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Class Schedule

Date Topic
25.10.13 Introduction
8.11.13 Regression
15.11.13 Probabilistic Graphical Models |
22.11.13 Probabilistic Graphical Models |l
29.11.13 Boosting
6.12.13 Kernel Methods
13.12.13 Gaussian Processes
20.12.13 Mixture Models and EM
10.1.14 Variational Inference
17.1.14 Sampling Methods
24.1.14 MCMC
31.1.14 Unsupervised Learning
7.2.14 Online Learning
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Literature

Recommended textbook for
the lecture: Christopher M.
Bishop: “Pattern Recognition
and Machine Learning”

More detailed:

e “Gaussian Processes for
Machine Learning”
Rasmussen/Williams

Machine Learning

e “Machine Learning - A Probabilistic
Perspective” Murphy
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The Tutorials

« Weekly tutorial classes

 Participation in tutorial classes and submission of
solved assignment sheets is totally free

« The submitted solutions can be corrected and
returned

o In class, you have the opportunity to present your
solution

« Assignments will be theoretical and practical
problems
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The Exam

« No “qualification” necessary for the final exam
« Final exam will be oral

« From a given number of known questions, some will
be drawn by chance

« Usually, from each part a fixed number of questions
appears
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Class Webpage

http://vision.in.tum.de/teaching/ws2013/ml_ws13

« Contains the slides and assignments for download
 Also used for communication, in addition to email list
« Some further material will be developed in class
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Motivation

Suppose a robot stops in front of a door. It has a sensor
(e.g. a camera) to measure the state of the door (open
or closed). Problem: the sensor may fail.

-
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Motivation

Question: How can we obtain knowledge about
the environment from sensors that may return
iIncorrect results?
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Basics of Probability Theory

Definition 1.1: A S Is a set of outcomes
of a given experiment.
Examples:
a) Coin toss experiment: S={H,T}
b) Distance measurement: S =R
Definition 1.2: A X Is a function that

assigns a real number to each element of S.
Example: Coin toss experiment: H =1,7 =0

Values of random variables are denoted with small
letters, e.g.: X = ¢
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Discrete and Continuous

If S is countable then X is a random variable,
else it is a random variable.

The probability that X takes on a certain value x is a
real number between 0 and 1. It holds:

ZP(XZiU):l /p(X:QZ)d$=1

Discrete case Continuous case
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A Discrete Random Variable

Suppose a robot knows that it is in a room, but it
does not know In room. There are 4

possibilities:
Kitchen, Office, Bathroom, Living room

Then the random variable Room is discrete, because

it can take on one of four values. The probabilities are,
for example:

P(Room = kitchen) = 0.7

P(Room = office) = 0.2
P(Room = bathroom) = 0.08
P(Room = living room) = 0.02
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A Continuous Random Variable

Suppose a robot travels 5 meters forward from a
given start point. Its position X is a continuous
random variable with a :

1 1 (#—5)?
p(X =)= e 2 o3
p(X _ Z) 1 \/2770'2
08 | Shorthand:
0.6 1 1 (w—M)Z
0.4 \/27'('0'26 i 7

N (x; p,0?)
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Joint and Conditional Probability

The of two random variables X and YV
is the probability that the events X = xandY =y
occur at the same time:

p(X =x and Y = y)

Shorthand: (X — ;) —————— p(2)

p(X =z and Y = y)— p(z,y)

Definition 1.3: The of X given
Is defiy d as:

o(X =2 |Y =) = pla | y) = LEY)

p(y)
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Independency, Sum and Product Rule

Definition 1.4: Two random variables X and Y are
I1ff:

p(x,y) = p(z)p(y)
For independent random variables Xnd Y e have:

_pl@y) _pl@ply) _ o
plz|y) = py)  py) =P

Furthermore, it holds:

p(z) =) plz.y) plz,y) =ply | z)p(z)
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Law of Total Probability

Theorem 1.1: For two random variables X and Y it
holds:

p@) =0 | wp) o) = [ ol | o)y
Disirete case Continuous case

The process of obtaining p(x) from p(x,y) by summing
or integrating over all values of vy is called
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Bayes Rule

Theorem 1.2: For two random variables X and Y it

holds:
pla | ) = P D0
Proof:
L plz | y) = pﬁj) (definition)
Il _ p(z,y) (definition)
p(y | x) (@)

" by <Qly | opa) O
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Bayes Rule: Background Knowledge

For p(y | z) # O it holds:

Background knowledge

Shorthand: p(y | z)” ' = 1]
“Normalizer”

p(x|y,z)=nply |z 2)px|z)
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Computing the Normalizer

p(y | z)p(x)

p(x | y) = p(y) =Y py | z)p(x)
4

Bayes rule S~ Total probability

N7

ply | z)p

plely) == p<y|x>< )

p(x | y)can be computed without knowing  p(y)
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Conditional Independence

Definition 1.5: Two random variables X and Y are
given a third random
variable 2 iff;

p(x,y | 2)=plx|2)py|2)

This is equivalent to:

p(x|z)=p(x|y z) and
p(y | Z) :p(y 51772)
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Expectation and Covariance

Definition 1.6: The of a random variable X
IS defined as:

E[X] - Z T p(x) (discrete case)

E[X] — /g; p(aj)daj (continuous case)

Definition 1.7: The of a random variable X
IS defined as:

Cov|X] = E[(X — E[X])?] = E[X?] — E[X]?

Machine Learning for Computer Dr. Rudolph Triebel
Vision Computer Vision Group



Mathematical Formulation of Our Example

We define two binary random variables:
z and open, where z is “light on” or “light off”. Our
question is: What is p(open | 2)?

T
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Causal vs. Diagnostic Reasoning

e Searching for p(open | z) is called

e Searching for p(z | open) is called
e Often causal knowledge is easier to obtain
e Bayes rule allows us to use causal knowledge:

p(z | open)p(open)
p(z)
p(z | open)p(open)
p(z | open)p(open) + p(z | —open)p(—open)

p(open | z)
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Example with Numbers

Assume we have this

p(z | open) = 0.6 p(z | —open) = 0.3
and:  p(open) = p(—open) = 0.5
then:
p(open | z) = p(z | open)p(open)

p(z | open)p(open) + p(z | —open)p(—open)

0.6 -0.5 _2_067
06-0.5+03-0.5 3

“Z raises the probability that the door is open”
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Combining Evidence

Suppose our robot obtains another observation 22,
where the index is the point in time.

Question: How can we integrate this new
information?

Formally, we want to estimate p(open | 21, 22).
Using Bayes formula with background knowledge:

p(open | 21, 22) ':@ ‘ Ope@z)pen | 21)

p(z2 | 21)
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Markov Assumption

“If we know the state of the door attime ¢t =1
then the measurement z; does not give any further
Information about 2-.”

Formally: “zyand z9 are conditional independent
given open.” This means:

p(z2 | open, z1) = p(z2 | open)

This is called the
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Example with Numbers

Assume we have a second sensor:

p(zo | open) = 0.5  p(z2 | —open) = 0.6

p(open | z1) = £ (from above)

Then: p(open | z1,22) =
p(z2 | open)p(open | z1)
p(z2 | open)p(open | 21) + p(z2 | ~open)p(—open | 21)

32 _ 5 _
— A5 = 5 =0.625

1L.2,3.1
2371753

“Zo lowers the probability that the door is open”
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General Form

Measurements: zi,...,2n

Markov assumption: z, and zq,..., z,_are
conditionally independent given the state ..

@l 21,-..,Zn) _ p(zn | )p(T | 21,.. ., 2n_1)

p(zn | Ry ey in— 1)

Recursion p(zn | )p(x | 215 Zn-1)

77n
H p(z; | x)p(x)

Machine Learning for Computer Dr. Rudolph Triebel
Vision Computer Vision Group



Example: Sensing and Acting

Now the robot senses the door state and acts (it
opens or closes the door).

—

Machine Learning for Computer Dr. Rudolph Triebel
Vision Computer Vision Group



State Transitions

The of an action is modeled as a
random variable U where U = u In our case

means “state after closing the door”.
State transition example:

0.9
0.1 ( open closed ]

0

If the door is open, the action “close door” succeeds
in 90% of all cases.

Machine Learning for Computer Dr. Rudolph Triebel
Vision Computer Vision Group



The Outcome of Actions

For a given action u we want to know the
probability p(z | «). We do this by integrating over all
possible previous states z’.

If the state space is discrete:
p(x | u) = pr\uw) (")

If the state space IS continuous:

p(z | u) = / p(z | u, ' )p(a')de’
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Back to the Example

3" plopen | u,a")p(a')

p(open | u)

u, open’ )p(open’) +

p(open | u, ~open’)p(—open’)
D 3

||

=,
O
i®,
D
-

15
1 — p(open | u) = T 0.9375

=
J
o
i
D
=
~

|
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Sensor Update and Action Update

So far, we learned two different ways to update the
system state:

. Sensor update: p(z | 2)
. Action update:  p(x | u)
« Now we want to combine both:

Definition 2.1: Let D; = uq,21,...,us, 2 be a
sequence of sensor measurements and actions
until time ¢ Then the of the current state x+
Is defined as

Bel(z:) = p(@¢ | w1, 21, ..., U, 2¢)
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Graphical Representation
We can describe the overall process using a

This incorporates the following
Markov assumptions:

p(Zt | L0:ts Uty Zl:t) = p(zt \ xt) (measurement)
p(xt | LO:t—1,5UL:¢, Zl:t) — P(ﬂft \ $t—1,ut) (state)
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The Overall Bayes Filter

Bel(x:) = p(a: | w1, 21, ..., us, 2¢)

Bayes)  — p p(2 | xe,wr, 21, .- ug)p(oe | ur, 21, ..., Ug)
(Markov) =1 p(zt | xt)p(aj‘t ‘ s @15 == ,ut)
(Tot. prob.) = ¢ p(Zt | xt) /p(:Et ‘ (I ARRAREER ,ut,CL‘t_l)

p(we—1 [ ui, 21, .., up)dwe g

P(fL’t \ utaxt—l)p<$t—1 | ULy 21y .- - 7Ut)dil7t—1

Markoy =1 p(z | )

/
/
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— 7 p(zt ‘ xt) p(ﬂi‘t | Ut,CE‘t—l)Bel(ﬂi‘t—1)d$t—1
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The Bayes Filter Algorithm

Bel(x:) = n p(z: | x¢) /p(a:t | g, 21 )Bel(xp_1)dxs 4

Algorithm Bayes _filter (Bel(x), d)
If d IS a sensor measurement z then
n =20
for all x do
Bel' (z) « p(z | 2)Bel(x)
n < n -+ Bel' (z)
for all z do Bel'(z) «+ n~ 'Bel'(2)
else if d I1s an action « then
for all z do Bel'(x) « [ p(x | u,2")Bel(z)dx’
return Bel’ (z)

© 00Nk WDNS
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Bayes Filter Variants

Bel(x:) = n p(z: | x¢) /p(:vt |y, xp1)Bel(ay_1)dxi 4

The Bayes filter principle is used in
« Kalman filters

« Particle filters

« Hidden Markov models

« Dynamic Bayesian networks

 Partially Observable Markov Decision Processes
(POMDPs)
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Summary

o IS necessary to deal with
uncertain information, e.g. sensor measurements
« Using , we can do diagnhostic reasoning

based on causal knowledge
« The outcome of a robot's action can be described by a

« Probabilistic state estimation can be done recursively
using the using a sensor and a motion
update

« A graphical representation for the state estimation
problem is the
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Motivation

 Most objects in the environment can be classified, e.qg.

with respect to their size, functionality, dynamic
properties, etc.

 Robots need to with
the objects (move around,

manipulate, inspect, etc.) and
with humans

e For all these tasks it is
necessary that the robot

knows to which an object belongs

Which
object is
a door?
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Object Classification Applications

Two major types of applications:

« Object detection: For a given
test data set find all previously
“learned” objects, e.q.
pedestrians

« Object recognition: Find the
particular “kind” of object as it
was learned from the training
data, e.g. handwritten character

recognition 5 5 s ; s
OPLE .t UL Y 0P ] R Y 0P

-5 -5 -5 =5 -5
6 5§ 106 0 5 10 0 5 10 O 5 10 @ & 10

easy D=30 eusy D=33 easg D=35 casy D=41 eaxy D =42

Machine Learning for Computer Dr. Rudolph Triebel

Vision Computer Vision Group



Learning

e A natural way to do object classification is to first
the categories of the objects and then from
the learned data a possible class for a new object.

e The area of deals with the
formulization and investigates methods to do the
learning automatically.

