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• Dr. Rudolph Triebel

• rudolph.triebel@in.tum.de

• Room number 02.09.059

• Main lecture

• Dipl. Inf. Jan Stühmer
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Class Schedule
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Date Topic

25.10.13 Introduction

8.11.13 Regression

15.11.13 Probabilistic Graphical Models I

22.11.13 Probabilistic Graphical Models II

29.11.13 Boosting

6.12.13 Kernel Methods

13.12.13 Gaussian Processes

20.12.13 Mixture Models and EM

10.1.14 Variational  Inference

17.1.14 Sampling Methods

24.1.14 MCMC

31.1.14 Unsupervised Learning

7.2.14 Online Learning
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Literature

Recommended textbook for 
the lecture: Christopher M. 
Bishop: “Pattern Recognition 
and Machine Learning”
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More detailed: 

• “Gaussian Processes for 
Machine Learning” 
Rasmussen/Williams

• “Machine Learning - A Probabilistic 
Perspective” Murphy
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The Tutorials
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• Weekly tutorial classes

• Participation in tutorial classes and submission of 
solved assignment sheets is totally free

• The submitted solutions can be corrected and 
returned

• In class, you have the opportunity to present your 
solution

• Assignments will be theoretical and practical 
problems
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The Exam
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• No “qualification” necessary for the final exam

• Final exam will be oral

• From a given number of known questions,  some  will 
be drawn by chance

• Usually, from each part a fixed number of questions 
appears
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Class Webpage

http://vision.in.tum.de/teaching/ws2013/ml_ws13
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• Contains the slides and assignments for download

• Also used for communication, in addition to email list

• Some further material will be developed in class
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1. Introduction to Learning and 
Probabilistic Reasoning
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Motivation

Suppose a robot stops in front of a door. It has a sensor 
(e.g. a camera) to measure the state of the door (open 
or closed). Problem: the sensor may fail.
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Motivation

Question: How can we obtain knowledge about 
the environment from sensors that may return 

incorrect results?

Using 
Probabilities!
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Definition 1.2: A random variable        is a function that 
assigns a real number to each element of     .

Example: Coin toss experiment: 

 Values of random variables are denoted with small 
letters, e.g.: 

Definition 1.1: A sample space      is a set of outcomes 
of a given experiment.

Examples:  

a) Coin toss experiment: 

b) Distance measurement:

Basics of Probability Theory
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If      is countable then      is a discrete random variable, 
else it is a continuous random variable.

The probability that       takes on a certain value     is a 
real number between 0 and 1. It holds:

 

Discrete and Continuous

Discrete case Continuous case
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A Discrete Random Variable

Suppose a robot knows that it is in a room, but it
does not know in which room. There are 4
possibilities:

Kitchen, Office, Bathroom, Living room

Then the random variable Room is discrete, because
it can take on one of four values. The probabilities are,
for example: 
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A Continuous Random Variable

Suppose a robot travels 5 meters forward from a
given start point. Its position      is a continuous
random variable with a Normal distribution:

Shorthand:
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The joint probability of two random variables     and     
is the probability that the events             and            
occur at the same time:

Shorthand:

Definition 1.3: The conditional probability of      given      
is defined as:

Joint and Conditional Probability
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Definition 1.4: Two random variables     and      are 
independent iff: 

For independent random variables     and     we have: 

 

 

Independency, Sum and Product Rule

Furthermore, it holds: 

“Sum  Rule” “Product  Rule”

16
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Discrete case Continuous case

Law of Total Probability

Theorem 1.1:  For two random variables      and      it 
holds: 

The process of obtaining           from              by summing 
or integrating over all values of      is called

                         Marginalisation
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Bayes Rule

Theorem 1.2:  For two random variables     and      it 
holds:

Proof:

I.                                             (definition)

II.                                                   (definition)

III.                                                   (from II.)

“Bayes Rule”

18
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Shorthand:

                                “Normalizer”

Bayes Rule:  Background Knowledge

For                        it holds:
Background knowledge
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Computing the Normalizer

Bayes rule Total probability

can be computed without knowing

20
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Conditional Independence

Definition 1.5: Two random variables       and      are 
conditional independent given a third random 
variable      iff:  

 

 

This is equivalent to:

and
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Cov[X] = E[(X � E[X])2] = E[X2] � E[X]2
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Expectation and Covariance

Definition 1.6: The expectation of a random variable         
is defined as:

(discrete case)

(continuous case)

Definition 1.7: The covariance of a random variable      
is defined as:

22
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Mathematical Formulation of Our Example

We define two binary random variables:
   and          , where     is “light on” or “light off”. Our 
question is: What is                     ?

23

open

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for Computer 
Vision

Causal vs. Diagnostic Reasoning

• Searching for                     is called diagnostic 
reasoning

• Searching for                      is called causal reasoning

• Often causal knowledge is easier to obtain

• Bayes rule allows us to use causal knowledge:

24
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Example with Numbers

Assume we have this sensor model:

then: 

“    raises the probability that the door is open”

25

and: “Prior prob.”
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Combining Evidence
Suppose our robot obtains another observation     , 
where the index is the point in time. 

Question: How can we integrate this new 
information?

Formally, we want to estimate                           . 
Using Bayes formula with background knowledge:

??

26
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Markov Assumption

“If we know the state of the door  at time             
then the measurement      does not give any further 
information about     .”

Formally: “    and      are conditional independent 
given         .“ This means:

This is called the Markov Assumption.
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“     lowers the probability that the door is open”

Example with Numbers

Assume we have a second sensor: 

Then: 

(from above)

28
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General Form

Measurements: 

Markov assumption:       and                    are 
conditionally independent given the state   . 

Recursion 
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Example: Sensing and Acting 

Now the robot senses the door state and acts (it 
opens or closes the door).

30
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If the door is open, the action “close door” succeeds 
in 90% of all cases.

State Transitions 

The outcome of an action is modeled as a

random variable      where            in our case  

means “state after closing the door”.
State transition example:
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If the state space is continuous:

If the state space is discrete:

For a given action    we want to know the 
probability            . We do this by integrating over all 
possible previous states    .

32

The Outcome of Actions
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Back to the Example 
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Definition 2.1: Let                                        be a 
sequence of sensor measurements and actions 
until time  . Then the belief of the current state      
is defined as

Sensor Update and Action Update

So far, we learned two different ways to update the 
system state:

• Sensor update:

• Action update:

• Now we want to combine both:

34
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This incorporates the following 
Markov assumptions:

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)

35

Graphical Representation
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(Bayes)

(Markov)

(Tot. prob.)

(Markov)

(Markov)
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The Overall Bayes Filter

 Algorithm Bayes_filter                :

1.  if    is a sensor measurement    then

2.  

3.      for all    do

4.  

5.  

6.      for all    do

7.  else if    is an action    then

8.      for all    do

9.  return      
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The Bayes Filter Algorithm
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Bayes Filter Variants

The Bayes filter principle is used in

• Kalman filters

• Particle filters

• Hidden Markov models

• Dynamic Bayesian networks

• Partially Observable Markov Decision Processes 
(POMDPs)

38
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Summary

• Probabilistic reasoning is necessary to deal with 
uncertain information, e.g. sensor measurements

• Using Bayes rule, we can do diagnostic reasoning 
based on causal knowledge

• The outcome of a robot‘s action can be described by a 
state transition diagram

• Probabilistic state estimation can be done recursively 
using the Bayes filter using a sensor and a motion 
update

• A graphical representation for the state estimation 
problem is the Dynamic Bayes Network

39

Computer Vision Group 
Prof. Daniel Cremers

2. Introduction to Learning
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Motivation

• Most objects in the environment can be classified, e.g. 
with respect to their size, functionality, dynamic 
properties, etc.

• Robots need to interact with 
the objects (move around, 
manipulate, inspect, etc.) and 
with humans

• For all these tasks it is 
necessary that the robot 
knows to which class an object belongs Which 

 object is      
a door?
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Object Classification Applications

Two major types of applications:

• Object detection: For a given 
test data set find all previously 
“learned” objects, e.g. 
pedestrians

• Object recognition: Find the 
particular “kind” of object as it 
was learned from the training 
data, e.g. handwritten character 
recognition

42
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Learning

• A natural way to do object classification is to first 
learn the categories of the objects and then infer from 
the learned data a possible class for a new object.

• The area of machine learning deals with the 
formulization and investigates methods to do the 
learning automatically.

• Nowadays, machine learning algorithms are more and 
more used in robotics and computer vision
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Mathematical Formulation

Suppose we are given a set      of objects and a set
of object categories (classes). In the learning task we 
search for a mapping                     such that similar 
elements in       are mapped to similar elements in     .

Examples:

• Object classification: chairs, tables, etc.

• Optical character recognition

• Speech recognition

Important problem: Measure of similarity!

44
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

Discriminant 
Function

Discriminative 
Model

estimates the

   posterior             

for each class

Generative 
Model

est. the likelihoods

             and use Bayes 

rule for the post.

learning from a training 
data set, inference on 

the test data

no prob. formulation,

learns a function from

objects       to labels    . 
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

learning from a training 
data set, inference on 

the test data
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Supervised Learning is the main topic of this lecture!

Methods used in Computer Vision include:
• Regression

• Conditional Random Fields

• Boosting

• Support Vector Machines

• Gaussian Processes

• Hidden Markov Models
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

47

learning from a training 
data set, inference on 

the test data

Most Unsupervised Learning methods are based on 
Clustering.

