriminative and MRFs are generative

22
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Conditional Random Fields

Derivation of the formula for CRFs:

In the training phase, we compute parameters w that 
maximize the posterior: 

where (x*,y*) is the training data and p(w) is a Gaussian 
prior. In the inference phase we maximize
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Conditional Random Fields

Note: the definition of xi,j and yi,j is different 
from the one in C.M. Bishop (pg.389)!

Typical example: 
observed variables 

xi,j are intensity 

values of pixels in 
an image and 

hidden variables yi,j 

are object labels
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CRF Training

We minimize the negative log-posterior:

Computing the likelihood is intractable, as we have to 

compute the partition function for each w. We can 
approximate the likelihood using pseudo-likelihood:

where
Markov blanket Ci: All cliques containing yi
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Pseudo Likelihood
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Pseudo Likelihood

Pseudo-likelihood is computed only on the Markov 

blanket of yi and its corresp. feature nodes.
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Potential Functions

• The only requirement for the potential functions is 
that they are positive. We achieve that with:

where f is a compatibility function that is large if the 

labels yC fit well to the features xC.

• This is called the log-linear model.

• The function f can be, e.g. a local classifier
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CRF Training and Inference

Training:

• Using pseudo-likelihood, training is efficient. We have 
to minimize:

• This is a convex function that can be minimized using 
gradient descent

Inference:

• Only approximatively, e.g. using loopy belief 
propagation

Log-pseudo-likelihood Gaussian prior
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Summary

• Undirected Graphical Models represent conditional 
independence more intuitively using graph 
separation

• Their factorization is done based on potential 
functions The normalizer is called the partition 
function, which in general is intractable to compute

• Inference in graphical models can be done 
efficiently using the sum-product algorithm 
(message passing).

• Another inference algorithm is loopy belief 
propagation, which is approximate, but tractable

• Conditional Random Fields are a special kind of 
MRFs and can be used for classification
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• This incorporates the following Markov assumptions:

Graphical Representation (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)

32
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• This incorporates the following Markov assumptions:

Graphical Representation

We can describe the overall process using a Markov 
chain of latent variables:

(measurement)

(state)

Discrete 
Variables

Notation 
differs from 

Bishop!
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Example

“Occasionally dishonest casino”:

• observations: faces of a die

• hidden states: two different dice, one fair, one 
loaded 
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1.Discrete random variables 

• Observation variables: {zn}, n = 1..N 
• State variables (unobservable): {xn}, n = 1..N
• Number of states K: xnє{1..K}

2.Transition model p(xi |xi-1)
• Markov assumption (xi only depends on xi-1)
• Represented as a K×K transition matrix A
• Initial probability: p(x0) repr. as  π1, π2, π3

3.Observation model p(zi|xi) with parameters φ
• Observation only depends on the current state

• Example: output of a “local” place classifier

Formulation as HMM

Model Parameters 

θ
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The Trellis Representation

A33 A33

A11 A11k=1

k=2

k=3

time

n-2 n-1 n
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• Given an observation sequence z1,z2,z3…
• Assume that the model parameters 

θ =(A, π, φ) are known

• What is the probability that the given observation 
sequence is actually observed under this model, 

i.e. p(Z| θ)?
• If we are given several different models, we can 

choose the one with highest probability

• Expressed as a supervised learning problem, 
this can be interpreted as the inference step 
(classification step)

Application Example (1)
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• Given an observation sequence z1,z2,z3…
• Assume that the model parameters 

θ =(A, π, φ) are known

• What is the state sequence x1,x2,x3…  that 
explains best the given observation sequence?

• In the case of place recognition: which is the 
sequence of truly visited places that explains 
best the sequence of obtained place labels 
(classifications)?

Application Example (2)
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• Given an observation sequence z1,z2,z3…
• What are the optimal model parameters 

θ =(A, π, φ)?
• This can be interpreted as the 

training step

• It is in general the most difficult problem

Application Example (3)
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1. Compute data likelihood p(Z|θ) from a known model
• Can be computed with the forward-backward algorithm

2. Compute optimal state sequence with a known model
• Can be computed with the Viterbi-Algorithm

3. Learn model parameters for an observation sequence
• Can be computed using Expectation-Maximization (or 

Baum-Welch)

Summary: 3 Operations on HMMs
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• Assume: given a state sequence x1,x2,x3… 

Two possible operations:

• Filtering: computes                , i.e. state 
probability only based on previous observations

• Smoothing: computes                , state 
probability based on all observations (including 
those from the future)

1. Computing the Data Likelihood
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The Forward Algorithm

• First, we compute the prediction from the last 
time step:

• Then, we do the update using Bayes rule:

• This is exactly the same as the Bayes filter from 
the first lecture!
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• As before we set  

• We also define 

The Forward-Backward Algorithm

43
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• As before we set  

• We also define

• This can be recursively computed (backwards): 

The Forward-Backward Algorithm
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• As before we set  

• We also define

• This can be recursively computed (backwards): 

• This is exactly the same as the message-passing 
algorithm (sum-product)!