 Nowadays, machine learning algorithms are more and
more used in robotics and computer vision
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Mathematical Formulation

Suppose we are given a set X’ of objects and a set )/
of object categories (classes). In the learning task we
search for a mapping ¢ : X — )/ such that

elements in X are mapped to elementsin ) .

Examples:

e (biject classification: chairs, tables, etc.
e (Optical character recognition

e Speech recognition
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Categories of Learning

Learning

( - Unsupervised = Supervised = Reinforcement >

Clusterlng, den3|ty 4 from a tralnlng no superV|S|on but
estimation data set, on a

the test data

i

Discriminant Discriminative Generative
Function Model Model
no prob. formulation, estimates the est. the
learns a from p(yr | x) p(x | yr)and use Bayes
objects X to labels )/ for each class rule for the post.
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Categories of Learning

|

~ Supervised
- Learning

from a training
data set, on
the test data

Supervised Learning is the main topic of this lecture!
Methods used in Computer Vision include:

* Regression » Support Vector Machines
* Conditional Random Fields * Gaussian Processes
* Boosting * Hidden Markov Models
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Categories of Learning

Unsupervised
Learning

clustering, density
estimation

Most Unsupervised Learning methods are based on
Clustering.

=\Vill be handled at the end of this semester
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Categorles of Learnlng

Learn I ng

Unsupervised m Reinforcement
Learning w Learning

no supervision, but

Reinforcement Learning requires an

* the reward defines the quality of an action

* mostly used in robotics (e.g. manipulation)

* can be dangerous, actions need to be “tried out”
* not handled in this course
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Generative Model: Example
Nearest-neighbor classification:
e Given: data points  (x1,%1), (X2,%2),...

e Rule: Each new data point is assigned to the class
of its nearest neighbor in feature space
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Generative Model: Example
Nearest-neighbor classification:
e Given: data points  (x1,%1), (X2,%2),...

e Rule: Each new data point is assigned to the class
of its nearest neighbor in feature space
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Generative Model: Example
Nearest-neighbor classification:
e Given: data points  (x1,%1), (X2,%2),...

e Rule: Each new data point is assigned to the class
of its nearest neighbor in feature space
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Generative Model: Example
Nearest-neighbor classification:
e Given: data points  (x1,%1), (X2,%2),...

e Rule: Each new data point is assigned to the class
of its nearest neighbor in feature space
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Generative Model: Example
Nearest-neighbor classification:

®* General case: K nearest neighbors
e \We consider a sphere around each training instance
that has a fixed volume /.

K. Number of points

from class k inside
sphere

N,: Number of all
points from class k

o
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Generative Model: Example
Nearest-neighbor classification:

® General case: K nearest neighbors
e \We consider a sphere around each training instance
that has a fixed volume /.

e With this we K
can estimate: pix|y=Fk)= NV

# points in sphere
. . K
e and likewise: p(x) = s

e using Bayes rule. — # all points
p(x|y=kply="k) _ Ky

ply=Fk|x)=

p(x) K
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Generative Model: Example
Nearest-neighbor classification:

®* General case: K nearest neighbors

px|y=Fkply=Fk) K
p(x) K

ply =k |x)=

e To classify the new data point x we compute the
posterior for each class k = 1,2,... and assign the
label that maximizes the posterior.

k= argml‘?xp(y =k | x)
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Summary

« Learning is a two-step process consisting in a
and an step

 Learning is useful to extract information, e.qg.
about the objects in an environment

« There are three main categories of learning:
, and learning

« Supervised learning can be split into
, , and
learning

« An example for a generative model is
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Categories of Learning (Rep.)

Q_earning)

s/uperm

K . Le arnin g

from a tralnlng
data set, on
the test data
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Categories of Learning

Learning

( - Unsupervised = Supervised = Reinforcement >

Clusterlng, den3|ty 4 from a tralnlng no superV|S|on but
estimation data set, on a

the test data

i

Discriminant Discriminative Generative
Function Model Model
no prob. formulation, estimates the est. the
learns a from p(yr | x) p(x | yr)and use Bayes
objects X to labels )/ for each class rule for the post.
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Mathematical Formulation (Rep.)

Suppose we are given a set X of objects and a set )/
of object categories (classes). In the learning task we
search for amapping ¢ : X — ) such that
elements in X are mapped to elementsin ).

Difference between regression and classification:

* |nregression, ) is continuous, in classification it is
discrete

e Regression learns a , classification usually
learns

For now we will treat regression
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Basis Functions

In principal, the elements of X" can be anything (e.g. real
numbers, graphs, 3D objects). To be able to treat these
objects mathematically we need functions ¢ that map
from X to R*.We call these the

We can also interpret the basis functions as functions

that extract from the input data.
Features reflect the of the objects (width,
height, etc.).
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Simple Example: Linear Regression

e Assume: X =R, V=R, o=1 (identity)
» Given:  data points (z1,%1), (z2,%2), . ..

* Goal: predict the value ¢ of a new example x
» Parametric formulation: ¥(Z, W) = wo + w1
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Linear Regression
To evaluate the function y, we need an error function;

Bw) = 33 (i, w) — 1)’

We search for parameters w™ s.th. E/(w™) is minimal:

N

VE(W) = Y (y(zi, W) = ) Vy(zi,w) = (0 0)
i=1

y(xs, W) = wo + wiT; — Vy(r;,w)= (1 x;)

T T

Using vector notation: x; := (1 ;) y(zi, W) = w' Xy

ZW X;X; —th (0 0) :>WTZXZX —th

\‘/_/ H/—/
::AT ::bT
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Polynomial Regression

Now we have: X =R, V=R, ¢,(x) = 2’
Given: data points (x1,t1), (x2,t2),..., (x@, tN)

y(z, W) = wy + Data Set
Yy - Size
O
o
Model
Complexity

Machine Learning for Dr. Rudolph Triebel
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Polynomial Regression

We define: @ () := (1, ¢1(x),...,on—1()),
And obtain: y(z,w) = w! ¢(x)
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Polynomial Regression

We define: @ (z) :== (1, ¢1(x),...,op—1(x))
And obtain: r,w) =wlp(z)
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Polynomial Regression

We define: @ (z) :== (1, ¢1(x),...,op—1(x))
And obtain: r,w) =wlp(z)
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Polynomial Regression

N
Thus, we have: Z d(z) ()" = T
=1

do(x1)  @P1(x1) ... Om—1(x1)
do(r2) P1(w2) ... Pp—1(w2)

where & —

bo(en) dilan) - drilaw)
VE(w)=w'®'®d-t'd = o' dow = &' t

It follows:
w =(®7®) 1o’ o

Machine Learning for Dr. Rudolph Triebel
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Computing the Pseudoinverse

Mathematically, a pseudoinverse &+ exists for
every matrix @.

However: If @ is (close to) singular the direct
solution of ® is numerically unstable.

Therefore: Singular Value Decomposition (SVD) is
used: & = UDV' where

®* matrices U and J are orthogonal matrices
® D is a diagonal matrix

Then: = vDTU?Y where DT contains the
of all non-zero elements of D
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A Simple Example
¢j(x) = 2

2 T T T 2 T T T T
data source data source
15 noisy samped data -~ ) 15 noisy samped data -
regression regression
1+ I :

e N =10

0
] Vi 1 M =3
1 L
15 . 15 ¢ .
2 | | | I |
0 02 04 06 08 1 2 ‘ | ‘ ‘ ‘
0 02 04 06 08 1
2 T T T T T 2 T T T T
data source data source ——
15 | noisy samped data - B 15| noisy samped data - B
regression regression —
1 —
N =10 o / N =10
0 I -
V5 e M =10
1 L _
1 5 r - 1 5 L _
2 I I I I I 2 ‘ ‘ ‘ ‘ ‘
0 02 04 06 08 1 0 02 04 06 08 1
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Varying the Sample Size

15

B4

05 r

156

T T

data souré:e ——
noisy samped data -+
regression =—t—

02 04 06 08 1

T

data source
noisy samped data -~
regression
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T T

data sourée —_—
noisy sampeddata -
regression

T T

data sourée —_—
noisy samped data -
regression
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).500

).375

).250

).125
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Other Basis Functions

Other basis functions are possible:

o (Gaussian basis function:
~ 4 mean val

¢j(x) == exp ( G Mj)2> where  H

252
« Sigmoidal basis function:

¢ & scale

1
1+ exp(—a)

S

0y(a) = o () where - (q

In both cases a set of mean values is required. These
define the of the basis functions.
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Gaussian Basis Functions
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Sigmoidal Basis Functions
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Observations

« The higher the model complexity grows, the better
Is the fit to the data

o If the model complexity is too high, all data points
are explained well, but the resulting model oscillates

very much. It can not generalize well.
This is called

« By increasing the size of the data set (number of
samples), we obtain a better fit of the model

« More complex models have larger parameters

Problem: How can we find a good model complexity
for a given data set with a fixed size?
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Regularization

We observed that complex models yield large
parameters, leading to oscillation. Idea:

Minimize the error function and the magnitude of the
parameters simultaneously

We do this by adding a regularization term :
N
~ 1 2 A
B(w) =35> (W) —t) + S[wl
1=1
where A rules the influence of the regularization.
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Regularization

As above, we set the derivative to zero:

VE(w) = Z (W' o(z) —t;) p(z)" + 2w’ =0"

—1
widld + A aw! =t'd = A+ d'0)w=2>"t

w=(\+o'd) tp't

With regularization, we can find a complex model for a
small data set. However, the problem now is to find an

appropriate regularization coefficient A.
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Regularized Results
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The Problem from a Different View

Assume that y is affected by Gaussian noise :
t =y(x,w)+e where e~ N(.;0,0%)
Thus, we have p(t | z,w,0) = N (t;y(z, w), o)

O

Yy

y(mlaw) (@
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Maximum Likelihood Estimation

Aim: we want to find the w that maximizes p.

p(t | x,w,o)is the of the measured data
given a model. Intuitively:

Find parameters w that maximize the probability of
measuring the already measured data .

We can think of this as fitting a model w to the data .

Note: o is also part of the model and can be estimated.
For now, we assume o Is known.
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Maximum Likelihood Estimation

Given data points: (z1,%1), (z2,t2),..., (xN,IN)
Assumption: points are drawn independently from p:

N
p(t|x,w,0) = Hp(ti | X, W, 0)
i=1
N
= HN(?fz'; w' ¢(z:),0°)
1=1
where: Instead of maximizing p we
x = (21,29,....7N) can also maximize |.ts
Co_ g ‘) (monotonicity of
B i the logarithm)
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Maximum Likelihood Estimation

Inp(t | x,w,o)

Constant for all w s equal to F(w)
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Maximum Likelihood Estimation

Inp(t|x,w,0) = Zlnp(ti\x,w,a) N oy L il

|
\©
g
~
©-
~
<
|
"5
e

W
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize
the data likelihood. Now, we assume a Gaussian

p(w | o) = N(w;0,051)
Using this, we can compute the (Bayes):

@x,t,@m
/

Posterior Likelihood Prior
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize
the data likelihood. Now, we assume a Gaussian

p(w | o) = N(w;0,051)
Using this, we can compute the (Bayes):

p(W | $7t70-170-2) O(p(t ‘ ZE,W,O’l)p(W ‘ 0-2)

| . t y YV,
strictly p(W | 2.8, 01, 09) = p(t|x,w,o1)p(w | 02)

~ [p(t]z,w,o)p(w | o9)dw

but the denominator is independent of w and we want
to maximize p.
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Maximum A-Posteriori Estimation

lnp(W ‘ $7t70-170-2) X 1np(t | $,W,O‘1) -+ lnp(w ‘ 02)

1 < —— /1
const. — — Z(qub(:c) — ;)] const. 3 w!w
01 Sl 20-2

i—=1 2

This is equal to the regularized error minimization.
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Summary

« Regression is a method to find a mathematical model
(function) for a given data set

« Regression can be done by minimizing the sum of
squared (SSE) errors, i.e. the distances to the data

« Maximume-likelihood estimation uses a probabilis-tic
representation to fit a model into noisy data

« Maximume-likelihood under Gaussian noise is
equivalent to SSE regression.

« Maximum-a-posteriori (MAP) estimation assumes a
(Gaussian) prior on the model parameters

« MAP is solved by regularized regression
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Bayesian Linear Regression

o Using MAP, we can find optimal model parameters,
but for practical applications two questions arise:

« What happens in the case of sequential data, i.e. the
data points are observed subsequently?