➡Will be handled at the end of this semester
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

learning from a training 
data set, inference on 

the test data

48

Reinforcement Learning requires an action 

• the reward defines the quality of an action

• mostly used in robotics (e.g. manipulation)

• can be dangerous, actions need to be “tried out”

• not handled in this course
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Generative Model: Example

Nearest-neighbor classification:

• Given: data points

• Rule:  Each new data point is assigned to the class 
of its nearest neighbor in feature space 

1. Training instances in feature  
space
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Generative Model: Example

Nearest-neighbor classification:

• Given: data points

• Rule:  Each new data point is assigned to the class 
of its nearest neighbor in feature space 

2. Map new data point into 
feature space

50
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Generative Model: Example

Nearest-neighbor classification:

• Given: data points

• Rule:  Each new data point is assigned to the class 
of its nearest neighbor in feature space 

3. Compute the distances to 
the neighbors
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Generative Model: Example

Nearest-neighbor classification:

• Given: data points

• Rule:  Each new data point is assigned to the class 
of its nearest neighbor in feature space 

4. Assign the label of the 
nearest training instance 

52
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Generative Model: Example

Nearest-neighbor classification:

• General case: K nearest neighbors

• We consider a sphere around each training instance 

that has a fixed volume V.

 Kk: Number of points 

from class k inside 
sphere  

53

 Nk: Number of all 

points from class k  
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Generative Model: Example

Nearest-neighbor classification:

• General case: K nearest neighbors 

• We consider a sphere around each training instance 

that has a fixed volume V.

• With this we 
can estimate:

• and likewise:

• using Bayes rule:

54

“likelihood”

“uncond. prob.”

# points in sphere

# all points

“posterior”
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Generative Model: Example

Nearest-neighbor classification:

• General case: K nearest neighbors 

• To classify the new data point     we compute the 
posterior for each class k = 1,2,… and assign the 
label that maximizes the posterior. 
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Summary

• Learning is a two-step process consisting in a training 
and an inference step

• Learning is useful to extract semantic information, e.g. 
about the objects in an environment

• There are three main categories of learning: 
unsupervised, supervised and reinforcement learning

• Supervised learning can be split into 
discriminant function, discriminant model, and 
generative model learning

• An example for a generative model is nearest neighbor 
classification

56



Computer Vision Group 
Prof. Daniel Cremers

3. Regression

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Categories of Learning (Rep.)

• No supervision, 
but a reward 

function

Learning

Unsupervise
d Learning

Supervised 
Learning

Reinforceme
nt Learning

Clustering, density 
estimation

Discriminan
t Function

Discriminati
ve Model

Generative 
Model

learning from a training 
data set, inference on 

the test data

2
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

Discriminant 
Function

Discriminative 
Model

estimates the

   posterior             

for each class

Generative 
Model

est. the likelihoods

             and use Bayes 

rule for the post.

learning from a training 
data set, inference on 

the test data

no prob. formulation,

learns a function from

objects       to labels    . 
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Mathematical Formulation (Rep.)

Suppose we are given a set      of objects and a set o
of object categories (classes). In the learning task we 
search for a mapping                        such that similar 
elements in       are mapped to similar elements in     .

Difference between regression and classification:

• In regression,      is continuous, in classification it is 
discrete

• Regression learns a function, classification usually 
learns class labels

For now we will treat regression

4
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Basis Functions

In principal, the elements of      can be anything (e.g. real 
numbers, graphs, 3D objects). To be able to treat these 
objects mathematically we need functions        that map 
from       to        . We call these the basis functions.

We can also interpret the basis functions as functions 
that extract features from the input data.

Features reflect the properties of the objects (width, 
height, etc.).
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Simple Example: Linear Regression

• Assume:                                                  (identity)

• Given:      data points

• Goal:        predict the value t of a new example x
• Parametric  formulation:

x1               x2          x3                    x4             x5

t5

               
t3

          
t4                    

t1             

t2

6
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Linear Regression

To evaluate the function y, we need an error function:

We search for parameters         s.th.              is minimal:

Using vector notation:

“Sum of 
Squared Errors”

7

y(xi,w) = w0 + w1xi ) ry(xi,w) = (1 xi)

xi := (1 xi)
T y(xi,w) = wT xi

| {z }
=:AT

rE(w) =

NX

i=1

wT xix
T
i �

NX

i=1

tix
T
i = (0 0) ) wT

NX

i=1

xix
T
i =

NX

i=1

tix
T
i

| {z }
=:bT
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Polynomial Regression

Now we have:

Given:  data points 

   

Model 
Complexity

Data Set 
Size

8
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Polynomial Regression

We define: 

And obtain:

   

Outer 
Product

9

E(w) =
1

2

NX

i=1

(wT�(xi) � ti)
2

rE(w) = wT

 
NX

i=1

�(xi)�(xi)
T

!
�

NX

i=1

ti�(xi)
T

�T
1

�1

“Basis 
functions”

T

�T
1

�1

�T
2

�2
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Polynomial Regression

We define: 

And obtain:

   

10

E(w) =
1

2

NX

i=1

(wT�(xi) � ti)
2

rE(w) = wT

 
NX

i=1

�(xi)�(xi)
T

!
�

NX

i=1

ti�(xi)
T

T
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Polynomial Regression

We define: 

And obtain:
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E(w) =
1

2

NX

i=1

(wT�(xi) � ti)
2

rE(w) = wT

 
NX

i=1

�(xi)�(xi)
T

!
�

NX

i=1

ti�(xi)
T

T
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Polynomial Regression

Thus, we have: 

where

It follows:

“Pseudoinverse”

12

�+

“Normal Equation”
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Computing the Pseudoinverse

Mathematically, a pseudoinverse      exists for 
every matrix   . 

However: If    is (close to) singular the direct 
solution of    is numerically unstable.

Therefore: Singular Value Decomposition (SVD) is 
used:                  where

• matrices U and V are orthogonal matrices

•D is a diagonal matrix

Then:                         where       contains the 

reciprocal of all non-zero elements of D 

13

�+

�

�

�

D+�+ = V D+UT

� = UDV T

�j(x) = xj
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A Simple Example

14
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Varying the Sample Size

15
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The Resulting Model Parameters
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Other Basis Functions

Other basis functions are possible:

• Gaussian basis function:

• Sigmoidal basis function: 

   

where 

   

mean val 

   
scale 

   

where 

   In both cases a set of mean values is required. These 
define the locations of the basis functions.
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Gaussian Basis Functions

18
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Sigmoidal Basis Functions
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Observations

• The higher the model complexity grows, the better 
is the fit to the data

• If the model complexity is too high, all data points 
are explained well, but the resulting model oscillates 
very much. It can not generalize well.
This is called overfitting.

• By increasing the size of the data set (number of 
samples), we obtain a better fit of the model

• More complex models have larger parameters

Problem: How can we find a good model complexity   
for a given data set with a fixed size?  

20
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Regularization

We observed that complex models yield large 
parameters, leading to oscillation. Idea:

Minimize the error function and the magnitude of the 
parameters simultaneously

We do this by adding a regularization term :

where λ rules the influence of the regularization.

21
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Regularization

As above, we set the derivative to zero:

With regularization, we can find a complex model for a 
small data set. However, the problem now is to find an 

appropriate regularization coefficient λ.

22
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Regularized Results
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The Problem from a Different View

Assume that y is affected by Gaussian noise :

                                       where

Thus, we have  

24
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Maximum Likelihood Estimation

Aim: we want to find the w that maximizes p.
                        is the likelihood of the measured data 
given a model. Intuitively:

Find parameters w that maximize the probability of 

measuring the already measured data t.
   

We can think of this as fitting a model w to the data t.
Note: σ is also part of the model and can be estimated.  

For now, we assume σ is known.   

“Maximum Likelihood Estimation”

25
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Maximum Likelihood Estimation

Given data points:

Assumption: points are drawn independently from p:

where: Instead of maximizing p we 
can also maximize its 

logarithm (monotonicity of 
the logarithm)

26
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Maximum Likelihood Estimation

Constant  for all w Is equal to       

The parameters that maximize the likelihood are equal 
to the minimum of the sum of squared errors

27

i

i

wML := arg max
w

ln p(t | x,w, �) = arg min
w

E(w) = (�T�)�1�T t
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Maximum Likelihood Estimation

28

i

i

The ML solution is obtained using the Pseudoinverse
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize

the data likelihood. Now, we assume a Gaussian prior:

Using this, we can compute the posterior (Bayes):

“Maximum A-Posteriori Estimation (MAP)”

Likelihood Prior Posterior 

29
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize

the data likelihood. Now, we assume a Gaussian prior:

Using this, we can compute the posterior (Bayes):

strictly:

but the denominator is independent of w and we want 

to maximize p.

30

p(w | x, t, �1, �2) =
p(t | x,w, �1)p(w | �2)R
p(t | x,w, �1)p(w | �2)dw
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Maximum A-Posteriori Estimation

This is equal to the regularized error minimization.

The MAP Estimate corresponds to a regularized 

error minimization where λ = (σ1 / σ2 )2 

   
31
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Summary

• Regression is a method to find a mathematical model 
(function) for a given data set

• Regression can be done by minimizing the sum of 
squared (SSE) errors, i.e. the distances to the data

• Maximum-likelihood estimation uses a probabilis-tic 
representation to fit a model into noisy data

• Maximum-likelihood under Gaussian noise is 
equivalent to SSE regression. 

• Maximum-a-posteriori (MAP) estimation assumes a 
(Gaussian) prior on the model parameters

• MAP is solved by regularized regression

•   
32
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Bayesian Linear Regression
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Bayesian Linear Regression

•Using MAP, we can find optimal model parameters, 
but for practical applications two questions arise:

• What happens in the case of sequential data, i.e. the 
data points are observed subsequently?

• Can we model the probability of measuring a new 
data point, given all old data points? This is called 
the predictive distribution:

Old data Old targets New data New target 

34
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Some Useful Formulas Before

If we are given this:

                  I.

                  II.

Then it follows (properties of Gaussians):

     III.