• forward messages       (vector of length K)

• backward messages       (vector of length K)

The Forward-Backward Algorithm
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• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ)

• Define

This is the probability of state j by taking the 
most probable path. 

2. Computing the Most Likely States

46

�

t

(j) := max

x1,...,xt�1

p(x1:t�1, xt

= j | z1:t)

         



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ)

• Define

This can be computed recursively: 

we also have to compute the argmax:

2. Computing the Most Likely States
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• Initialize:

•  δ(x0)= p(x0) p(z0 | x0)

•ψ(x0)= 0

• Compute recursively for n=1…N:

• δ(xn)= p(zn|xn)  max [δ(xn-1) p(xn|xn-1)]

• a(xn)= argmax [δ(xn-1) p(xn|xn-1)]

• On termination:

• p(Z,X|θ) = max δ(xN)

• xN = argmax δ(xN)

• Backtracking:

• xn = a(xn+1)

The Viterbi algorithm

xn-1 

xn-1 

*

xN 

xN 

*
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• Given an observation sequence z1,z2,z3…

• Find optimal model parameters θ
• We need to maximize the likelihood p(Z|θ)

• Can not be solved in closed form

• Iterative algorithm: 
Expectation Maximization (EM) or for the case 
of HMMs: Baum-Welch algorithm

3. Learning the Model Parameters
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• Objective: Find the model parameters knowing 
the observations: π,A,φ

• Result: 

•Train the HMM to recognize sequences of input

•Train the HMM to generate sequences of input

• Technique: Expectation Maximisation

•E: Find the best state sequence given the 
parameters

•M: Find the parameters using the state sequence

•Maximisation of the log-likelihood:

Expectation Maximisation
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state 
i at step k:

• Define γ(xn)= p(xn|Z)

The Baum-Welsh algorithm
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state 
i at step k:

• Define γ(xn)= p(xn|Z)

• It follows that  γ(xn)= α(xn) β(xn) / p(Z)

The Baum-Welsh algorithm
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state i at 
step k:

• Define γ(xn)= p(xn|Z)

• It follows that  γ(xn)= α(xn) β(xn) / p(Z)

• Define ξ(xn-1 ,xn)= p(xn-1 ,xn|Z)

• It follows that  

ξ(xn-1 ,xn)= α(xn-1)p(zn|xn)p(xn|xn-1)β(xn) / p(Z)

• We need to compute:

Q(θ,θold)= Σ p(X|Z, θold)log p(Z,X|θ)

The Baum-Welsh algorithm

X 
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• Maximizing Q also maximizes the likelihood:

p(Z|θ) ≥ p(Z|θold)

• M-Step: 

• 

here, we need forward and backward step!

• 
 

• With these new values, Q is recomputed

• This is done until the likelihood does not 
increase anymore (convergence)

The Baum-Welsh algorithm
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• Start with an initial estimate of θ=(π,A,φ)

e.g. uniformly and k-means for φ
• Compute Q(θ,θold) (E-Step)

• Maximize Q (M-step)

• Iterate E and M until convergence 

• In each iteration one full application of the 
forward-backward algorithm is performed

• Result gives a local optimum

• For other local optima, the algorithm needs to 
be started again with new initialization

The Baum-Welsh algorithm - summary
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• Probability of sequences

•Probabilities are very small

•The product of the terms soon is very small 

• Usually: converting to log-space works

• But: we have sums of products!

• Solution: Rescale/Normalise the probability 
during the computation, e.g.:

  α(xn)= α(xn) / p(z1,z2,…,zn) 

The Scaling problem

<1

^ 
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• HMMs are a way to model sequential data

• They assume discrete states

• Three possible operations can be performed 
with HMMs:

•Data likelihood, given a model and an observation

•Most likely state sequence, given a model and an 
observation

•Optimal Model parameters, given an observation

• Appropriate scaling solves numerical problems

• HMMs are widely used, e.g. in speech 
recognition 

Summary
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