« Can we model the probability of measuring a new
data point, given all old data points? This is called
the predictive distribution:

New target New data | | Old targets | | Old data
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Some Useful Formulas Before
If we are given this:
. p(x) = N(x| p,>1)
. p(y[x)=N(y| Ax+ b, ¥s)
Then it follows (properties of Gaussians):

. p(y) =N(y | Ap+b, 3 + AL AT)
V. pix|y)=N(x|ZA'S (y —b)+2;7 ), %)

where

SRyt AT A
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Sequential Data

Given: Prior meanmg and covariance S, noise
covariance o po(w | Sp) = N(w;myg, Sp)

1.Set i =0

2.Observe data point (x;,t;)

3. Formulate the likelihood p(t; | i, W) as a function of w
(= Gaussian with mean ¢(z;)"w and covariance o)

4. Multiply the likelihood with the prior p;(w | S;) and
normalize (= Gaussian with m;; and §;_ )

5.This results in a new prior p;11(w | S;+1)
6.Go back to 1. if there are still data points available
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Comparison: the Standard Bayes Filter

Bel(x:) = p(a: | w1, 21, ..., us, 2¢)

Bayes)  — p oz | we,ur, 21, .- ug)p(@e | ur, 21, -0, uy)
(Markov) =17 p(zt ‘ xt)p(a’}t | AR AL LR ,ut)
(Tot. prob.) = ¢ p(zt | xt) /p(:l:‘t ‘ UARRARERE ,ut,xt_l)

p(we—1 [ ui, 21, .., up)dwe g

P(fL’t \ Ut,fEt—l)p(iUt—l | ULy 21y .- - 7Ut)dil7t—1

Markoy =1 p(z | )

/
/

Machine Learning for Computer Dr. Rudolph Triebel "m

—

Markov) =1 p(2; | @) | p(@e | Wey T—1)p(p—1 | Wi, 21,505 Zp—1)dTi—1

— 7 p(zt ‘ Zt) p(CUt | Ut,CEt—l)Bel(fE‘t—1)d$t—1
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Comparison: the Standard Bayes Filter
Bel(x:) = p(a: | w1, 21, ..., us, 2¢)

(BayeS) — ’]7 p(zt | xt7u1721, TR ,’U;t)p(xt ‘ u]_,Z]_, i & % ,Ut)

(Markov) =1 p(zt ‘ $t)p(33t ‘ s @15 == ,ut)

Note: Different Notation!
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A Simple Example

Our aim to fit a straight line into a set of data points.

Assume we have:
Basis functions are equal to identity gb( ) =X

Prior mean is zero prior covariance o5 = 0.5, noise
variance is o7 = 0.2°

Ground truthis f(z,a) = a9+ a1x  where a; = 0.5
Data points are sampled from ground truth @0 = —0.3
Thus:

We want to recover aq and a; from the sequentially
incoming data points (z1,t1), (z2,t2),...
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Bayesian Line Fitting

No data points observed

Prior Data Space

Line examples drawn

“Hough Space” from the prior
From: C.M. Bishor
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Bayesian Line Fitting

One data point observed Ground Truth
Likelihood Pric Data Space
1 .v 1 .
w1 Y
0 ol
-1 -1 -1 -
-1 0 o | -1 0 o ! -1 0 x |1

T~ Line examples drawn

from the prior

From: C.M. Bishop
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Bayesian Line Fitting

Two data points observed

Likelihood Prior Data Space

\/ Line examples drawn

from the prior
From: C.M. Bishop
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Bayesian Line Fitting

20 data points observed

Likelihood Prior Data Space

Line examples drawn

from the prior ,
From: C.M. Bishop
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The Predictive Distribution

We obtain the predictive distribution by integrating over
all possible model parameters:

p(t | z,b,%) = / ot 2. whntw | x,thdw

New data likelihood Old data posterior

As before the posterior is prop. to the likelihood times the
prior. But now, we don’t maximize. The posterior can be
computed analytically, as the prior is Gaussian.

1 _ o1 —24T
p(w | x,t) =N(w | m,, Sy)where SN,:.:?O o W

Prior cov Prior mean

\_/’

WyN = SN(S()_lmO + J_ZCI)Tt)
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The Predictive Distribution

Using formula lll. from above,

plt | o.t.x) = [ plt | 2. wip(w | x. tydw
— /N(t; wlo(x), o) N(w; mp, Sy)

= N(t; myo(z), o5 (x))

where
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The Predictive Distribution (2)

o Example: Sinusoidal data, 9 Gaussian basis
functions, 1 data point

1 I
|

(; e —
The predictive distribution Some samples from
From: C.M. Bishop the posterior
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Predictive Distribution (3)

o Example: Sinusoidal data, 9 Gaussian basis
functions, 2 data points

| 1k
t t
0 ol
—1 —1
e) i —
The predictive distribution Some samples from
From: C.M. Bishop the posterior
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Predictive Distribution (4)

o Example: Sinusoidal data, 9 Gaussian basis
functions, 4 data points

1 ]

7 7
7

Or 0

-1 -1
; 1 —
The predictive distribution Some samples from

From: C.M. Bishop the posterior
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Predictive Distribution (5)

o Example: Sinusoidal data, 9 Gaussian basis
functions, 25 data points

0 o 0 o
The predictive distribution Some samples from
From: C.M. Bishop the posterior
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Summary

« Regression can be expressed as a least-squares problem

 To avoid overfitting, we need to introduce a regularisation
term with an additional parameter A

« Regression without regularisation is equivalent to
Maximum Likelihood Estimation

« Regression + reg = Maximum A-Posteriori

« Bayesian Linear Regression operates on sequential data
and provides the predictive distribution

« When using Gaussian priors (and Gaussian noise), all
computations can be done analytically
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The Bayes Filter (Rep.)

Bel(z¢) = p(wy | i, 21, .-

, Ut, Zt)

— 7 p(zt | Lt, UL, 21y - 7ut)p($t ‘ U, 21,y - - 7ut)

— 7 P(Zt \ $t)p($t | U1, 21y - - - ,Ut)

— Up(zt | ﬂjt)/p<$t ‘ ulvzlaﬂ'autaxt—l)

—nNp Zt‘xt>

—npzt\a:'t

$t—1 ‘ ULy R1y - - - 7Ut)dﬂ?t—1

/p Lt \ Uty Tt — 1)19(3715—1 | ULy Rlye ey

P\t \ U, Tt— 1)]7(3%—1 | ULy B1y e vy

—7729275‘3315

/¥
JE

p Lt | Ut, Tt— 1)Bel(ﬂ3t 1)dil3t 1

Machine Learning for
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Graphical Representation (Rep.)

We can describe the overall process using a

e This incorporates the following Markov assumptions:
p(z¢ | Tot, Ur:t, 21:¢) = p(2¢ | @) (MEasurement)

p(% \ L0:t—1, Ul:t, Z1:t) — p(% \ $t—1,ut) (state)

Machine Learning for Dr. Rudolph Triebel
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Definition

A Probabilistic Graphical Model is a diagrammatic
representation of a probability distribution.

e In @ Graphical Model, random variables are
represented as nodes, and statistical dependencies are

represented using edges between the nodes.
o 1he resulting graph can have the following properties:
« Cyclic / acyclic
« Directed / undirected

o 1 he simplest graphs are Directed Acyclig Graphs
(DAQG).
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Simple Example

o Given: 3 random variables a, b, and ¢
o Joint prob: p(a, b, c) = p(cla, b)p(a,b) = p(cl|a, b)p(bla)p(a)

a p(b | a)
p(a) ; Random
variables can be
discrete or
continuous
p(c ‘ a, b) C

A Graphical Model based on a DAG is called a
Bayesian Network
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Simple Example

o In general: K random variables x1,Z2,...,Tk
e JOINnt prob:

p(xlv - - 7$K) — p(xK‘xla L 7xK—1) . . p($2‘$1)p($1)
e Ihis leads to a fully connected graph.

o Note: The ordering of the nodes in such a fully
connected graph is arbitrary. They all represent the
joint probability distribution:
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Bayesian Networks

Statistical independence can be represented by the
absence of edges. This makes the computation
efficient.

p(xl, .. ,337) — p(ﬂi‘l)p(@)p(x:s)p(im\xl, L2, 333)

p($5 \$1, 333)}7(376 \5134)19(% \33‘4, 5135)

Intuitively: only . , andx3

have an influence on s
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Bayesian Networks

We can now define a one-to-one mapping from
graphical models to probabilistic formulations:

(GGeneral Factorization:

K
p(x) = H p(@k|pay)
k=1

where
pap = ancestors of py

and
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Elements of Graphical Models

In case of a series of random variables with equal
dependencies, we can subsume them using a plate:

p(t,w) = p(w) [] pltalw)
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Elements of Graphical Models (2)

We distinguish between input variables and explicit

hyper-parameters:
N
p(t, w|x, a, 0?) = p(w]|a) H (tn|W, Xy, 0
n=1
g L 1 8
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Elements of Graphical Models (3)

We distinguish between observed variables and
hidden variables:

N

p(wlt) o< p(w) ] pltalw)

n=1

(deterministic parameters omitted)

CEEEE—
Ty (84
& &
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Regression as a Graphical Model

Regression: Prediction of a new target value ¢

p(f,t,w | .c’iz,x,oz,aQ) —

s B - N ]
Ln Q0 ~
2 a 2
i ; H p(ty | xn, w,0%) | p(w | a)p(t|z, w,c”)
|l n=1 _
Here: conditioning on all
i deterministic parameters
tr
1 N Using this, we can obtain
the
2" O "z 7 2 t T :
o ~ p(ﬂm,x,t,a,a ) /p(t,t,w|x,x, a,0”)dw
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Two Special Cases

o We consider two special cases:

. All random variables are discrete; i.e. Each Xx;

IS represented by values u1q,...,urg Where
0.5000

. 0.3750
plz | p) = H“ “j—10.25oo
j=1 0.1250
0O ‘M1 M2

o All random variables are Gaussian

0.5
0.45 |
O.4

2 ~ N (i g, 02) |
c MNY . % . 0.3 |
0.2

O.15

O.1

0.05

O

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Discrete Variables: Example

o TWO dependent variables: K2 - 1 parameters | Here: K =2

T T2 | p(z2 | 21)
1 1 0.25 }K 1)
1| p(1) 1 2 0.75 R(K — 1)
1 02 K -1 > : 01 x 1
2 2 2 0.9 |

X(j8 X2
O 'O K-1+KK-1)=K*—-1

o INndependent joint distribution: 2(K- 1) parameters

X1 X5
() ()  K-1+K-1=20-1)

Machine Learning for

Dr. Rudolph Triebel
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Discrete Variables: General Case

In a general joint distribution with M variables we need
to store KM -1 parameters

If the distribution can be described by this graph:

O—0O O
then, we have only K-1 + (M -1) K(K -1) parameters.

This graph is called a with M nodes.

The number of parameters grows only with
the number of variables.

Machine Learning for Dr. Rudolph Triebel
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Gaussian Variables

Assume all random variables are Gaussian and we

define
p(z; | pa;) =N | zi; Z wi; T + bi, v;
JEP,

Then one can show that the joint probability p(x) is a
multivariate Gaussian. Furthermore:

Xr; = Z Wi 4 -+ bj -+ \/57;67; €; ~ _/\/'(()7 1)
JEPa;

Thus:

jEPai

l.e., we can compute the mean values recursively.
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Gaussian Variables

Assume all random variables are Gaussian and we

define
p(z; | pa,) =N | x;; E Wi i + by, v;
JEP,

The same can be shown for the covariance. Thus:
* Mean and covariance can be calculated recursively
Furthermore it can be shown that:

e The fully connected graph corresponds to a Gaussian
with a general symmetric covariance matrix

* The non-connected graph corresponds to a diagonal
covariance matrix

Machine Learning for Dr. Rudolph Triebel
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Independence (Rep.)

Definition 1.4: Two random variables X and Y are

1 p(x,y) = p(x)p(y)
For independent random variables y and y~ we have:

_p@y) _pl@ply) _ o
plz|y) = ply)  p(y) =P

Notation: Ay |0

Independence does not imply conditional independence.
The same is true for the opposite case.
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Conditional Independence (Rep.)