     IV.

where

35

p(x) = N (x | µ,⌃1)

p(y | x) = N (y | Ax + b,⌃2)

p(y) = N (y | Aµ + b,⌃2 + A⌃1A
T )

p(x | y) = N (x | ⌃(AT⌃�1
2 (y � b) + ⌃�1

1 µ),⌃)
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Sequential Data

Given: Prior mean       and covariance      , noise 
covariance 

1.Set

2.Observe data point 

3.Formulate the likelihood                      as a function of w
(= Gaussian with mean                and covariance    )

4.Multiply the likelihood with the prior                     and 
normalize (= Gaussian with             and          )

5.This results in a new prior

6.Go back to 1. if there are still data points available

36
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(Bayes)

(Markov)

(Tot. prob.)

(Markov)

(Markov)
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Comparison: the Standard Bayes Filter
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(Bayes)

(Markov)
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Comparison: the Standard Bayes Filter

Note: Different Notation!
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A Simple Example

Our aim to fit a straight line into a set of data points.

Assume we have:

Basis functions are equal to identity

Prior mean is zero, prior covariance      is       , noise 
variance is

Ground truth is                                        where

Data points are sampled from ground truth

Thus:

We want to recover      and      from the sequentially 
incoming data points

39

�(x) = x
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Bayesian Line Fitting

No data points observed

Prior Data Space

“Hough Space”
Line examples drawn 

from the prior
From: C.M. Bishop

40
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Bayesian Line Fitting

One data point observed

Prior Data SpaceLikelihood

“Hough Space”

Ground Truth

Line examples drawn 
from the prior

From: C.M. Bishop
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Bayesian Line Fitting

Two data points observed

Prior Data SpaceLikelihood

“Hough Space”
Line examples drawn 

from the prior
From: C.M. Bishop
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Bayesian Line Fitting

20 data points observed

Prior Data SpaceLikelihood

“Hough Space”
Line examples drawn 

from the prior ¸
From: C.M. Bishop
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The Predictive Distribution

We obtain the predictive distribution by integrating over 
all possible model parameters:

As before the posterior is prop. to the likelihood times the 
prior. But now, we don’t maximize. The posterior can be 
computed analytically, as the prior is Gaussian.

                                          where

Old data posterior New data likelihood 

Prior cov Prior mean 

44
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The Predictive Distribution

Using formula III. from above, 

                                         

                   where 
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The Predictive Distribution (2)

•Example: Sinusoidal data, 9 Gaussian basis 
functions, 1 data point

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

46
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Predictive Distribution (3)

•Example: Sinusoidal data, 9 Gaussian basis 
functions, 2 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution
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Predictive Distribution (4)

•Example: Sinusoidal data, 9 Gaussian basis 
functions, 4 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution
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Predictive Distribution (5)

•Example: Sinusoidal data, 9 Gaussian basis 
functions, 25 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution
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Summary

• Regression can be expressed as a least-squares problem

• To avoid overfitting, we need to introduce a regularisation 

term with an additional parameter λ
• Regression without regularisation is equivalent to 

Maximum Likelihood Estimation

• Regression + reg = Maximum A-Posteriori

• Bayesian Linear Regression operates on sequential data 
and provides the predictive distribution

• When using Gaussian priors (and Gaussian noise), all 
computations can be done analytically

50
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4. Probabilistic Graphical Models

Directed Models

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

(Bayes)

The Bayes Filter (Rep.)

(Markov)

(Tot. prob.)

(Markov)

(Markov)
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•This incorporates the following Markov assumptions:

Graphical Representation (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)
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Definition

A Probabilistic Graphical Model is a diagrammatic 
representation of a probability distribution.

• In a Graphical Model, random variables are 
represented as nodes, and statistical dependencies are 
represented using edges between the nodes.

•The resulting graph can have the following properties:

• Cyclic / acyclic

• Directed / undirected

•The simplest graphs are Directed Acyclig Graphs 
(DAG).

4
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Simple Example

•Given: 3 random variables    ,    , and 

• Joint prob:

A Graphical Model based on a DAG is called a 
Bayesian Network

Random 
variables can be 

discrete or 
continuous

5
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Simple Example

• In general:       random variables

•Joint prob:

•This leads to a fully connected graph.

•Note: The ordering of the nodes in such a fully 
connected graph is arbitrary. They all represent the 
joint probability distribution:

…

6
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Bayesian Networks

Statistical independence can be represented by the 
absence of edges. This makes the computation 
efficient.

                                         

  Intuitively: only      and 

   have an influence on 
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Bayesian Networks

We can now define a one-to-one mapping from 
graphical models to probabilistic formulations:

General Factorization:

where

and

ancestors of

8
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Elements of Graphical Models 

In case of a series of random variables with equal 
dependencies, we can subsume them using a plate:

Plate
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Elements of Graphical Models (2) 

We distinguish between input variables and explicit 
hyper-parameters:

10
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Elements of Graphical Models (3) 

We distinguish between observed variables and 
hidden variables:

                               

                        (deterministic  parameters omitted)
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Regression as a Graphical Model

Here: conditioning on all 
deterministic parameters

Regression: Prediction of a new target value 

Using this, we can obtain 
the predictive distribution: 
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Two Special Cases

•We consider two special cases:

• All random variables are discrete; i.e. Each xi 

is represented by values                        where
 

• All random variables are Gaussian

0
0.1250
0.2500
0.3750
0.5000

13

p(x | µ) =

KY

k=1

µxk

k
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Discrete Variables: Example

•Two dependent variables: K2 - 1 parameters

• Independent joint distribution: 2(K – 1) parameters

1 0.2

2 0.8

1 1 0.25

1 2 0.75

2 1 0.1

2 2 0.9

Here: K = 2
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Discrete Variables: General Case

In a general joint distribution with M variables we need 
to store KM -1 parameters

If the distribution can be described by this graph:

then, we have only K -1 + (M -1) K(K -1) parameters. 

This graph is called a Markov chain with M  nodes.

The number of parameters grows only linearly with 
the number of variables.
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Gaussian Variables

Assume all random variables are Gaussian and we 
define

Then one can show that the joint probability p(x) is a 
multivariate Gaussian. Furthermore:

Thus:

i.e., we can compute the mean values recursively. 

16

xi =
X

j2pai

wijxj + bj +
p

vi✏i

E[xi] =
X

j2pai

wijE[xj ] + bi
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Gaussian Variables

Assume all random variables are Gaussian and we 
define

The same can be shown for the covariance. Thus:

• Mean and covariance can be calculated recursively

Furthermore it can be shown that:

• The fully connected graph corresponds to a Gaussian 
with a general symmetric covariance matrix

• The non-connected graph corresponds to a diagonal 
covariance matrix

17
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Definition 1.4: Two random variables       and      are 
independent iff:  

 

 

For independent random variables       and      we have: 

 

 

Independence (Rep.)

Notation:

Independence does not imply conditional independence.

The same is true for the opposite case.

18

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Conditional Independence (Rep.)

Definition 1.5: Two random variables       and      are 
conditional independent given a third random 
variable      iff:  

 

 

This is equivalent to:

and

Notation:
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Conditional Independence: Example 1

This graph represents the 
probability distribution:

Marginalizing out c on
both sides gives

Thus:      and     are not independent:

20

This is in general not equal to             .p(a)p(b)
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Conditional Independence: Example 1

•Now, we condition on    ( it is assumed to be known): 

Thus:      and      are conditionally independent given   :

We say that the node at    is a tail-to-tail node on the 
path between     and  

21
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Conditional Independence: Example 2

This graph represents the 
distribution:

Again, we marginalize over   :

And we obtain:
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Conditional Independence: Example 2

As before, now we condition on    : 

And we obtain:

We say that the node at    is a head-to-tail node 
on the path between     and   .
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X

c

p(a, b, c) = p(a)p(b)
X

c

p(c | a, b)
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Conditional Independence: Example 3

Now consider this graph:

using:

we obtain:

And the result is:

24

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Conditional Independence: Example 3

Again, we condition on 

This results in:

We say that the node at    is a head-to-head node 
on the path between     and   .
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To Summarize

•When does the graph represent (conditional) 
independence?

Tail-to-tail case: if we condition on the tail-to-tail node

Head-to-tail case: if we cond. on the head-to-tail node

Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants)

In general, this leads to the notion of D-separation for 
directed graphical models.
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D-Separation

Say:  A, B, and C are non-intersecting subsets of 
nodes in a directed graph.

•A path from A to B is blocked by C if it contains 
a node such that either

a) the arrows on the path meet either head-to-tail or tail-to-

tail at the node, and the node is in the set C, or

b) the arrows meet head-to-head at the node, and neither 

the node, nor any of its descendants, are in the set C.

•If all paths from A to B are blocked, A is said to 
be d-separated from B by C. 

Notation:
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D-Separation

Say:  A, B, and C are non-intersecting subsets of 
nodes in a directed graph.

•A path from A to B is blocked by C if it contains 
a node such that either

a) the arrows on the path meet either head-to-tail or tail-to-

tail at the node, and the node is in the set C, or

b) the arrows meet head-to-head at the node, and neither 

the node, nor any of its descendants, are in the set C.

•If all paths from A to B are blocked, A is said to 
be d-separated from B by C. 

Notation:

28

D-Separation is a 
property of graphs 

and not of 
probability 

distributions
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D-Separation: Example

We condition on a descendant 
of e, i.e. it does not block the 
path from a to b.

We condition on a tail-to-tail 
node on the only path from a 
to b, i.e f blocks the path.
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I-Map

Definition 4.1: A graph G is called an I-map for a 
distribution p if every D-separation of G corresponds 
to a conditional independence relation satisfied by p:

 

Example:  The fully connected graph is an I-map for any 
distribution, as there are no D-separations in that 
graph.
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D-Map

Definition 4.2: A graph G is called an D-map for a 
distribution p if for every conditional independence 
relation satisfied by p there is a D-separation in G :
 

 

Example:  The graph without any edges is a D-map for 
any distribution, as all pairs of subsets of nodes are 
D-separated in that graph. 
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Perfect Map

Definition 4.3: A graph G is called a perfect map for a 
distribution p if it is a D-map and an I-map of p.