Definition 1.5: Two random variables X and Y are
given a third random
variable 7 Iff:

p(x,y | z) =plx|2)ply | 2)

This is equivalent to:

p(x | z) =p(x|y,z) and
ply|z)=pyl|xz)

Notation: rll ylz

Dr. Rudolph Triebel
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Conditional Independence: Example 1

This graph represents the
c probabillity distribution:

p(a,b,c) = plale)p(blc)p(c)
Marginalizing out ¢ on
both sides gives

p(a,b) = plalc)p(blc)p(c)
This is in general not equal to p(a)p(b).

Thus: « and b are not independent: ¢ f b | ()
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Conditional Independence: Example 1

o NOw, we condition on ¢ (it is assumed to be known):

C

p(a,b,c)
p(c)
4 ; = plale)p(blc)

p(a, b‘C) —

Thus: o and b are conditionally independent given c: o 1L b | ¢

We say that the node at c is a on the
path between ¢ andb

Machine Learning for Dr. Rudolph Triebel
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Conditional Independence: Example 2
This graph represents the

a c b distribution:
O—0O—=0 = p(a)p(cla)p(blc)

p(a, b, c)

Again, we marginalize over c:

Zp (c|la)p(blc) = Zp cla)p(blc, a)

Zp pbca Zpbc\

a)p(c
= pla)p (b|a)
And we obtain: , i 4 | ¢

Machine Learning for Dr. Rudolph Triebel
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Conditional Independence: Example 2

As before, now we condition on ¢ :

‘C _‘C _O’ p(a,blc) = (0

And we obtain: o 1L b | ¢

We say that the node at cis a
on the path between ¢ and .
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Conditional Independence: Example 3

Now consider this graph:
pla, b, ¢) = pa)p(b)p(c|a, b)

using:

Zp(abc Zp a,b)

C

we obtain:

p(a,b) = p(a)p(b)

And the resultis: a 1. 6|0

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Conditional Independence: Example 3

Again, we condition on.

a , ey — p(a,b,c)
p( 76‘ ) p(C)
~ p(a)p(b)p(cla, )
p(c)
c Thisresults in: 1 e

We say that the node at ¢ is a
on the path between ¢ and ».
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To Summarize

o When does the graph represent (conditional)
independence?

Tail-to-tail case: if we condition on the tail-to-tail node
Head-to-tail case: if we cond. on the head-to-tail node

Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants)

In general, this leads to the notion of D-separation for
directed graphical models.
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D-Separation

Say: A, B, and C are non-intersecting subsets of
nodes in a directed graph.

A path from A to B is blocked by C if it contains
a nhode such that either

a) the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or

b) the arrows meet head-to-head at the node, and neither
the node, nor any of its descendants, are in the set C.

o|f all paths from A to B are blocked, A is said to
be d-separated from B by C.

Notation: dsep(A, B|C)

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



D-Separation is a
property of graphs
and not of
probability
distributions

dsep(A, B|C)




D-Separation: Example

. f a /
€ b ¢ b
C
C
—dsep(a, b|c) dsep(a, b|f)

We condition on a descendant We condition on a tail-to-talil
of e, I.e. it does not block the  node on the only path from a
path from a to b. to b, I.e f blocks the path.
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I-Map

Definition 4.1: A graph G is called an for a
distribution p if every D-separation of G corresponds
to a conditional independence relation satisfied by p:

VA,B,C :dsep(A,B,C)= A1l B|C

Example: The fully connected graph is an |-map for any
distribution, as there are no D-separations in that
graph.
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D-Map

Definition 4.2: A graph G is called an for a
distribution p if for every conditional independence
relation satisfied by p there is a D-separation in G :

VA,B,C : A 1L B|C = dsep(A, B,C)

Example: The graph without any edges is a D-map for
any distribution, as all pairs of subsets of nodes are
D-separated in that graph.
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Perfect Map

Definition 4.3: A graph G is called a for a
distribution p if it is a D-map and an |I-map of p.

VA,B,C : A1l B|(C < dsep(A, B,C)

A perfect map uniquely defines a probability distribution.
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The Markov Blanket

e Consider a distribution of a node x 1 conditioned on

all other nodes:
p(xla”'vXM)

/p(xl, X )dX;
HP(Xk’Pak:>

k
. / | [ p(xxIpay,)dx;
k

— p(X’i ‘ X./\/l'i)

p(Xilxgjziy) =

Factors independent of x;

Ll t hf.}a‘z‘ at cancel between numerator
Xi - all parents, chiidren and denominator.

and co-parents of x;.
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Summary

« Graphical models represent joint probability
distributions using nodes for the random variables
and edges to express (conditional) (in)dependence

« A prob. dist. can always be represented using a fully
connected graph, but this is inefficient

o In a directed acyclic graph, conditional indepen-
dence is determined using D-separation

« A perfect map implies a one-to-one mapping
between c.I. relations and D-separations

« The Markov blanket is the minimal set of observed
nodes to obtain conditional independence

Machine Learning for Dr. Rudolph Triebel
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Repetition: Bayesian Networks

Directed graphical models
can be used to represent
probability distributions

This is useful to do
iInference and to generate
samples from the
distribution efficiently

p(z1,...,x7) = p(x1)p(x2)p(xs)p(@4|T1, T2, T3)
p(xs|x1, x3)p(xs|Te)p(T7|24, T5)
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Repetition: D-Separation

O—@—O

&

e D-separation is a property of graphs that can be
easily determined

 An |-map assigns every d-separation a c.l. rel
A D-map assigns every c.i. rel a d-separation
e Every Bayes net determines a unique prob. dist.
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In-depth: The Head-to-Head Node

; : Example:

a. Battery charged (0 or 1)

b: Fuel tank full (O or 1)

c. Fuel gauge says full (O or 1)
We can compute p(—c¢) =0.315

a ‘ b ‘ p(c)

] ’ — and p(—c|—-b) =0.81

I 0 0.2 and obtain p(=b | —¢) =~ 0.257

0 I 0.2 similarly: p(=b | —¢, —a) =~ 0.111
’ N “a explains c away”
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Repetition: D-Separation

a f a f
e b e b
C C
—~dsep(a, b|c) dsep(a, b| f)
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Directed vs. Undirected Graphs

Using D-separation we can identify conditional
independencies In directed graphical models, but:

o |Is there a simpler, more intuitive way to express
conditional independence in a graph?

« Can we find a representation for cases where an
,ordering” of the random variables is inappropriate
(e.g. the pixels in a camera image)?

Yes, we can: by removing the directions of the
edges we obtain an Undirected Graphical Model,
also known as a Markov Random Field
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Example: Camera Image

e directions are counter-intuitive for images

e Markov blanket is not just the direct neighbors
when using a directed model
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haat A ALLB|C

All paths from 4 to B go

through C, i.e. C blocks all
paths.

Machine Learning for

Markov Random Fields

Markov
Blanket

We only need to condition
on the of

x to get c.I., because these
already block every path

from x to any other node.

Computer Vision

Dr. Rudolph Triebel
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Factorization of MRFs

Any two nodes x; and x; that are not connected in an
MRF are conditionally independent given all other nodes:

p(xis x5 | X\fi51) = P2 | X\(a,53)P(T5 | X\ (i 53)
In turn: each factor contains only nodes that are
connected

This motivates the consideration Clique
of cligues in the graph:

e A clique is a fully connected subgraph.

o A maximal cligue can not be extended
with another node without loosing the
property of full connectivity.

Maximal Clique
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Factorization of MRFs
In general, a Markov Random Field is factorized as

<) — Hc¢C(XC X
pix) = > x 1o bo(x¢) H¢C ) (4D

where C is the set of all (maximal) cliqgues and @, is a

positive function of a given cligue x. of nodes, called
the clique potential. Z is called the partition function.
Theorem (Hammersley/Clifford): Any undirected

model with associated clique potentials @ is a perfect

map for the probability distribution defined by Equation
(4.1).

As a conclusion, all probabillity distributions that can be
factorized as in (4.1), can be represented as an MRF.
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Converting Directed to Undirected Graphs (1)

CEC mz: Cle CQ:N

p(X) 562\5131 p($3!332 33N|£EN 1)
1
p(X) — E $1,£132 ¢23 $2,$3 PN 1,N($N—1axN)
L1 Lo ITN—-1 TN

In this case: Z=1
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Converting Directed to Undirected Graphs (2)

L L3 T1 T3

p(x) = p(x1)p(z2)p(w2)p(T4 | 71,72, 73)

In general: conditional distributions in the directed graph
are mapped to cliques in the undirected graph

However: the variables are not conditionally independent
given the head-to-head node

Therefore: Connect all parents of head-to-head nodes with
each other (moralization)

Machine Learning for
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Converting Directed to Undirected Graphs (2)

£z L3 Tq T3
L2
—_—
L4 T4
p(x) = p(z1)p(z2)p(z2)p(xs | T1, 22, T3) p(x) = ¢(x1, 22,23, T4)

Problem: This process can remove conditional
independence relations (inefficient)

Generally: There is no one-to-one mapping between the
distributions represented by directed and by undirected

graphs.
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Representability

o As for DAGs, we can define an I-map, a D-map
and a perfect map for MRFs.

e 1 he set of all distributions for which a DAG

exists that is a perfect map is different from
that for MRFs.

Dr. Rudolph Triebel
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Directed vs. Undirected Graphs

C
A B
A
C
D
A1l B¢ Al B0
AU B|C AL B|CUD

Cl1D|AUB
Both distributions can not be represented in the other

framework (directed/undirected) with all conditional
iIndependence relations.

Machine Learning for Dr. Rudolph Triebel

Computer Vision Computer Vision Group

TUTI



Using Graphical Models

We can use a graphical model to do inference:

« Some nodes in the graph are observed, for others
we want to find the posterior distribution

« Also, computing the local marginal distribution p(x )
at any node x, can be done using inference.

Question: How can inference be done with a
graphical model?

We will see that when exploiting conditional
independences we can do efficient inference.
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Inference on a Chain

The joint probability is given by

p(x) = %101,2(961,$2)¢2,3($2,5133)%03,4(333,334)104,5(%4,$5)
The marginal at x;is  p(zs)=> > > > px)

1 5] 4 Iy

In the general case with N nhodes we have

p(x) = E¢1,2($1,$2)¢2,3(5E2, x3) - YN—1 N(TN-1,TN)

and plan) =) - Zp
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Inference on a Chain

=2.2.2.2 v

1 45 4 Iy

e This would mean KY computations! A more efficient
way Is obtained by rearranging:

p(xs) = % D3N N 1 o(wr, m2)2,3(w2, 13) s (@3, T4) a5 (24, T5)

1 ) L4 Iy

— % 2 §§1 >: > : ¢1,2($1 ; $2)¢2,3(ﬂ72, $3)¢3,4($37 :z:4)¢4,5(x4, x5)

r2 1 T4 b

= —szs (2, 3) Z% (w1, 32) Y h3.4(x3,4) 21045 (T4, 5)

X2 ) | L4 J

Tl (x3)<— Vectors of size K —>,u5(553)
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Inference on a Chain

Ho (3771—1) Na(xn) 205 (mn) 205, ($n+1)

In general, we have

p(Tn) = % > Unim(@no1,mn) | Y Y12(@1, 32)

Ln—1 . T
. =
"

Z 7wbn,n—l—l(mna xn—l—l) "o ZwN—l,N(xN—la CCN)
TN

Ln+1

N _J/

Machine Learning for Dr. Rudolph Triebel
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Inference on a Chain

The messages x, and u; can be computed
recursively: i

Z 7»b'n,—l,'n,(xrn,—l,.’lin) Z ces

fa(Tn)

Z wn—l,n(xn—l 9 xn)ﬂa (xn—l)-

Ln—1

Z wn,n—l—l(xn, CEn_|_1) Z co

Ln+1 Ln+2

18 (Zn )

Z wn,n—l—l (xna Ln+1 )HB (xn—l—l)-

Ln+1

Computation of u, starts at the first node and
computation of u;, starts at the last node.
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Inference on a Chain

Ho (ivn—l) Ma(xn) 205 (xn) 205, (anrl)

07 ..... _O O 07 ..... 40

L1 Ln—1 Ln, LTn+1 TN

e The first values of u, and u; are:

=Z¢1,2($1,$2) Ha(TN—1) Zle LN (TN-1,2N)
L1

e 1he partition function can be computed at any node:

e Overall, we have O(NK-?) operations to compute the
marginal  p(z,)
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Inference on a Chain

To compute local marginals:
.Compute and store all forward messages, (o (Zn).
-Compute and store all backward messages, ug(zn)

-Compute Z atanodex,: Z=)_ talTm)us(zm)

Lm

-Compute 1
p(Tn) = E“a (Tn) s (Tn)

for all variables required.
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Summary

e Undirected Models (also known as Markov
random fields) provide a simpler method to
check for conditional independence

e A MRF iIs defined as a factorization over cligue
potentials and normalized globally

* Directed models can be converted Into
undirected ones, but there are distributions that
can be represented only in one kind of model

e For undirected Markov chains there Is a very
efficient inference method based on message
passing

Dr. Rudolph Triebel
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Inference on a Chain (Rep.)

Ho (ivn—l) Ma(xn) 205 (xn) 205, (anrl)

07 ..... _O O 07 ..... 40

L1 Ln—1 Ln, LTn+1 TN

e The first values of u, and u; are:

=Z¢1,2($1,$2) Ha(TN—1) Zle LN (TN-1,2N)
L1

e 1he partition function can be computed at any node:

e Overall, we have O(NK-?) operations to compute the
marginal  p(z,)
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More General Graphs

The message-passing algorithm can be extended to
more general graphs:

Undirected Directed

Troe Tree Polytree

It is then known as the
A special case of this is

Machine Learning for Dr. Rudolph Triebel
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More General Graphs

The message-passing algorithm can be extended to
more general graphs:

Undirected

T
e An undirected tree is defined

as a graph that has exactly one
path between any two nodes
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More General Graphs

The message-passing algorithm can be extended to
more general graphs:

A directed tree has Derergéed Conversion from
only one node a directed to an
without parents and undirected tree is
all other nodes no problem,

have exactly one because no links
parent are inserted

The same is true for the
conversion back to a
directed tree
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More General Graphs

The message-passing algorithm can be extended to
more general graphs:

| | Polytree
Polytrees can contain nodes with

several parents, therefore
moralization can remove
independence relations
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Factor Graphs

« The Sum-product algorithm can be used to do
inference on undirected and directed graphs.

« A representation that generalizes directed and
undirected models is the

p(x) = p(z1)p(z2)p(z3|T1, T2) f(x1,22,23) = p(w1)p(22)p(23 | 1, 72)
Directed graph Factor graph
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Factor Graphs

« The Sum-product algorithm can be used to do
inference on undirected and directed graphs.

« A representation that generalizes directed and
undirected models is the

B T9 L1 T2

P(x1, 22, 73) f(x1,z2,23) = Y(x1, T2, 23)
Undirected graph Factor graph
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Computer Vision Computer Vision Group



Factor Graphs

Factor graphs 11

e can contain multiple factors
for the same nodes

 are more general than 2
undirected graphs

 are bipartite, i.e. they consist
of two kinds of nodes and all
edges connect nodes of
different kind
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Factor Graphs

: L1 I3
e Directed trees convert to

tree-structured factor graphs /

* The same holds for T4
undirected trees

e Also: directed polytrees
convert to tree-structured T O T
factor graphs fa

 And: Local cycles in a
directed graph can be
removed by converting to a T4
factor graph

Dr. Rudolph Triebel
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The Sum-Product Algorithm

Assumptions:
e all variables are discrete
 the factor graph has a tree structure

The factor graph represents the joint distribution
as a product of factor nodes:

p(X) — H Js (Xs)

The marginal distribution at a given node x Is

p(z) =) p(x)

X\ T

Dr. Rudolph Triebel
Computer Vision Group




The Sum-Product Algorithm

For a given node x the joint
can be written as

Product of all

ThUS we have p Z H F a: X factors associated

x\z selle(x) with fq

Key insight: Sum and product can be exchanged!

H ZFZUX H f,—sz (T

sene(x) Xs sENG(z) \‘Messages from
factors to node x”
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The Sum-Product Algorithm
\szvwfs ()

O The factors in the messages
w.—(x) ~  can be factorized further:

Lm

G (s Ko Fs(x, X)) = fs(x,21,...,20)G1(21, Xs,) ... Gpr(xps, X5y, )

The messages can then be computed as

,ufs_m(aj)zz---ZfS(x,xl,...,xM) H ZGm(xm,XSm)

’rI’LEne(fS)\LU Xsm

:Z...Zfs(x,xl,...,xM) H ,Ua:m—>f Tm)

meNe(fs)\z \
“Messages from

nodes to factors”
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The Sum-Product Algorithm

The factors G of the
neighboring nodes can
again be factorized further:

Fi(Tm, Xmi) GM(;I}m,XSm) — H Fl(xm,Xml)
lENE(zm )\ fs

This results in the exact same situation as above!
We can now recursively apply the derived rules:

Hoa— £, (Tm) = H Z E (@, Xim, )

lEN€(zm )\ fs Xm,

— H Hfr—xm, (I‘m)

leENE(xm )\ fs
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The Sum-Product Algorithm

Summary marginalization:

1.Consider the node x as a root note

2.Initialize the recursion at the leaf nodes as:
nrse(x)=1 (var) or p,s(z) = f(z) (fac)
3.Propagate the messages from the leaves to the
root x

4.Propagate the messages back from the root to
the leaves

5.We can get the marginals at every node in the
graph by multiplying all incoming messages

Dr. Rudolph Triebel
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The Max-Sum Algorithm

Sum-product is used to find the marginal
distributions at every node, but:

How can we find the setting of all variables that
maximizes the joint probability? And what is the
value of that maximal probability?

Idea: use sum-product to find all marginals and
then report the value for each node x that
maximizes the marginal p(x)

However: this does not give the overall
maximum of the joint probability

Dr. Rudolph Triebel
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The Max-Sum Algorithm

Observation: the max-operator is distributive, just
like the multiplication used in sum-product:

max(ab, ac) = a max(b, c) if  a>0
ldea: use max instead of sum as above and
exchange it with the product

Chain exan}ple:

m}z}xp(x) = max. .. max|y 2(1,22) ... UN—1.N(TN-1,TN)]

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



The Max-Sum Algorithm

To find the maximum value of p(x), we start again
at the leaves and propagate to the root.

Two problems:

N0 summation, but many multiplications; this
leads to numerical instability (very small values)

e when propagating back, multiple configurations

of x can maximize p(x), leading to wrong
assignments of the overall maximum

Solution to the first:
Transform everything into log-space and use sums

Dr. Rudolph Triebel
Computer Vision Group



The Max-Sum Algorithm

Solution to the second problem:

Keep track of the arg max in the forward step,
l.e. store at each node which value was
responsible for the maximum:

¢(ry) = arg max|In fn—l,n(ajn—lv Tn) + Hxp_1—fr_1n (Tn))

Ln—1

Then, in the back-tracking step we can recover
the arg max by recursive substitution of:

Tpor = ¢y )
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Other Inference Algorithms

Junction Tree Algorithm:
« Provides exact inference on general graphs.

« Works by turning the initial graph into a junction
tree and then running a sum-product-like algorithm

A junction tree is obtained from an undirected
model by triangulation and mapping cliques to
nodes and connections of cligues to edges

o It Is the maximal spanning tree of cliques
Problem: Intractable on graphs with large cliques.

Cost grows exponentially with the number of
variables in the largest cligue (“tree width”).
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Other Inference Algorithms

Loopy Belief Propagation:

« Performs Sum-Product on general graphs,
particularly when they have loops

« Propagation has to be done several times, until a
convergence criterion is met

« No guarantee of convergence and no global
optimum

« Messages have to be scheduled

o Initially, unit messages passed across all edges

« Approximate, but tractable for large graphs
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Conditional Random Fields

« Another kind of undirected graphical model is known
as Conditional Random Field (CRF).

« CRFs are used for classification where labels are
represented as discrete random variables y and
features as continuous random variables x

« A CRF represents the conditional probability

Nl oe(xc,yo; w)
p(y | X, W) o Zy/ HC’ ¢C(X07Yb;w)

where w are parameters learned from training data.
« CRFs are discriminative and MRFs are generative
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Conditional Random Fields

Derivation of the formula for CRFs:

p(y|XW):p(y,X‘W) _ p(y,x\w) _ H0¢C(XC,}’C;W) 7
| p(x ‘ W) Zy/ p(y’,x ‘ W) Z Zy’ HC’ qu(XC'?y/C;W)

In the training phase, we compute parameters w that
maximize the posterior:

w" = argmax p(w [ X", y%) oc p(y* | X*, w)p(w)

where (x7,y") is the training data and p(w) is a Gaussian
prior. In the inference phase we maximize

argmax p(y | x,w")
y
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Conditional Random Fields

Typical example:
observed variables

x;; are intensity
values of pixels in
an image and

hidden variables y, ;
are object labels

Note: the definition of x;; and y;; is different
from the one in C.M. Bishop (pg.389)!
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CRF Training

We minimize the negative log-posterior:

w* = argmin{~ Inp(w | x*,y*)} = argmin{~ Inp(y" | x*,w) — Inp(w)}

Computing the likelinood is intractable, as we have to

compute the partition function for each w. We can
approximate the likelihood using pseudo-likelihood:

p(y* | x*,w) =~ | [ p(y; | M(y}),x*, w)
/

Markov blanket C;: All cliques containing y;

/

p(y; | M(y;),x", w)

where

_ lc 0, (X6, u5, ¥, W)
qu’; HC’,,; ¢C (Xgl ? y’;’ ya ) W)
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Pseudo Likelihood
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Pseudo Likelihood

@

Pseudo-likelihood is computed only on the Markov
blanket of y. and its corresp. feature nodes.
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Potential Functions

o 1he only requirement for the potential functions is
that they are positive. We achieve that with:

dc(xc,yo,w) :=exp(w' f(xc,yc))
Where f is a compatibility function that is large if the
labels y fit well to the features x,..

e 1his is called the log-linear model.

e The function f'can be, e.g. a local classifier
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CRF Training and Inference

Training:
« Using pseudo-likelihood, training is efficient. We have
to minimize:
L(w) = —Ipl(y" | x*,w) 4 212WTW
/ O \
Log-pseudo-likelihood Gaussian prior

« This is a convex function that can be minimized using
gradient descent

Inference:

« Only approximatively, e.g. using loopy belief
propagation
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Summary

« Undirected Graphical Models represent conditional
independence more intuitively using graph
separation

« Their factorization is done based on potential
functions The normalizer is called the partition
function, which in general is intractable to compute

o Inference in graphical models can be done
efficiently using the sum-product algorithm
(message passing).

« Another inference algorithm is loopy belief
propagation, which is approximate, but tractable

« Conditional Random Fields are a special kind of
MRFs and can be used for classification
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Graphical Representation (Rep.)

We can describe the overall process using a

 This incorporates the following Markov assumptions:

p(Tt | Towt—1,Ur:t, 21:¢) = P(Tt | Te—1, Ut) (state)
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Graphical Representation

We can describe the overall process using a

)
Notation Discrete
differs from )
Bishop! Variables

 This incorporates the following Markov assumptions:

p(zt ‘ L0:t let) — p(Zt | $t) (measurement)

p(CCt \ L0O:t—1 Z1:t) — p(iUt \ Tt—1 ) (state)
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Example

“*Occasionally dishonest casino”:
® observations: faces of adie z; € {1,2,...,6}
¢ hidden states: two different dice, one fair, one

loaded
mo.gs /A\/o.go
1 1/6 0 1: 110
> 16 | 2: 1/10
316 | 3: 1/10
4: 1/6 0.05 4: 110
5: 1/6 > 5: 1/10
6: 1/6 6: 5/10

Rolls: 664153216162115234653214356634261655234232315142464156663246
Die: LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFLLLLLLLL
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Formulation as HMM
1.Discrete random variables

* Observation variables: {z,}, n=1..N

» State variables (unobservable): {x,},n=1..N

* Number of states K: x,e{1..K} Model Parameters
0

2.Transition model p(x; |x,.;)
* Markov assumption (x; only depends on x;
* Represented as a KxK transition matri

* Initial probability: p(x,) repr. as@ng, @

3.0bservation model p(z,|x;) with parameter

* Observation only depends on the current state
« Example: output of a “local” place classifier
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The Trellis Representation

time

(=1 .\ '/. ......
2 ..“..“. ......
LN

n- n-1
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Application Example (1)

» Given an observation sequence z,,z,,z;. ..

« Assume that the model parameters
0 =(A, w, @) are known

« What is the probability that the given observation
seqguence Is actually observed under this model,
l.e. p(Z| 6)?