 

A perfect map uniquely defines a probability distribution.

 

32
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The Markov Blanket

•Consider a distribution of a node x_i conditioned on 
all other nodes:

Factors independent of xi 

cancel between numerator 
and denominator.

Markov blanket         at 
xi : all parents, children 

and co-parents of xi.   
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Summary

• Graphical models represent joint probability 
distributions using nodes for the random variables 
and edges to express (conditional) (in)dependence

• A prob. dist. can always be represented using a fully 
connected graph, but this is inefficient

• In a directed acyclic graph, conditional indepen-
dence is determined using D-separation

• A perfect map implies a one-to-one mapping 
between c.i. relations and D-separations

• The Markov blanket is the minimal set of observed 
nodes to obtain conditional independence
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Repetition: Bayesian Networks

Directed graphical models 
can be used to represent 
probability distributions

This is useful to do 
inference and to generate 
samples from the 
distribution efficiently

36
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Repetition: D-Separation

37

• D-separation is a property of graphs that can be 
easily determined

• An I-map assigns every d-separation a c.i. rel

• A D-map assigns every c.i. rel a d-separation

• Every Bayes net determines a unique prob. dist. 

p(a) = 0.9 p(b) = 0.9

p(¬c | ¬b) = 0.81
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In-depth: The Head-to-Head Node 

38

Example: 

a: Battery charged (0 or 1)

b: Fuel tank full (0 or 1)

c: Fuel gauge says full (0 or 1)

We can compute

and

and obtain

similarly:  

“a explains c away”

a b p(c)

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

p(¬c) = 0.315

p(¬b | ¬c) ⇡ 0.257

p(¬b | ¬c, ¬a) ⇡ 0.111
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Repetition: D-Separation
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Directed vs. Undirected Graphs

Using D-separation we can identify conditional 
independencies in directed graphical models, but:

• Is there a simpler, more intuitive way to express 
conditional independence in a graph?

• Can we find a representation for cases where an 
„ordering“ of the random variables is inappropriate 
(e.g. the pixels in a camera image)?

Yes, we can: by removing the directions of the 
edges we obtain an Undirected Graphical Model, 

also known as a Markov Random Field

40

xi xi
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Example: Camera Image

• directions are counter-intuitive for images

• Markov blanket is not just the direct neighbors 
when using a directed model
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Markov Random Fields

All paths from A to B go 

through C, i.e. C blocks all 
paths.

Markov 
Blanket

We only need to condition 
on the direct neighbors of 

x to get c.i., because these 
already block every path 

from x to any other node.

42
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Factorization of MRFs

Any two nodes xi and xj that are not connected in an 
MRF are conditionally independent given all other nodes:

In turn: each factor contains only nodes that are 
connected

This motivates the consideration 
of cliques in the graph:

•A clique is a fully connected subgraph.

•A maximal clique can not be extended
with another node without loosing the
property of full connectivity.

Clique

Maximal Clique

43

p(xi, xj | x\{i,j}) = p(xi | x\{i,j})p(xj | x\{i,j})
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Factorization of MRFs
In general, a Markov Random Field is factorized as

where C is the set of all (maximal) cliques and ΦC  is a 

positive function of a given clique xC of nodes, called 

the clique potential. Z is called the partition function.

Theorem (Hammersley/Clifford): Any undirected 

model with associated clique potentials ΦC  is a perfect 

map for the probability distribution defined by Equation 
(4.1).

As a conclusion, all probability distributions that can be 
factorized as in (4.1), can be represented as an MRF.
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Converting Directed to Undirected Graphs (1)

In this case: Z=1

45

x1 x1

x2 x2

x3 x3

x4 x4

p(x) = p(x1)p(x2)p(x2)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

In general: conditional distributions in the directed graph 
are mapped to cliques in the undirected graph

However: the variables are not conditionally independent 
given the head-to-head node

Therefore: Connect all parents of head-to-head nodes with 
each other (moralization)

46
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x3 x3

x4 x4

p(x) = p(x1)p(x2)p(x2)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

Problem: This process can remove conditional 
independence relations (inefficient)

Generally: There is no one-to-one mapping between the 
distributions represented by directed and by undirected 
graphs.
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p(x) = �(x1, x2, x3, x4)
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Representability

•As for DAGs, we can define an I-map, a D-map 
and a perfect map for MRFs.

•The set of all distributions for which a DAG 
exists that is a perfect map is different from 
that for MRFs. 

Distributions 
with a DAG as 
perfect map

Distributions 
with an MRF as 

perfect map

All distributions

48

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Directed vs. Undirected Graphs

Both distributions can not be represented in the other 
framework (directed/undirected) with all conditional 
independence relations.
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Using Graphical Models

We can use a graphical model to do inference:

• Some nodes in the graph are observed, for others 
we want to find the posterior distribution

• Also, computing the local marginal distribution p(xn) 
at any node xn can be done using inference.

Question: How can inference be done with a 
graphical model?  

We will see that when exploiting conditional 
independences we can do efficient inference. 
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Inference on a Chain

The joint probability is given by

The marginal at  x3 is

In the general case with N nodes we have

and
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Inference on a Chain

•This would mean KN computations! A more efficient 
way is obtained by rearranging:

Vectors of size K
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Inference on a Chain

In general, we have
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Inference on a Chain

The messages µα and µβ can be computed 

recursively:

Computation of  µα starts at the first node and 

computation of  µβ starts at the last node.
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Inference on a Chain

•The first values of µα and µβ are:

•The partition function can be computed at any node:

•Overall, we have O(NK2) operations to compute the 
marginal 
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Inference on a Chain

To compute local marginals:

•Compute and store all forward messages,             .

•Compute and store all backward messages,             

•Compute Z once at a node xm:

•Compute

for all variables required.
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Summary

• Undirected Models (also known as Markov 
random fields) provide a simpler method to 
check for conditional independence

• A MRF is defined as a factorization over clique 
potentials and normalized globally

• Directed models can be converted into 
undirected ones, but there are distributions that 
can be represented only in one kind of model

• For undirected Markov chains there is a very 
efficient inference method based on message 
passing
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4a. Inference in 
Graphical Models
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Inference on a Chain (Rep.)

• The first values of µα and µβ are:

• The partition function can be computed at any node:

• Overall, we have O(NK2) operations to compute the 
marginal 
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree PolytreeUndirected 

Tree

It is then known as the sum-product algorithm. 
A special case of this is belief propagation. 

3
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Undirected 
Tree

An undirected tree is defined 
as a graph that has exactly one 
path between any two nodes

4
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree

5

A directed tree has 
only one node 
without parents and 
all other nodes 
have exactly one 
parent

Conversion from 
a directed to an 
undirected tree is 
no problem, 
because no links 
are inserted

The same is true for the 
conversion back to a 
directed tree
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Polytree
Polytrees can contain nodes with 
several parents, therefore 
moralization can remove 
independence relations

6

f(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs.

• A representation that generalizes directed and 
undirected models is the factor graph.

Directed graph Factor graph

7
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs.

• A representation that generalizes directed and 
undirected models is the factor graph.

Undirected graph Factor graph

8

fa

fb
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Factor Graphs

Factor graphs 

• can contain multiple factors 
for the same  nodes

• are more general than 
undirected graphs

• are bipartite, i.e. they consist 
of two kinds of nodes and all 
edges connect nodes of 
different kind

9

x1 x3

x4

fa
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Factor Graphs

• Directed trees convert to 
tree-structured factor graphs

• The same holds for 
undirected trees

• Also: directed polytrees 
convert to tree-structured 
factor graphs

• And: Local cycles in a 
directed graph can be 
removed by converting to a 
factor graph

10

x1 x3

x4

x1 x3

x4
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The Sum-Product Algorithm

Assumptions: 

• all variables are discrete

• the factor graph has a tree structure

The factor graph represents the joint distribution 
as a product of factor nodes:

The marginal distribution at a given node x is

11

p(x) =
Y

s

fs(xs)

p(x) =
X

x\x

p(x)

p(x) =
X

x\x

Y

s2ne(x)

Fs(x, Xs)

p(x) =
Y

s2ne(x)

X

Xs

Fs(x, Xs) =
Y

s2ne(x)

µfs!x(x)
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The Sum-Product Algorithm

For a given node x the joint 
can be written as 

12

Product of all 
factors associated 

with  fs

p(x) =
Y

s2ne(x)

Fs(x, Xs)

Thus, we have

Key insight: Sum and product can be exchanged!

“Messages from 

factors to node x”

µfs!x(x) =
X

x1

· · ·
X

xM

fs(x, x1, . . . , xM )
Y

m2ne(fs)\x

X

Xsm

Gm(xm, Xsm
)

=
X

x1

· · ·
X

xM

fs(x, x1, . . . , xM )
Y

m2ne(fs)\x

µxm!fs
(xm)
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The Sum-Product Algorithm

The factors in the messages 
can be factorized further:

13

The messages can then be computed as

“Messages from 
nodes to factors”

Fs(x, Xs) = fs(x, x1, . . . , xM )G1(x1, Xs1
) . . . GM (xM , XsM

)



GM (xm, Xsm
) =

Y

l2ne(xm)\fs

Fl(xm, Xml
)

µxm!fs
(xm) =

Y

l2ne(xm)\fs

X

Xml

Fl(xm, Xml
)
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The Sum-Product Algorithm

The factors G of the 
neighboring nodes can 
again be factorized further:

14

This results in the exact same situation as above! 
We can now recursively apply the derived rules: 

=
Y

l2ne(xm)\fs

µfl!xm
(xm)
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The Sum-Product Algorithm

15

Summary marginalization:

1.Consider the node x as a root note

2.Initialize the recursion at the leaf nodes as:
                          (var)  or                          (fac)

3.Propagate the messages from the leaves to the 

root x
4.Propagate the messages back from the root to 

the leaves

5.We can get the marginals at every node in the 
graph by multiplying all incoming messages 

µf!x(x) = 1 µx!f (x) = f(x)
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The Max-Sum Algorithm

Sum-product is used to find the marginal 
distributions at every node, but:

How can we find the setting of all variables that 
maximizes the joint probability? And what is the 
value of that maximal probability?