- |If we are given several different models, we can
choose the one with highest probability

- EXpressed as a supervised learning problem,
this can be interpreted as the inference step
(classification step)
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Application Example (2)

» Given an observation sequence z,,z,,z;...

- Assume that the model parameters
0 =(4, &, @) are known

* What is the state sequence x,,x,x;... that
explains best the given observation sequence?

* In the case of place recognition: which is the
sequence of truly visited places that explains
best the sequence of obtained place labels
(classifications)?
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Application Example (3)

» Given an observation sequence z,,z,,z;...
« What are the optimal model parameters
0 =(A, 7, ¢)?

* This can be interpreted as the
training step

* [t Is in general the most difficult problem
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Summary: 3 Operations on HMMs

1. Compute data likelihood p(Z|0) from a known model
« Can be computed with the forward-backward algorithm

2. Compute optimal state sequence with a known model
« (Can be computed with the Viterbi-Algorithm

3. Learn model parameters for an observation sequence

 (Can be computed using Expectation-Maximization (or
Baum-Welch)
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1. Computing the Data Likelihood
* Assume: given a state sequence x,,x,,x;...

Two possible operations:

e Filtering: computes p(z: | z1.), i.e. state
probability only based on previous observations

« Smoothing: computes p(z; | z1.7), state
probability based on all observations (including
those from the future)

|

OOOOOOOO

Filtering

Smoothing

5
a
0 Il Il Il Il
200 250 300

rrrrrrrrrrrrrrrrrrrr
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The Forward Algorithm

* First, we compute the prediction from the last
time step:

p(xy =J | 21:4-1) = Zp(ﬂft =J | x—1 = )p(@e—1 =1 | Z1:4-1)

* Then, we do the update using Bayes rule:

Oét(j) L= p(il?t — ) | Zl:t) — p(xt — ) | Ztazlzt—l)

1
B Zp(Zt ‘ Tt — j,Z)z{—l)p(wt :j | Zl:t—l)

* This is exactly the same as the Bayes filter from
the first lecture!
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The Forward-Backward Algorithm

» As before we set a.(j) :=p(z: = j | 21.¢)
 We also define  5:(j) := p(zt+1.7 | ©1 = j)
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The Forward-Backward Algorithm

» As before we set a.(j) :=p(z: = j | 21.¢)
 We also define  5:(j) := p(zt+1.7 | ©1 = j)

 This can be recursively computed (backwards):
Bt — 1() (ZtT‘th 1—Z)

— Zp(wt = 15 %ty Zt41:T ‘ Li—1 = Z)

J
= plaerr | @ = Gwg A= i plae =G, | vy = 1)

J

~ ZP(ZtH:T |z = J)p(2e | 20 = 7, xt/—i/_zi)p(xt =J | -1 =1)

J

=D _Bi)p(zt | @ = jplas = j | w1 = i)

J
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The Forward-Backward Algorithm

» As before we set a.(j) :=p(z: = j | 21.¢)
 We also define  5:(j) := p(zt+1.7 | ©1 = j)

 This can be recursively computed (backwards):
Bt — 1() (ZtT‘th 1—Z)

= " Bi)pae | = ol = | =

 This Is exactly the same as the message-passing
algorithm (sum-product)!

- forward messages «; (vector of length K)
» backward messages 3, (vector of length K)
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2. Computing the Most Likely States
» Goal: find a state sequence x,,x,,x;... that

maximizes the probability p(X,Z|0)

¢ Deflne 575(]) L= max p(Xlzt—laxt — j ‘ Zlit)

L] genns Tt—-1

This is the probability of state | by taking the
most probable path.

s
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2. Computing the Most Likely States
» Goal: find a state sequence x,,x,,x;... that

maximizes the probability p(X,Z|0)

¢ Deflne 575(]) .= aclI.I.]jaxX_lp(XLt_l’xt :j ‘ Zl:t)
This can be computed recursively:
0¢(7) := max o1 ()p(xs | Te—1)p(21 | 1)
we also have to compute the argmax:

at(j) := arg max 0t—1(2)p(xt | X1—1)p(2t | @)
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The Viterbi algorithm

 |nitialize:
° 0(xp)= PXo) P | Xp)

* P(xy)=0
- Compute recursively for n=1...N:

° 6(Xn)= p(zn‘xn) rDEX [S(Xn-1) p(anxn-1)]
° a(Xn): arg)max [S(Xn-1) p(Xn‘Xn-1)]

¢ On termination:

* p(Z,X]0) = max d(xy)

® Xy = argmax 0(xy)

N

- Backtracking:

° Xr’; = a(Xn+1)
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3. Learning the Model Parameters

- Given an observation sequence z,,z,,z;...

* Find optimal model parameters 6

* We need to maximize the likelihood p(Z|0)
« Can not be solved in closed form

» |[terative algorithm:
Expectation Maximization (EM) or for the case
of HMMs: Baum-Welch algorithm
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Expectation Maximisation

« Objective: Find the model parameters knowing
the observations: w,A,(

* Result:
* Train the HMM to recognize sequences of input
* Train the HMM to generate sequences of input

 Technique: Expectation Maximisation

o E: Find the best state sequence given the
parameters

* M. Find the parameters using the state sequence
* Maximisation of the log-likelihood:

argmax ,, , . —log (P ({Zi }"7'3 , ACP ))
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The Baum-Welsh algorithm

* E-Step (assuming we know w,A,d, i.e. Bold)
« Define the posterior probability of being in state
| at step k:

- Define y(x,)= p(x,|2)
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The Baum-Welsh algorithm

* E-Step (assuming we know m,A,¢, i.e. Bold)

« Define the posterior probability of being in state
| at step k:

- Define y(x,,)= p(x,|2)
* |t follows that y(x,)= a(x,) B(x,) / p(Z)
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The Baum-Welsh algorithm

* E-Step (assuming we know mt,A,9, i.e. Gold)

 Define the posterior probability of being in state | at
step k:

- Define y(x,)= p(x,|2)
» |t follows that y(x,)= a(x,,) B(x,) / p(2)

* Define €(x,,_;,X,)= p(X,.1,X,|2)
» |t follows that

E.:(Xn-1 1Xn)= O((Xn-1)p(zn‘xn)p(xn‘xn-1)B(Xn) / p(Z)

- We need to compute: EXF:ectzd
complete data
Q(8,801)= 2 p(X|Z, B°d)log p(Z,X|0)  og-likelihood
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The Baum-Welsh algorithm

« Maximizing Q also maximizes the likelihood:

p(Z|0) = p(Z]|B0ld)
- M-Step:

T — > x V(X)T 1k
Zj—l >k V(X)T1;
here, we need forward and backward step!
T
¢ A — D10 §(Tt—1j, Tex)
ik — <K T
D im1 2ot &(@e—1,5, Tu1)
« With these new values, Q is recomputed

 This Is done until the likelihood does not
increase anymore (convergence)

Machine Learning for Dr. Rudolph Triebel

Computer Vision Computer Vision Group

TUTI



The Baum-Welsh algorithm - summary
* Start with an initial estimate of 0=(11,A,®)
e.g. uniformly and k-means for

* Compute Q(0,0609) (E-Step)
« Maximize Q (M-step)
* [terate E and M until convergence

 [n each iteration one full application of the
forward-backward algorithm is performed

» Result gives a local optimum

 For other local optima, the algorithm needs to
be started again with new initialization
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The Scaling problem

« Probability of sequences

Hp(a:z- ) << 1
¢ \<1

* Probabillities are very small
* The product of the terms soon is very small

« Usually: converting to log-space works
- But: we have sums of products!

« Solution: Rescale/Normalise the probability
during the computation, e.g.:

N\

O((Xn): O((Xn) / p(ZhZZv- . -vZn)
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Summary

- HMMs are a way to model sequential data
» They assume discrete states

« Three possible operations can be performed
with HMMs:

e Data likelihood, given a model and an observation

* Most likely state sequence, given a model and an
observation

e Optimal Model parameters, given an observation
» Appropriate scaling solves numerical problems

- HMMs are widely used, e.g. in speech
recognition
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Repetition: Regression

We start with a set of basis functions

o(x) = (¢o(x), P1(X), - -, Prr—1(x)) x € RY
The goal is to fit a model into the data

Y(x, w) = WT¢(X)
To do this, we need to find an error function, e.g.:

1 N

B(w) = 5 3 (wlo(x) — 1:)°

1=1
To find the optimal parameters, we derived E with
respect to w and set the derivative to zero.
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Some Questions

1.Can we do the same for classification?
As a special case we consider two classes:

l; € {—1,1} Vi=1,...,N
2.Can we use a different (better?) error function?

3.Can we learn the basis functions together with
the model parameters?

4.Can we do the learning sequentially, i.e. one
basis function after another?

Answer to all questions: Yes, using Boosting!
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The Loss Function

Definition: a real-valued function L(¢,y(x)),

where ¢ Is a target value and y is a model, Is
called a loss function.

Examples:

O1-loss:  Lpi(t,y(x)) = < 0 it =y(x)

1 else

\

squared error l0ss: L. (t,y(x)) = (t — y(x))*

exponential loss:  L.,,(t,y(x)) = exp(—ty(x))
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Loss Functions
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* 01-loss is not differentiable
e squared error loss has only one optimum
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Sequential Fitting of Basis Functions

Idea: We start with a basis function ¢, (x):
yo(X, wO) — wO¢O(X) wo = 1

Then, at iteration m, we add a new basis
function ¢.,(x) to the model:

Ym (X, W0, .+« s Win) = Ym—1(X, W0, .+« , Wyn—1) + WO (X)
Two questions need to be answered:
1.How do we find a good new basis function?
2.How can we determine a good value for w,?
ldea: Minimize the exponential loss function
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Minimizing the Exponential Loss

Aim: find w,, and ¢., so that

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Minimizing the Exponential Loss

Aim: find w,, and ¢., so that

where L(t,y) = exp(—ty)

Solution:  ¢m = arg mqgn vi,mI(t: # @(%;))
i=1
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Minimizing the Exponential Loss

Aim: find w,, and ¢., so that

where L(t,y) = exp(—ty)

N
Solution:  ¢m = arg mqgnZv@-,mH(ti # B(x;))
1=1

1 1 —err,,
W, = — log
2 err,,
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Minimizing the Exponential Loss

Aim: find w,, and ¢., so that

where L(t,y) = exp(—ty)

N
Solution:  ¢m = arg mqgnZv@-,mH(ti # B(x;))
1=1

]. 1 - m
Wy = — log o Uim+1 = Ui,m eXp(meH(ti 7& ¢m(X2))
2 err,,
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The AdaBoost Algorithm

1.For i=1,..., N: wv;« 1/N
2.For m=1,.... M
Fit a classifier (“basis function”) ¢,, that minimizes

N
> uill(ts # dm(xi))
= N . . .
COmpute err,, = Zizl Uzﬂ(f\z] 7é §bm(Xz)) and a,, = log 1 —err,,
D im1 Vi err,,

Update the weights:  v; < v; exp(a, I(t; # ¢ (%))
3.Use the resulting classifier:

y(X) — S8l Z Oy Oy (X)
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The “Basis Functions”

e Can be any classifier that can deal with weighted
data

* Most importantly: if these “base classifiers”
provide a training error that is at most as bad as
a random classifier would give (i.e. it is a weak

classifier), then AdaBoost can return an
arbitrarily small training error (i.e. AdaBoost is a

strong classifier)
* Many possibilities for weak classifiers exist, e.g.:

® Decision stumps
* Decision trees
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Decision Stumps

are a kind of very simple weak

classifiers. .

Goal: Find an axis-aligned hyperplane 2 .
that minimizes the class. error 0® o o

This can be done for each feature (i.e. '. o. :. : ¢
for each dimension in feature space) ® o(%®e0®

It can be shown that the classif. error is 0 X

always better than 0.5 (random guessing)

Idea: apply many weak classifiers, where each is
trained on the misclassified examples of the
previous.
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Classification Example
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Classification Example
2 | | o , M — 9
o
a .|O .
|

0 e . O °
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Classification Example

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Classification Example
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Classification Example
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Classification Example

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Decision Trees

* A more general version of decision stumps are
decision trees:

* At every node, a decision
IS made

* Dan be used for classification and for regression
(Classification And Regression Trees CART)

s i Machine Learning for 20 Dr. Rudolph Triebel
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Decision Trees for Classification

color

blue other
red

4.0 shape size < 10

ellipse other Ye€S no

1.1 02 40 05

e Stores the distribution over class labels in each
leaf (hnumber of positives and negatives)

e With these, we can class label probabilities, e.qg.
p(y=1|x)=1/2 If we have a red ellipse
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Growing a Decision Tree

* Finding the optimal partition of the data is an
NP-complete problem!