Idea: use sum-product to find all marginals and 

then report the value for each node x that 

maximizes the marginal p(x)
However: this does not give the overall 
maximum of the joint probability

16

=
1

Z
max

x1

[ 1,2(x1, x2) [. . . max N�1,N (xN�1, xN )]]
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The Max-Sum Algorithm

Observation: the max-operator is distributive, just 
like the multiplication used in sum-product: 

Idea: use max instead of sum as above and 
exchange it with the product

Chain example:

Message passing can be used as above!

17

max(ab, ac) = a max(b, c) if a � 0

max
x

p(x) =
1

Z
max

x1

. . . max[ 1,2(x1, x2) . . .  N�1,N (xN�1, xN )]
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The Max-Sum Algorithm

To find the maximum value of p(x), we start again 
at the leaves and propagate to the root.

Two problems:

• no summation, but many multiplications; this 
leads to numerical instability (very small values)

• when propagating back, multiple configurations 

of x can maximize p(x), leading to wrong 
assignments of the overall maximum

Solution to the first:

Transform everything into log-space and use sums

18
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The Max-Sum Algorithm

Solution to the second problem:

Keep track of the arg max in the forward step, 
i.e. store at each node which value was 
responsible for the maximum:

Then, in the back-tracking step we can recover 
the arg max by recursive substitution of:

19

�(xn) = arg max
xn�1

[ln fn�1,n(xn�1, xn) + µxn�1!fn�1,n
(xn)]

xmax
n�1 = �(xmax

n )
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Other Inference Algorithms

Junction Tree Algorithm:

• Provides exact inference on general graphs.

• Works by turning the initial graph into a junction 
tree and then running a sum-product-like algorithm

• A junction tree is obtained from an undirected 
model by triangulation and mapping cliques to 
nodes and connections of cliques to edges

• It is the maximal spanning tree of cliques

Problem: Intractable on graphs with large cliques.

Cost grows exponentially with the number of 
variables in the largest clique (“tree width”).

20
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Other Inference Algorithms

Loopy Belief Propagation:

• Performs Sum-Product on general graphs, 
particularly when they have loops

• Propagation has to be done several times, until a 
convergence criterion is met

• No guarantee of convergence and no global 
optimum

• Messages have to be scheduled

• Initially, unit messages passed across all edges 

• Approximate, but tractable for large graphs

21
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Conditional Random Fields

• Another kind of undirected graphical model is known 
as Conditional Random Field (CRF).

• CRFs are used for classification where labels are 

represented as discrete random variables y and 

features as continuous random variables x
• A CRF represents the conditional probability

where w are parameters learned from training data.

• CRFs are discriminative and MRFs are generative

22
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Conditional Random Fields

Derivation of the formula for CRFs:

In the training phase, we compute parameters w that 
maximize the posterior: 

where (x*,y*) is the training data and p(w) is a Gaussian 
prior. In the inference phase we maximize

23
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Conditional Random Fields

Note: the definition of xi,j and yi,j is different 
from the one in C.M. Bishop (pg.389)!

Typical example: 
observed variables 

xi,j are intensity 

values of pixels in 
an image and 

hidden variables yi,j 

are object labels

24
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CRF Training

We minimize the negative log-posterior:

Computing the likelihood is intractable, as we have to 

compute the partition function for each w. We can 
approximate the likelihood using pseudo-likelihood:

where
Markov blanket Ci: All cliques containing yi

25
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Pseudo Likelihood

26
Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Pseudo Likelihood

Pseudo-likelihood is computed only on the Markov 

blanket of yi and its corresp. feature nodes.

27

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Potential Functions

• The only requirement for the potential functions is 
that they are positive. We achieve that with:

where f is a compatibility function that is large if the 

labels yC fit well to the features xC.

• This is called the log-linear model.

• The function f can be, e.g. a local classifier

28
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CRF Training and Inference

Training:

• Using pseudo-likelihood, training is efficient. We have 
to minimize:

• This is a convex function that can be minimized using 
gradient descent

Inference:

• Only approximatively, e.g. using loopy belief 
propagation

Log-pseudo-likelihood Gaussian prior

29
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Summary

• Undirected Graphical Models represent conditional 
independence more intuitively using graph 
separation

• Their factorization is done based on potential 
functions The normalizer is called the partition 
function, which in general is intractable to compute

• Inference in graphical models can be done 
efficiently using the sum-product algorithm 
(message passing).

• Another inference algorithm is loopy belief 
propagation, which is approximate, but tractable

• Conditional Random Fields are a special kind of 
MRFs and can be used for classification
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• This incorporates the following Markov assumptions:

Graphical Representation (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)

32
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• This incorporates the following Markov assumptions:

Graphical Representation

We can describe the overall process using a Markov 
chain of latent variables:

(measurement)

(state)

Discrete 
Variables

Notation 
differs from 

Bishop!

33
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Example

“Occasionally dishonest casino”:

• observations: faces of a die

• hidden states: two different dice, one fair, one 
loaded 

34

zt 2 {1, 2, . . . , 6}
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1.Discrete random variables 

• Observation variables: {zn}, n = 1..N 
• State variables (unobservable): {xn}, n = 1..N
• Number of states K: xnє{1..K}

2.Transition model p(xi |xi-1)
• Markov assumption (xi only depends on xi-1)
• Represented as a K×K transition matrix A
• Initial probability: p(x0) repr. as  π1, π2, π3

3.Observation model p(zi|xi) with parameters φ
• Observation only depends on the current state

• Example: output of a “local” place classifier

Formulation as HMM

Model Parameters 

θ

35
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The Trellis Representation

A33 A33

A11 A11k=1

k=2

k=3

time

n-2 n-1 n
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• Given an observation sequence z1,z2,z3…
• Assume that the model parameters 

θ =(A, π, φ) are known

• What is the probability that the given observation 
sequence is actually observed under this model, 

i.e. p(Z| θ)?
• If we are given several different models, we can 

choose the one with highest probability

• Expressed as a supervised learning problem, 
this can be interpreted as the inference step 
(classification step)

Application Example (1)

37
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• Given an observation sequence z1,z2,z3…
• Assume that the model parameters 

θ =(A, π, φ) are known

• What is the state sequence x1,x2,x3…  that 
explains best the given observation sequence?

• In the case of place recognition: which is the 
sequence of truly visited places that explains 
best the sequence of obtained place labels 
(classifications)?

Application Example (2)

38
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• Given an observation sequence z1,z2,z3…
• What are the optimal model parameters 

θ =(A, π, φ)?
• This can be interpreted as the 

training step

• It is in general the most difficult problem

Application Example (3)

39
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1. Compute data likelihood p(Z|θ) from a known model
• Can be computed with the forward-backward algorithm

2. Compute optimal state sequence with a known model
• Can be computed with the Viterbi-Algorithm

3. Learn model parameters for an observation sequence
• Can be computed using Expectation-Maximization (or 

Baum-Welch)

Summary: 3 Operations on HMMs

40
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• Assume: given a state sequence x1,x2,x3… 

Two possible operations:

• Filtering: computes                , i.e. state 
probability only based on previous observations

• Smoothing: computes                , state 
probability based on all observations (including 
those from the future)

1. Computing the Data Likelihood

41
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The Forward Algorithm

• First, we compute the prediction from the last 
time step:

• Then, we do the update using Bayes rule:

• This is exactly the same as the Bayes filter from 
the first lecture!

42

p(xt = j | z1:t�1) =
X

i

p(xt = j | xt�1 = i)p(xt�1 = i | z1:t�1)

↵t(j) := p(xt = j | z1:t) = p(xt = j | zt, z1:t�1)

=
1

Zt
p(zt | xt = j, z1:t�1)p(xt = j | z1:t�1)
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• As before we set  

• We also define 

The Forward-Backward Algorithm

43

↵t(j) := p(xt = j | z1:t)

�t(j) := p(zt+1:T | xt = j)
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• As before we set  

• We also define

• This can be recursively computed (backwards): 

The Forward-Backward Algorithm

44

↵t(j) := p(xt = j | z1:t)

�t(j) := p(zt+1:T | xt = j)

�t�1(i) = p(zt:T | xt�1 = i)

=
X

j

p(xt = j, zt, zt+1:T | xt�1 = i)

=
X

j

p(zt+1:T | xt = j, xt�1 = i, zt)p(xt = j, zt | xt�1 = i)

=
X

j

p(zt+1:T | xt = j)p(zt | xt = j, xt�1 = i)p(xt = j | xt�1 = i)

=
X

j

�t(j)p(zt | xt = j)p(xt = j | xt�1 = i)
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• As before we set  

• We also define

• This can be recursively computed (backwards): 

• This is exactly the same as the message-passing 
algorithm (sum-product)!

• forward messages       (vector of length K)

• backward messages       (vector of length K)

The Forward-Backward Algorithm

45

↵t(j) := p(xt = j | z1:t)

�t(j) := p(zt+1:T | xt = j)

�t�1(i) = p(zt:T | xt�1 = i)

=
X

j

�t(j)p(zt | xt = j)p(xt = j | xt�1 = i)

�t

↵t
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• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ)

• Define

This is the probability of state j by taking the 
most probable path. 

2. Computing the Most Likely States

46

�t(j) := max
x1,...,xt�1

p(x1:t�1, xt = j | z1:t)
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• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ)

• Define

This can be computed recursively: 

we also have to compute the argmax:

2. Computing the Most Likely States

47

�t(j) := max
x1,...,xt�1

p(x1:t�1, xt = j | z1:t)

�t(j) := max
i

�t�1(i)p(xt | xt�1)p(zt | xt)

at(j) := arg max
i

�t�1(i)p(xt | xt�1)p(zt | xt)
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• Initialize:

•  δ(x0)= p(x0) p(z0 | x0)

•ψ(x0)= 0

• Compute recursively for n=1…N:

• δ(xn)= p(zn|xn)  max [δ(xn-1) p(xn|xn-1)]

• a(xn)= argmax [δ(xn-1) p(xn|xn-1)]

• On termination:

• p(Z,X|θ) = max δ(xN)

• xN = argmax δ(xN)

• Backtracking:

• xn = a(xn+1)

The Viterbi algorithm

xn-1 

xn-1 

*

xN 

xN 

*
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• Given an observation sequence z1,z2,z3…

• Find optimal model parameters θ
• We need to maximize the likelihood p(Z|θ)

• Can not be solved in closed form

• Iterative algorithm: 
Expectation Maximization (EM) or for the case 
of HMMs: Baum-Welch algorithm

3. Learning the Model Parameters

49
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• Objective: Find the model parameters knowing 
the observations: π,A,φ

• Result: 

•Train the HMM to recognize sequences of input

•Train the HMM to generate sequences of input

• Technique: Expectation Maximisation

•E: Find the best state sequence given the 
parameters

•M: Find the parameters using the state sequence

•Maximisation of the log-likelihood:

Expectation Maximisation

50
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state 
i at step k:

• Define γ(xn)= p(xn|Z)

The Baum-Welsh algorithm

51
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state 
i at step k:

• Define γ(xn)= p(xn|Z)

• It follows that  γ(xn)= α(xn) β(xn) / p(Z)

The Baum-Welsh algorithm

52
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state i at 
step k:

• Define γ(xn)= p(xn|Z)

• It follows that  γ(xn)= α(xn) β(xn) / p(Z)

• Define ξ(xn-1 ,xn)= p(xn-1 ,xn|Z)

• It follows that  

ξ(xn-1 ,xn)= α(xn-1)p(zn|xn)p(xn|xn-1)β(xn) / p(Z)

• We need to compute:

Q(θ,θold)= Σ p(X|Z, θold)log p(Z,X|θ)

The Baum-Welsh algorithm

X 

53

Expected 
complete data 
log-likelihood
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• Maximizing Q also maximizes the likelihood:

p(Z|θ) ≥ p(Z|θold)

• M-Step: 

• 

here, we need forward and backward step!

• 
 

• With these new values, Q is recomputed

• This is done until the likelihood does not 
increase anymore (convergence)

The Baum-Welsh algorithm
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P
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• Start with an initial estimate of θ=(π,A,φ)

e.g. uniformly and k-means for φ
• Compute Q(θ,θold) (E-Step)

• Maximize Q (M-step)

• Iterate E and M until convergence 

• In each iteration one full application of the 
forward-backward algorithm is performed

• Result gives a local optimum

• For other local optima, the algorithm needs to 
be started again with new initialization

The Baum-Welsh algorithm - summary

55
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• Probability of sequences

•Probabilities are very small

•The product of the terms soon is very small 

• Usually: converting to log-space works

• But: we have sums of products!

• Solution: Rescale/Normalise the probability 
during the computation, e.g.:

  α(xn)= α(xn) / p(z1,z2,…,zn) 

The Scaling problem

<1

^ 
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• HMMs are a way to model sequential data

• They assume discrete states

• Three possible operations can be performed 
with HMMs:

•Data likelihood, given a model and an observation

•Most likely state sequence, given a model and an 
observation

•Optimal Model parameters, given an observation

• Appropriate scaling solves numerical problems

• HMMs are widely used, e.g. in speech 
recognition 

Summary
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Repetition: Regression

We start with a set of basis functions 

!

The goal is to fit a model into the data 

!

To do this, we need to find an error function, e.g.: 

!

!

To find the optimal parameters, we derived E with 

respect to w and set the derivative to zero.


2

�(x) = (�0(x), �1(x), . . . , �M�1(x))

y(x,w) = wT�(x)

x 2 íd

E(w) =
1

2

NX

i=1

(wT�(xi) � ti)
2
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Some Questions

1.Can we do the same for classification?  
As a special case we consider two classes: 

!

2.Can we use a different (better?) error function? 

3.Can we learn the basis functions together with 
the model parameters? 

4.Can we do the learning sequentially, i.e. one 
basis function after another? 

!

Answer to all questions: Yes, using Boosting!


3

ti 2 {�1, 1} 8i = 1, . . . , N
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The Loss Function

Definition: a real-valued function               , 

where t is a target value and y is a model, is 
called a loss function.  

Examples: 

01-loss:  

!

squared error loss: 

!

exponential loss: 


4

L(t, y(x))

L01(t, y(x)) =

⇢
0 if t = y(x)
1 else

Lsqe(t, y(x)) = (t � y(x))2

Lexp(t, y(x)) = exp(�ty(x))
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Loss Functions

• 01-loss is not differentiable 

• squared error loss has only one optimum
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Sequential Fitting of Basis Functions

Idea: We start with a basis function         : 

!

Then, at iteration m, we add a new basis  
function           to the model: 

!

Two questions need to be answered: 

1.How do we find a good new basis function? 

2.How can we determine a good value for wm? 

Idea: Minimize the exponential loss function


6

y0(x, w0) = w0�0(x) w0 = 1

�m(x)

�0(x)

ym(x, w0, . . . , wm) = ym�1(x, w0, . . . , wm�1) + wm�m(x)
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Minimizing the Exponential Loss

Aim: find wm  and     so that 

!

!

!

where  


7

�m

L(t, y) = exp(�ty)

(wm, �m) = arg min
w,�

NX

i=1

L(ti, ym�1(xi) + w�(xi))
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Minimizing the Exponential Loss

Aim: find wm  and     so that 

!

!

!

where  

!

Solution: 


8

�m

L(t, y) = exp(�ty)

(wm, �m) = arg min
w,�

NX

i=1

L(ti, ym�1(xi) + w�(xi))

�m = arg min
�

NX

i=1

vi,mI(ti 6= �(xi))
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Minimizing the Exponential Loss

Aim: find wm  and     so that 

!

!

!

where  

!

Solution: 


9

�m

L(t, y) = exp(�ty)

(wm, �m) = arg min
w,�

NX

i=1

L(ti, ym�1(xi) + w�(xi))

�m = arg min
�

NX

i=1

vi,mI(ti 6= �(xi))

wm =
1

2
log

1 � errm

errm
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Minimizing the Exponential Loss

Aim: find wm  and     so that 

!

!

!

where  

!

Solution: 
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�m

L(t, y) = exp(�ty)

(wm, �m) = arg min
w,�

NX

i=1

L(ti, ym�1(xi) + w�(xi))

�m = arg min
�

NX

i=1

vi,mI(ti 6= �(xi))

wm =
1

2
log

1 � errm

errm

vi,m+1 = vi,m exp(2wmI(ti 6= �m(xi))
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The AdaBoost Algorithm

1.For                   : 

2.For  

Fit a classifier (“basis function”)       that minimizes  

!

!

Compute                                           and 

!

Update the weights:    

3.Use the resulting classifier: 
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i = 1, . . . , N vi  1/N

m = 1, . . . , M

�m
NX

i=1

viI(ti 6= �m(xi))

errm =

PN
i=1 viI(ti 6= �m(xi))PN

i=1 vi

↵m = log
1 � errm

errm

vi  vi exp(↵mI(ti 6= �m(xi)))

y(x) = sgn

MX

m=1

↵m�m(x)
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The “Basis Functions”

• Can be any classifier that can deal with weighted 
data 

• Most importantly: if these “base classifiers” 
provide a training error that is at most as bad as 
a random classifier would give (i.e. it is a weak 
classifier), then AdaBoost can return an 
arbitrarily small training error (i.e. AdaBoost is a 
strong classifier) 

• Many possibilities for weak classifiers exist, e.g.: 

•Decision stumps 

•Decision trees 


12
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Decision Stumps

Decision Stumps are a kind of very simple weak 
classifiers. 

Goal: Find an axis-aligned hyperplane 
that minimizes the class. error 

This can be done for each feature (i.e.  
for each dimension in feature space) 

It can be shown that the classif. error is  
always better than 0.5 (random guessing) 

Idea: apply many weak classifiers, where each is 
trained on the misclassified examples of the 
previous.
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Classification Example
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Classification Example
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Classification Example
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Classification Example


17
Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Classification Example
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Classification Example
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Decision Trees

• A more general version of decision stumps are 
decision trees: 

!

!

!

!

• At every node, a decision 
is made 

• Dan be used for classification and for regression 
(Classification And Regression Trees CART)
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Decision Trees for Classification

• Stores the distribution over class labels in each 
leaf (number of positives and negatives) 

• With these, we can class label probabilities, e.g.  
                           if we have a red ellipse
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1,1 0,2

shape4,0

color

size < 10

4,0 0,5

ellipse other

blue
red

other

yes no

p(y = 1 | x) = 1/2
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Growing a Decision Tree

• Finding the optimal partition of the data is an 
NP-complete problem! 

• Instead: use a greedy strategy: 

function fitTree(node,  , depth): 

1. node.prediction = class label distribution 

2.  