* |nstead: use a greedy strategy:

function fitTree(node,D, depth):

1. node.prediction = class label distribution
2.(5%,t", D, Dgr) = split(D)

3. If not worth splitting then return node

4. node.test « z,;- < t*

5. node.left = fitTree(node, Dy, depth +1)

6. node.right = fitTree(node,Dr, depth +1)

22 computer visonGro NI 11
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Growing a Decision Tree

e The Split-function finds an optimal feature and an
optimal value for that feature

e For classification, it finds a split that minimizes
some cost function, e.g. misclassification

* A decision stump is a decision tree with depth 1

e Stopping criteria for growing the tree are:
e reduction of cost too small?
e maximum depth reached?
¢ s the distribution in the sub-trees homogenous?
s the number of samples in the sub-trees too small?
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Tree Pruning

0.8 T
SL <545 A8l >=5.45 m—— Cross—validation

=== == Training set
V<28/8W>=238 SL <615A8L >=6.15 0.7} = === Min+1std. err. |-
SSW >= A\ - O Best choice
veroeeBsa SW < 3.45 ASW >= 3.45 SL <705A8L >=7.05 ‘
=Sl >= 4-L8W >= —~e. S 06F
SL<575/8L>=575 @ SW < SW >=2.4 virghica o
P = O A =
VVVVVVV SW <31 2SW>=31 @ SL <6. L>=6.95 §
SW < 2.95 ZSW > SW <3.15A8W >=3.15 g 057
< &I W SR b?gr <./ >=9-19 yersicolor =
versicoliginica SL<6.55 SSL >=6.55 virginica

SW < 2.95 ZKSWSI=2@65 A\SL >= 6.65
SL < 6.45 /KSL >?/i9g| W/ < 2.65 A\SW >= 2.65

SW <2.85 SV\{I R85 Vi%mi 529 XN\SW >=2.9

virginieasicolor versicolaginica

Number of terminal nodes

* |f the tree grows too large, the algorithm overfits

e Simply stopping to grow can lead to situations
where the tree is not expressive enough

e |dea: Build first full tree and then prune it

* Pruning can be done using cross-validation
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Random Forests

¢ To reduce the variance of the classification
estimate, we can train several trees on
randomly sampled subsets of the data

e However, this can result in correlated classifiers,
limiting the reduction in variance

* |dea: chose data subset and variable (feature)
subset randomly

* The resulting algorithm is known as Random
Forests

e Random Forests have very good accuracy and
are widely used, e.g. body pose recognition

Machine Learning for Dr. Rudolph Triebel
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Back to Boosting

* AdaBoost has been shown to perform very well,
especially when using decision trees as weak
classifiers

Stumps -2 Classes Four Node Trees - 2 Classes Eight Node Trees -2 Classes

TestE
Test Error
— =

Y.

M ML " Eae " b o s sbo et b amn ey e

<eees Real AdaBoost

mber of Terms

* However: the exponential loss weighs
misclassified examples very high!
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‘Using the Log-Lpss

7 T
01loss —
sgeloss - -
" exploss - - - -
6+ \ log loss
‘\ \
5 =
4
3 F
2 F
y
0 s T — - 2o Ts--
L 1 1 1 1 1 1
-2 -1.56 -1 0.5 0 0.5 1 1.5 2
ty(x)

* The log-loss is defined as:
L(t,y(x)) = logy(1 + exp(—2ty(x))
* |t penalizes misclassifications only linearly
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The LogitBoost Algorithm

1.For i=1,...,N: v;«< 1/N m«+ 1/2
2.For m=1,.... M
Compute the working response z; =
Compute the weights v; = m;(1 — ;)
Find ¢, that minimizes
N
2 uil
Update y(x) < y(x) + (bm(x) and ; <
3.Use the resultlng CIaSS|f|er

= sgn Z G (X

tz' — 70y
7Tz(1 — 7'('7;)

1
1 + exp(—2y(x;))
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Weighted Least-Squares Regression

* I[nstead of a weak classifier, LogitBoost uses
“weighted least-squares regression”

* This is very similar to standard least-squares
regressmn

|
§E vi(wh d(x;) — t;)°
1=1

e This results in a matrix & = /2% where
V2 = diag(\/v1, ..., VON)

e The solution is
= (0Td) 1Tt
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GentleBoost

Gentle AdaBoost
1. Start with weights w; =1/N,1=1,2,...,N, F(z) = 0.

2. Repeat form=1,2,... ,M:

(a) Fit the regression function fy,(z) by weighted least-squares of y; to z; with weights w;.
(b) Update F(z) < F(z) + fm(z)

(c) Update w; « wie Yifm(%i) and renormalize.

3. Output the classifier elgn[l" qlgn[z _1 fml: )]

Algorithm 4: A modified version of the Real AdaBoost algorithm, using Newton stepping rather than
exact optimization at each step

* Numerically more stable than LogitBoost

e Tends to perform better than AdaBoost and
LogitBoost
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Generalization: Gradient Boost

* |nitialize N
fo(x) = arg min > L(ti, p(xi,7))

1=1
°for m=1,.... M

e Compute the gradient residual

N OL(t;, f(x:))
i 8f(XZ) 1 f(xi)=fm—1(xi)

e Use the weak I%arner to compute that minimizes
Z(Tim — ¢(Xi§7m))2

1=1

e Update fn(X) = fr_1(x) + vo(x,7)
°*Return f(x) = far(x)
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Application of AdaBoost: Face Detection

* The biggest impact of AdaBoost was made in
face detection

e |dea: extract features (“Haar-like features™) and
train AdaBoost, use a cascade of classifiers

* Features can be computed very efficiently

* \Weak classifiers can be decision stumps or
decision trees

¢ As inference in AdaBoost is fast, the face
detector can run in real-time!
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Haar-like Features

» Defined as difference of
rectangular integral area:

* The sum of the pixels which lie
within the white rectangles are
subtracted from the sum of pixels
in the grey rectangles.

(L 10 p2ctsdy Y- ([, 1Ce vy

 One feature defined as:

e Feature type: A,B,C or D
e Feature position and size
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The Integral image

» Defined as :

L,(X.Y= [ [ lxy)dydx

x<X ysY
e Integral on rectangle D can
be computed in 4 access to

Iint:

f f I(x,y)=1, (4 +1,1-1,02)-1,,0) ! P
 Very efficient way to compute | |
features
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Weak Classifiers Used
- A weak classifier has 3 attributes:
o A feature f; (type, size and position)
* A threshold 6;
* A comparison operator op; = ‘<’ or ">’
« The resulting weak classifier is:

h].(x)=fj(x) op; Gj

« X IS a 24x24 pixels window In the image
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Two First Classifiers Selected by AdaBoost

A classifier with only this two features can be trained to recognise
100% of the faces, with 40% of false positives
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The Inference Algorithm
e scale = 24x24
* Do {

e For each position in the image {

o Try classifying the part of the image starting at this
position, with the current scale, using the classifier

selected by AdaBoost
}

eScale = Scalex 1.5

V until maximum scale
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Another Improvement: the Cascade
- Basic idea:

e |t is easy to detect that something is not a face

e Tune(boost) classifier to be very reliable at saying

NO (i.e. very low false negative)

*Stop evaluating the (a1 su-wndgous
cascade of classifier f/ﬁ\i’/;\i»/'\i’ CFurther
_ . N \ "/ \’/ \_Processing/
if one classifier says NO T ~——

P

Reject Sub-window
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Advantage of the Cascade

 Faster processing
e Quick elimination of useless windows

- Each individual classifier is trained to deal only
with the example that the previous ones could
NOt process

e \ery specialised
- The deeper In the cascade, the more complex
(the more features) in the classifiers.
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Results (1)
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Results (2)
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Summary
* Boosting is a method to use a weak classifier

and turn it into a strong one (arbitrarily small
training error!)

e AdaBoost minimizes the exponential loss

* To be more robust against outliers, we can use
LogitBoost or GentleBoost

* \Weak learners can be decision stumps or
decision trees

* Face detection can be solved with Boosting

Machine Learning for Dr. Rudolph Triebel
Computer Vision 42 Computer Vision Group



Computer Vision Group - | “.m
Prof. Daniel Cremers . |

Technische Universitat Munchen

6. Kernel Methods




Motivation

e Usually learning algorithms assume that some
kind of feature function is given

® Reasoning is then done on a feature vector of a
given (finite) length

e But: some objects are hard to represent with a
fixed-size feature vector, e.g. text documents,
molecular structures, evolutionary trees

* |dea: use a way of measuring similarity without
the need of features, e.g. the edit distance for
strings

e This we will call a kernel function
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

Tw) = 5 (W )~ 1) 4 SwTw  g(x,) € RP

n=1
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 N

J(w) = 9 Z(WT¢(XH) —tn)” + %WTW P(xn) € R”

n=1

if we write this in vector form, we get

1 A
J(w) = §WT(I)T(I)W —w dlt+tht+ EWTW t ¢ RY
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):
1 N

J(w) = 9 Z(WTgb(Xn) —tn)? + %WTW ¢(Xn) c R”

n=1
if we write this in vector form, we get
1 T x1 T x1 T A T
J(W):§W(I)(I)W—W(I)t—|—t t+§ww t ¢ RY
and the solution is
w=(®'®+ \p) ‘o't
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 A
J(wW) = §WT(I)T(I)W —w ottt +tit + §WTW
w=(®'®+ \p) o't

However, we can express this result in a different
way using the matrix inversion lemma:

(A+BCD) '=A"1'—A"'B(C"'+DA'B)"'DA™!
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 A
J(wW) = §WT(I)T(I)W —w ottt +tit + §WTW

w=(®'®+ \p) o't

However, we can express this result in a different
way using the matrix inversion lemma:

(A+BCD) '=A"1'—A"'B(C"'+DA'B)"'DA™!

w =@ (®P' + Ny) 't
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

J(wW) = %WT(I)T(I)W —w ottt +tit + gWTW

w=(®'®+ \p) o't

w = (DD + N y) 't
* _
=a “Dual Variables”
Plugging w = &%7a Into J(w) gives:

1 A
J(a) = §aTchchprTa —al®d t +tit + §aT<I><I>Ta
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 A
J(wW) = §WT(I)T(I)W —w ottt +tit + §WTW

1 1 ))
J(a) = 5aTKKa —a' Kt + 5tTt + 5aTKa K =o'

This is called the dual formulation.
Note: acRY weR?P
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 A
J(wW) = §WT(I)T(I)W —w ottt +tit + §WTW

1 1 A
J(a) = iaTKKa —a' Kt + itTt + §aTKa

This is called the dual formulation.
The solution to the dual problem is:

a=(K+Xy) 't
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1

J(wW) = §WT(I)T(I)W —w ottt +tit + gWTW

1

1 A
J(a) = §aTKKa —a' Kt + itTt + §aTKa

a= (K

My) 't

This we can use to make predictions:

y(x) = wp(x) = aT Dg(x) = k(x)T (K + Ay) 't

NOW X IS unknown and a Is given from traininc
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Dual Representation
k(x)' (K + Mn) 't

N
~—~
'S
~—
|

[ o) o) \ bx1)To(x1) .. B(x1) o)
k(x) = : K = ; ‘ :

o) d(x1) ... b(xn)Txn)

Thus, y is expressed only in terms of dot products
between different pairs of ¢(x), or in terms of the
kernel function

k(xi,x;) = ¢(x;)" o(x;)
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Representation using the Kernel

y(x) = k(x)" (K + A[y) "'t

Now we have to invert a matrix of size N x N,
before it was M x M where M < N, but:

By expressing everything with the kernel
function, we can deal with very high-dimensional
or even infinite-dimensional feature spaces!

Idea: Don’t use features at all but simply define a
similarity function expressed as the kernel!
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Constructing Kernels

The straightforward way to define a kernel function is to
first find a basis function ¢(x) and to define:

k(xi,%5) = o(x:)" d(x;)
This means, & Is an inner product in some space H, I.€e:
1.5ymmetry: k(x;,x;) = (¢(X;), 0(x:)) = (0(x5), d(X5))
2.Linearity: {(a(¢(x:) +2), d(x;)) = a(P(x:), 9(x;)) + a{z, d(x;))
3.Positive definite: (¢(x:), ¢(x;)) > 0, equal if ¢(x;) =0

Can we find conditions for &£ under which there is a
(possibly infinite dimensional) basis function into #,

where £ is an inner product?

.k Machine Learning for Dr. Rudolph Triebel
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Constructing Kernels

Theorem (Mercer): If k is
1.symmetric, i.e. k(x;,x,) = k(x;,%;) and
2.positive definite, I.e.
k(x1,x1) ... k(x1,xn)
K =

k(xy,x1) ... k(Xn,XnN)

IS positive definite, then there exists a mapping ¢(x)

into a feature space H so that £ can be expressed
as an inner product in H.

This means, we don’t need to find ¢(x) explicitly!
We can directly work with %
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Constructing Kernels
Finding valid kernels from scratch is hard, but:

A number of rules exist to create a new valid kernel &
from given kernels k£, and k,. For example:

k(x1,X2) = cki(x1,%x2), ¢>0

k(x1,X2) = f(x1)k1(x1,%X2) f(x2)
k(x1,x2) = exp (k1(x1,X2))

k(x1,X2) = k1(X1,X2) + kao(x1,X2)
k(x1,X2) = k1(x1,X2)ko(X1,X2)

k(Xl, X2) _ X{ Axo where A is positive semidefinite

and symmetric
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Examples of Valid Kernels

* Polynomial Kernel:
k(xi,x;)=(x;x;+¢c)* ¢>0 deN
e Gaussian Kernel:

k(xi,x;) = exp(—||x; — x;/|%/207)
e Kernel for sets:

k(Ay, Ap) = 21410421
e Matern kernel:

ol—v (m)K (m
N [ g [

) TZHXi—XjH,V>O,l>O
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A Simple Example

Define a kernel function as
k(x,x') = (x'x)? x,x’ € R
This can be written as:

/ /\2 2 /2
(212 + xoxh)* = 272 + 2212 202, + 2525

(xlv 3327 \/_5615132)(331 7'732 ; \/_x1$2)T
= ¢(x)" o(x)
It can be shown that this holds in general for

k(xi,x5) = (x; x5)°

Machine Learning for Dr. Rudolph Triebel
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Visualization of the Example

o(x) = (z1,23,V2x120)  Decision boundary
becomes a hyperplane
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Original decision
boundary is an ellipse
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Application Examples

Kernel Methods can be applied for many different
problems, e.q.:

* Density estimation (unsupervised learning)
® Regression

* Principal Component Analysis (PCA)

e Classification

Most important Kernel Methods are

e Support Vector Machines

e Gaussian Processes
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Kernelization

* Many existing algorithms can be converted into
kernel methods

* This process is called “kernelization™
|dea:

e express similarities of data points in terms of an
inner product (dot product)

* replace all occurrences of that inner product by
the kernel function

This is called the kernel trick
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Example: Nearest Neighbor

e The NN classifier selects the label of the nearest
neighbor in Euclidean distance

Ixi, x;]1° = x; x; + X x;j + 2%, X;
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Example: Nearest Neighbor

e The NN classifier selects the label of the nearest
neighbor in Euclidean distance

T T

Ixi, x5 [|° = x; x; + X X, + 2%; X;

* \We can now replace the dot products by a valid
Mercer kernel and we obtain:

d(X’ivxj)Q — k(X’bX?ﬁ) k(Xjaxj) Qk(X%Xj)
* This is a kernelized nearest-neighbor classifier
* \We do not explicitly compute feature vectors!

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group




Example: Principal Component Analysis

- Given: data set {x,} n=1,....N x,cR”

* Project data onto a subspace of dimension M
so that the variance iIs maximized
(“decorrelation”)

* For now: assume M is equal to 1

* Thus: the subspace can be described by a D-
dimensional unit vector u;, i.e.: uju; =1

- Each data point is projected onto the subspace
using the dot product: ufx,
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Principal Component Analysis
Visualization:

Mean:

Variance:

| N
o ~ Z(ulTxn —u; X

n=1

Machine Learning for Dr. Rudolph Triebel

Computer Vision Computer Vision Group



Principal Component Analysis

Goal: Maximize uf{ Su; s.t. ulu; =1
Using a Lagrange multiplier:

S symmetric

u* = argmaxui Su; + A (1 —ui u;)
uj

Setting the derivative wrt. u; to O we obtain:
Slll = )\1111

Thus: u; must be an eigenvector of S.
Multiplying with u; from left gives: u?Su; = A

Thus: o7 is largest if u; is the eigenvector of the
largest eigenvalue of S
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Principal Component Analysis

We can continue to find the best one-
dimensional subspace that is orthogonal to u;

If we do this M times we obtain:

u, ..., uy are the eigenvectors of the M largest
eigenvalues of S:  \i,..., \y

To project the data onto the A/-dimensional
subspace we use the dot-product:

[
xt = X (x — X)

ol

Machine Learning for Dr. Rudolph Triebel
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Reconstruction using PCA

* \We can interpret the vectors uj,...,uy as a
basis if M =D

* A reconstruction of a data point x into an M-
dimensional subspace (M<D) can be written:

Zznzuz+ > b,

1=M-+1
» Goal is to minimize the squared error:
— N Z |xn — inHQ
. . n=1
® This results In:
Zni = X W b, = %L u,

These are the coefficients of the eigenvectors
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Reconstruction using PCA

Plugging in, we have:

(XTuZ u; + Z X uz)u

1=1 =M1
M M

— Z(XTui)ui — Z()‘(Tui)ui + Z(Xgufz)uf@

2
3
M
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Application of PCA: Face Recognition

Database . .
Image to identify

|dentification
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Application of PCA: Face Recognition

Approach:

e Convert the image into a nm vector by stacking the
columns:

=)

* A small image is 100x100 -> a 10000 element vector,
l.e. a point in a 10000 dimension space

* Then compute covariance matrix and eigenvectors
e Select number of dimensions in subspace
* Find nearest neighbor in subspace for a new image
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Results of Face Recognition
« 30% of faces used for testing, 70% for learning.

~
3
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Can We Use Kernels in PCA?

e What if data is distributed along non-linear
principal components?

e |[dea: Use non-linear kernel to map into a space
where PCA can be done
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Kernel PCA

Here, assume that the mean of the data is zero:
an =0
Then, in standard PCA we have the eigenvalue

problem: 1 .
Sllz' — )\iui S = N T;ann

Now, we use a non-linear transformation ¢(x,)
and we assume Z¢<xn>=o. We define C as

Z D(Xn )¢ , With Cv; = \;v,

Goal: find eigenvalues without using features!
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Kernel PCA

Plugging in: 1
N Z Vi — )\ivi
n=1 _<€ R

This means, there are values a;, so that vi =) amd(xn).
With this we have: =

1 N N N
N Z ¢(Xn)¢(xn)T Z aim¢(xm) — )\z Z ain¢(Xn)
n=1 m=1 1=1
Multiplying both sides by ¢(x;) gives:
N

] — -
N Z k(X1,%Xn) Z Aim K (Xn, Xm) = A Zamk X1, Xn)
n=1 1=1

m=1

where k(x;,x,) = ¢(x;)* (xn). This is our expression in
terms of the kernel function!
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Kernel PCA

The problem can be cast as finding eigenvectors
of the kernel matrix KX:

Kai — )\ZNa@

With this, we can find the projection of the image
of x onto a given principal component as:

¢(X)TV73 — Z ain¢(X)T¢(Xn) — Z aink(van)

Again, this is expressed in terms of the kernel
function.
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Kernel PCA: Example

Eigenvalue=21.72 Eigenvalue=21.65 Eigenvalue=4.11 Eigenvalue=3.93

Eigenvalue=3.66 Eigenvalue=3.09 Eigenvalue=2.60 Eigenvalue=2.53
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Example: Classification

* \We have seen kernel methods for density
estimation, PCA and regression

e For classification there are two major kernel
methods: Support Vector Machines (SVMs) and
Gaussian Processes

* SVMs are probably the most used classification
algorithm

* Main idea: use kernelisation to map into a high-
dimensional feature space, where a linear
separation between the classes can be found
(“hyper-plane’)
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Support Vector Machines

Support Vector Machines learn a linear discriminant
function (“hyper-planes”):

y(Xv W) — WT¢(X) — b

parameters of the feature data Bias parameter
hyperplane (normal vector)  function point

Assumptions for now: Data is linearly separable,
Binary classification ( ¢; € {—1;+1}).

“Maximum Margin”: find the decision boundary that
maximizes the distance to the closest data point
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Maximum Margin

margin

linear decision
boundary

P&ntsowith
minileadioistance

o
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Maximum Margin

o Ihe distance of a point x,, to the decision hyperplane is

Yl tay(xn)  ta(W' (xn) + )
Nl Wl Iw]]

e [ his distance is independent of the scale of w and

(oW’ §(xn) +ab) _ [to(WFd(x,) + D),
loow || lw

o Maximum margin is found by

argma {1 min{ e (w6(0x,) + 0)) |

w.,b ’WH

e Rescaling: We can choose a so that

tn(aw! ¢(x,) + ab) =1
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Rescaling
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Rescaling

. wl]

(\]
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Maximum Margin

For all data points we have the constraint
tn(Wio(x,) +0)>1, n=1,...,N
This means we have to maximize:

argmax{i} s.th. tn(WT¢(Xn) +b) > 1, n=1,...

wo | [|w]]

which is equivalent to

arg min {%HWHQ} s.th. tn(WTCb(Xn) +b) > 1, n=1,...

w,b
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Maximum Margin

w,b

arg min {%HW”Q} s.th. tn(WTqb(xn) +b) > 1, n=1,...

This Is a constrained optimization problem.
It can be solved with a technique called quadratic
programming.
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Dual Formulation

For the constrained minimization we can introduce
a,,,:

min L(w,b, a) —HWH2 Zan (Ww! é(xn) +b) — 1)

Setting the derivatives of thls wrt. w and b to 0 yields:

N N
W = Z antn¢(xn) 0= Z Anty
n=1 n=1

If we plug these constraints back into L(w, b, a)

maXL Zan——LLanamt tmk(Xn, Xm )

n=1m=1
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Dual Formulation

maxL Zan——LLanamt tk(Xn, Xm)

n=1m=1
subject to the constralnts N
a, > 0, n=1,...,N z
This is called the of:the constrained

optimization problem. The function k is again the
and is defined as:

k(Xn, Xm) = ¢(%,,)d(Xm)
The simplest example of a kernel function is given for

d=|. It Is also known as the

k(Xn,Xm) = Xz;xm
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The Kernel Trick in SVMs

o Other kernels are possible, e.g. the polynomial:

P(x) = (22,25, x1T2, T2x1) x € R?
k(Xn, Xm) = Qb(XZ)Cb(Xm) — (XTX)2

Kernel Trick for SVMs: If we find an optimal solution

to the dual form of our constrained optimization

problem, then we can replace the kernel by any other
valid kernel and obtain again an optimal solution.

e Conseqguence: Using a non-linear feature transform &
we obtain non-linear decision boundaries.
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Observations and Remarks

« The kernel function is evaluated for each pair of
training data points during training

o It can be shown that for every training data point it
holds either a,, =0 or t,y(x,) = 1. In the latter case,
they are support vectors.

 For classifying a new feature vector x we evaluate:

y(x) = Z Antnk(X,X,) + b

T

We only need to compute that for the support vectors
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Multiple Classes

We can generalize the binary classification
problem for the case of multiple classes.

This can be done with:
.ONne-to-many classification

.Defining a single objective function for all
classes

.Organizing pairwise classifiers in a directed acyclic
graph (DAGSVM)
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Extension: Non-separable problems

margin
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Slack Variables

o Ihe slack variable &, is defined as follows:
« For all points on the correct side: &, =0

. For all other points: ¢, = |t, — y(x»)]

e This means that points with 0 < ¢, <1 are correct
classified, but inside the margin, points with &, > 1

are misclassified.
o In the optimization, we modify the constraints:
tay(Xpn) > 1 —&,, n=1,...,N
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Summary

« Kernel methods are used to solve problems by
implicitly mapping the data into a (high-dimensional)
feature space

« The feature function itself is not used, instead the
algorithm is expressed in terms of the kernel

« Applications are manifold, including density
estimation, regression, PCA and classification

« An important class of kernelized classification
algorithms are Support Vector Machines

« They learn a linear discriminative function, which is
called a hyper-plane

« Learning in SVMs can be done efficiently
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