3. if not worth splitting then return node 

4. node.test 

5. node.left = fitTree(node,    , depth +1)  

6. node.right = fitTree(node,    , depth +1) 
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(j⇤, t⇤, DL, DR) = split(D)

D

 xj⇤ < t⇤

DL

DR
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Growing a Decision Tree

• The Split-function finds an optimal feature and an 
optimal value for that feature 

• For classification, it finds a split that minimizes 
some cost function, e.g. misclassification 

• A decision stump is a decision tree with depth 1 

• Stopping criteria for growing the tree are: 

•reduction of cost too small? 

•maximum depth reached? 

•is the distribution in the sub-trees homogenous? 

•is the number of samples in the sub-trees too small?
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Tree Pruning

• If the tree grows too large, the algorithm overfits 

• Simply stopping to grow can lead to situations 
where the tree is not expressive enough 

• Idea: Build first full tree and then prune it 

• Pruning can be done using cross-validation
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Random Forests

• To reduce the variance of the classification 
estimate, we can train several trees on 
randomly sampled subsets of the data 

• However, this can result in correlated classifiers, 
limiting the reduction in variance 

• Idea: chose data subset and variable (feature) 
subset randomly 

• The resulting algorithm is known as Random 
Forests 

• Random Forests have very good accuracy and 
are widely used, e.g. body pose recognition
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Back to Boosting

• AdaBoost has been shown to perform very well, 
especially when using decision trees as weak 
classifiers 

!

!

!

!

!

• However: the exponential loss weighs 
misclassified examples very high!
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Using the Log-Loss

• The log-loss is defined as: 

!

• It penalizes misclassifications only linearly
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L(t, y(x)) = log2(1 + exp(�2ty(x))
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The LogitBoost Algorithm

1.For                   : 

2.For  

Compute the working response  

Compute the weights 

Find       that minimizes                 

!

!

Update                                      and    

3.Use the resulting classifier: 
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i = 1, . . . , N vi  1/N

m = 1, . . . , M

⇡i  1/2

zi =
ti � ⇡i

⇡i(1 � ⇡i)

�m

vi = ⇡i(1 � ⇡i)

NX

i=1

vi(zi � �(xi))
2

y(x) y(x) +
1

2
�m(x) ⇡i  

1

1 + exp(�2y(xi))

y(x) = sgn

MX

m=1

�m(x)
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Weighted Least-Squares Regression

• Instead of a weak classifier, LogitBoost uses 
“weighted least-squares regression” 

• This is very similar to standard least-squares 
regression: 

!

!

• This results in a matrix                  where   

!

• The solution is 
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E(w) =
1

2

NX

i=1

vi(w
T�(xi) � ti)

2

�̂ = V 1/2�

V 1/2 = diag(
p

v1, . . . ,
p

vN )

w = (�̂T �̂)�1�̂T t
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GentleBoost

• Numerically more stable than LogitBoost 

• Tends to perform better than AdaBoost and 
LogitBoost 
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Generalization: Gradient Boost

• Initialize 

!

• for 

•Compute the gradient residual  

!

!

•Use the weak learner to compute  that minimizes 

!

•Update 

• Return
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f0(x) = arg min
�

NX

i=1

L(ti, �(xi, �))

m = 1, . . . , M

rim = �

@L(ti, f(xi))

@f(xi)

�

f(xi)=fm�1(xi)

NX

i=1

(rim � �(xi; �m))2

fm(x) = fm�1(x) + ⌫�(x, �)

f(x) = fM (x)
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Application of AdaBoost: Face Detection

• The biggest impact of AdaBoost was made in 
face detection 

• Idea: extract features (“Haar-like features”) and 
train AdaBoost, use a cascade of classifiers 

• Features can be computed very efficiently 

• Weak classifiers can be decision stumps or 
decision trees 

• As inference in AdaBoost is fast, the face 
detector can run in real-time!
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• Defined as difference of 
rectangular integral area: 

• The sum of the pixels which lie 
within the white rectangles are 
subtracted from the sum of pixels 
in the grey rectangles. 

  
!

• One feature defined as: 

• Feature type: A,B,C or D 

• Feature position and size

Haar-like Features
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• Defined as : 

!

!

• Integral on rectangle D can 
be computed in 4 access to 
Iint: 

!

!

• Very efficient way to compute 
features

The integral image
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• A weak classifier has 3 attributes: 

•A feature fj (type, size and position) 

•A threshold θj 

•A comparison operator opj = ‘<‘ or ‘>’ 

• The resulting weak classifier is: 

!

• x is a 24x24 pixels window in the image

Weak Classifiers Used
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Two First Classifiers Selected by AdaBoost

A classifier with only this two features can be trained to recognise 
100% of the faces, with 40% of false positives
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• scale = 24x24 

• Do { 

•For each position in the image { 

•Try classifying the part of the image starting at this 

position, with the current scale, using the classifier 

selected by AdaBoost 

} 

•Scale = Scale x 1.5 

} until maximum scale

The Inference Algorithm
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• Basic idea: 

•It is easy to detect that something is not a face 

•Tune(boost) classifier to be very reliable at saying 

NO (i.e. very low false negative) 

•Stop evaluating the 
cascade of classifier  
if one classifier says NO

Another Improvement: the Cascade
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• Faster processing 

•Quick elimination of useless windows 

• Each  individual classifier is trained to deal only 

with the example that the previous ones could 

not process 

•Very specialised  

• The deeper in the cascade, the more complex 

(the more features) in the classifiers.

Advantage of the Cascade
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Results (1)
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Results (2)
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• Boosting is a method to use a weak classifier 

and turn it into a strong one (arbitrarily small 

training error!) 

• AdaBoost minimizes the exponential loss 

• To be more robust against outliers, we can use 

LogitBoost or GentleBoost 

• Weak learners can be decision stumps or 

decision trees 

• Face detection can be solved with Boosting

Summary
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Computer Vision Group  
Prof. Daniel Cremers

6. Kernel Methods
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Motivation

• Usually learning algorithms assume that some 
kind of feature function is given 

• Reasoning is then done on a feature vector of a 
given (finite) length 

• But: some objects are hard to represent with a 
fixed-size feature vector, e.g. text documents, 
molecular structures, evolutionary trees 

• Idea: use a way of measuring similarity without 
the need of features, e.g. the edit distance for 
strings 

• This we will call a kernel function
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

                                               

!

!


3

J(w) =
1

2

NX

n=1

(wT�(xn) � tn)2 +
�

2
wT w �(xn) 2 RD
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

if we write this in vector form, we get 
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J(w) =
1

2

NX

n=1

(wT�(xn) � tn)2 +
�

2
wT w �(xn) 2 RD

J(w) =
1

2
wT�T�w � wT�T t + tT t +

�

2
wT w t 2 RN
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

if we write this in vector form, we get 

!

!

and the solution is 
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J(w) =
1

2

NX

n=1

(wT�(xn) � tn)2 +
�

2
wT w �(xn) 2 RD

J(w) =
1

2
wT�T�w � wT�T t + tT t +

�

2
wT w t 2 RN

w = (�T� + �ID)�1�T t
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

However, we can express this result in a different 
way using the matrix inversion lemma: 

!


6

w = (�T� + �ID)�1�T t

(A + BCD)�1 = A�1 � A�1B(C�1 + DA�1B)�1DA�1

J(w) =
1

2
wT�T�w � wT�T t + tT t +

�

2
wT w
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

However, we can express this result in a different 
way using the matrix inversion lemma: 

!


7

w = (�T� + �ID)�1�T t

(A + BCD)�1 = A�1 � A�1B(C�1 + DA�1B)�1DA�1

w = �T (��T + �IN )�1t

J(w) =
1

2
wT�T�w � wT�T t + tT t +

�

2
wT w
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

!

Plugging               into          gives:


8

w = (�T� + �ID)�1�T t

w = �T (��T + �IN )�1t

J(w) =
1

2
wT�T�w � wT�T t + tT t +

�

2
wT w

=: a

J(a) =
1

2
aT��T��T a � aT��T t + tT t +

�

2
aT��T a

J(w)w = �T a

“Dual Variables”
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

!

This is called the dual formulation. 

Note:  

!

!
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J(w) =
1

2
wT�T�w � wT�T t + tT t +

�

2
wT w

a 2 RN w 2 RD

K = ��T
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

!

This is called the dual formulation. 

The solution to the dual problem is: 

!

!


10

J(w) =
1

2
wT�T�w � wT�T t + tT t +

�

2
wT w
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

!

!

!

!

!

This we can use to make predictions: 

!

(now x is unknown and a is given from training)

11

J(w) =
1

2
wT�T�w � wT�T t + tT t +

�

2
wT w

y(x) = wT�(x) = aT��(x) = k(x)T (K + �IN )�1t
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y(x) = k(x)T (K + �IN )�1t

Dual Representation

where:  

!

!

!

Thus, y is expressed only in terms of dot products 
between different pairs of        , or in terms of the 
kernel function  
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k(x) =

0
B@

�(x1)
T�(x)
...

�(xN )T�(x)

1
CA

�(x)

K =

0
B@

�(x1)
T�(x1) . . . �(x1)

T�(xN )
...

. . .
...

�(xN )T�(x1) . . . �(xN )T�(xN )

1
CA

k(xi,xj) = �(xi)
T�(xj)
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Representation using the Kernel

Now we have to invert a matrix of size            , 

before it was             where            , but: 

By expressing everything with the kernel 
function, we can deal with very high-dimensional 
or even infinite-dimensional feature spaces! 

Idea: Don’t use features at all but simply define a 
similarity function expressed as the kernel!
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y(x) = k(x)T (K + �IN )�1t

N ⇥ N

M ⇥ M M < N
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Constructing Kernels

The straightforward way to define a kernel function is to 
first find a basis function        and to define: 

!

This means, k is an inner product in some space    , i.e: 

1.Symmetry: 

2.Linearity: 

3.Positive definite:                       , equal if  

!

Can we find conditions for k under which there is a 
(possibly infinite dimensional) basis function into    , 

where k is an inner product? 
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k(xi,xj) = �(xi)
T�(xj)

�(x)

H
k(xi,xj) = h�(xj), �(xi)i = h�(xi), �(xj)i

ha(�(xi) + z), �(xj)i = ah�(xi), �(xj)i + ahz, �(xj)i
h�(xi), �(xi)i � 0 �(xi) = 0

H
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Constructing Kernels

Theorem (Mercer): If k is  

1.symmetric, i.e.                                 and 

2.positive definite, i.e.  
 
 
 
 
is positive definite, then there exists a mapping       

into a feature space     so that k can be expressed 
as an inner product in    . 

This means, we don’t need to find         explicitly! 

We can directly work with k 
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k(xi,xj) = k(xj ,xi)

K =

0
B@

k(x1,x1) . . . k(x1,xN )
...

. . .
...

k(xN ,x1) . . . k(xN ,xN )

1
CA

�(x)

H
H

“Gram Matrix”

�(x)

“Kernel Trick”
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Constructing Kernels

Finding valid kernels from scratch is hard, but: 

A number of rules exist to create a new valid kernel k 

from given kernels k1 and k2. For example:
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where A is positive semidefinite 
and symmetric
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Examples of Valid Kernels

• Polynomial Kernel: 

!

• Gaussian Kernel:  

!

• Kernel for sets: 

!

• Matern kernel:
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k(xi,xj) = (xT
i xj + c)d c > 0 d 2 N

k(xi,xj) = exp(�kxi � xjk2/2�2)

k(A1, A2) = 2|A1\A2|

k(r) =
21�⌫

�(⌫)

 p
2⌫r

l

!⌫

K⌫

 p
2⌫r

l

!
r = kxi � xjk, ⌫ > 0, l > 0
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A Simple Example

Define a kernel function as 

!

This can be written as: 

!

!

!

!

It can be shown that this holds in general for  
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Visualization of the Example

Original decision 
boundary is an ellipse

Decision boundary 
becomes a hyperplane
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Application Examples

Kernel Methods can be applied for many different 
problems, e.g.: 

• Density estimation (unsupervised learning) 

• Regression 

• Principal Component Analysis (PCA) 

• Classification 

Most important Kernel Methods are 

• Support Vector Machines 

• Gaussian Processes
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Kernelization

• Many existing algorithms can be converted into 
kernel methods 

• This process is called “kernelization” 

Idea: 

• express similarities of data points in terms of an 
inner product (dot product) 

• replace all occurrences of that inner product by 
the kernel function 

This is called the kernel trick 
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Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance
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kxi,xjk2 = xT
i xi + xT

j xj + 2xT
i xj
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Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance 

!

!

• We can now replace the dot products by a valid 
Mercer kernel and we obtain: 

!

• This is a kernelized nearest-neighbor classifier 

• We do not explicitly compute feature vectors!
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kxi,xjk2 = xT
i xi + xT

j xj + 2xT
i xj

d(xi,xj)
2 = k(xi,xi) + k(xj ,xj) + 2k(xi,xj)
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• Given: data set  

• Project data onto a subspace of dimension M 
so that the variance is maximized 
(“decorrelation”) 

• For now: assume M is equal to 1 

• Thus: the subspace can be described by a D-
dimensional unit vector     , i.e.: 

• Each data point is projected onto the subspace 
using the dot product: 

Example: Principal Component Analysis
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{xn} n = 1, . . . , N xn 2 RD

u1 uT
1 u1 = 1

uT
1 xn
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Visualization: 

!

!

!

!

Mean: 

!

Variance: 

xn

S

Principal Component Analysis
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1
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1
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Principal Component Analysis

Goal: Maximize            s.t.   

Using a Lagrange multiplier: 

!

!

Setting the derivative wrt.     to 0 we obtain:  

!

Thus:      must be an eigenvector of S. 
Multiplying with      from left gives: 

Thus:      is largest if      is the eigenvector of the 

largest eigenvalue of S   
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uT
1 Su1 uT

1 u1 = 1

u⇤ = arg max
u1

uT
1 Su1 + �1(1 � uT

1 u1)
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uT
1 uT
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S symmetric
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Principal Component Analysis

We can continue to find the best one-
dimensional subspace that is orthogonal to  

If we do this M times we obtain: 

!

                are the eigenvectors of the M largest 

eigenvalues of S: 
To project the data onto the M-dimensional 
subspace we use the dot-product:
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u1

u1, . . . ,uM
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Reconstruction using PCA

• We can interpret the vectors                 as a 

basis if M = D  
• A reconstruction of a data point x into an M-

dimensional subspace (M<D) can be written: 

!

• Goal is to minimize the squared error: 

!

• This results in: 

!

These are the coefficients of the eigenvectors
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u1, . . . ,uM

x̃n =

MX

i=1

zniui +

DX

i=M+1

biui

J =
1

N

X

n=1

kxn � x̃nk2

zni = xT
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Reconstruction using PCA

Plugging in, we have:
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x̃n =

MX

i=1

(xT
nui)ui +

DX

i=M+1

(x̄T ui)ui

=

DX

i=1

(x̄T ui)ui �
MX

i=1

(x̄T ui)ui +

MX

i=1

(xT
nui)ui

= x̄ +

MX

i=1

(xT
nui � x̄T ui)ui

= x̄ +

MX

i=1

((xn � x̄)T ui)ui

1. Substract mean 2. Project onto first 

M eigenvectors

3. Back-project
4. Add mean
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Application of PCA: Face Recognition

Database
Image to identify

Identification
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Approach: 

•Convert the image into a nm vector by stacking the 
columns: 

!

!

!

•A small image is 100x100 -> a 10000 element vector, 
i.e. a point in a 10000 dimension space 

•Then compute covariance matrix and eigenvectors 

•Select number of dimensions in subspace 

•Find nearest neighbor in subspace for a new image

Application of PCA: Face Recognition
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• 30% of faces used for testing, 70% for learning.

Results of Face Recognition
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�(xn)

Can We Use Kernels in PCA?

• What if data is distributed along non-linear 
principal components? 

• Idea: Use non-linear kernel to map into a space 
where PCA can be done
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Kernel PCA

Here, assume that the mean of the data is zero:  

!

Then, in standard PCA we have the eigenvalue 
problem: 

!

Now, we use a non-linear transformation  
and we assume             . We define C as   
 
                                    , with  
 
Goal: find eigenvalues without using features!
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1

N

NX

n=1

�(xn)�(xn)T vi = �ivi

Kernel PCA

Plugging in: 

!

This means, there are values       so that                         . 
With this we have: 

!

!

Multiplying both sides by           gives:  

!

!

where                                       . This is our expression in 
terms of the kernel function!
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N
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1

N

NX

n=1
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NX

m=1
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2 R
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The problem can be cast as finding eigenvectors 

of the kernel matrix K: 

!

!

With this, we can find the projection of the image 

of x onto a given principal component as: 

!

!

Again, this is expressed in terms of the kernel 
function.  

�(x)T vi =

NX

n=1

ain�(x)T�(xn) =

NX

n=1

aink(x,xn)

Kernel PCA
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Kernel PCA: Example
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Example: Classification

• We have seen kernel methods for density 
estimation, PCA and regression 

• For classification there are two major kernel 
methods: Support Vector Machines (SVMs) and 
Gaussian Processes 

• SVMs are probably the most used classification 
algorithm 

• Main idea: use kernelisation to map into a high-
dimensional feature space, where a linear 
separation between the classes can be found 
(“hyper-plane”) 
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Support Vector Machines

Support Vector Machines learn a linear discriminant 
function (“hyper-planes”): 

!

!

!

!

!

Assumptions for now: Data is linearly separable,  
Binary classification (                      ). 

“Maximum Margin”: find the decision boundary that 
maximizes the distance to the closest data point

parameters of the 
hyperplane (normal vector)

feature 
function

 data 
point

Bias parameter
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Maximum Margin

margin

linear decision 
boundary

Points with 
minimal distance

“Support  
Vectors”
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Maximum Margin

• The distance of a point      to the decision hyperplane is 

!

!

• This distance is independent of the scale of      and  

!

!

• Maximum margin is found by 

!

!

• Rescaling: We can choose α so that
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Rescaling
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Rescaling
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Maximum Margin

For all data points we have the constraint 

!

This means we have to maximize:  

!

       s.th.   

!

which is equivalent to 

!

      s.th.
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Maximum Margin
!

                         s.th. 

!

This is a constrained optimization problem.  
It can be solved with a technique called quadratic 
programming.
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Dual Formulation

For the constrained minimization we can introduce 

Lagrange multipliers  an: 

!

!

Setting the derivatives of this wrt.      and b to 0 yields: 

!

!

If we plug these constraints back into                     :

min
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Dual Formulation

!

subject to the constraints 

!

This is called the dual formulation of the constrained 
optimization problem. The function k is again the kernel 
function and is defined as: 

!

The simplest example of a kernel function is given for 

Φ= I. It is also known as the linear kernel.
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The Kernel Trick in SVMs

• Other kernels are possible, e.g. the polynomial: 

!

!

Kernel Trick for SVMs: If we find an optimal solution 
to the dual form of our constrained optimization 
problem, then we can replace the kernel by any other 
valid kernel and obtain again an optimal solution. 

• Consequence: Using a non-linear feature transform Φ 
we obtain non-linear decision boundaries.
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Observations and Remarks

• The kernel function is evaluated for each pair of 
training data points during training 

• It can be shown that for every training data point it 
holds either              or                 . In the latter case, 
they are support vectors. 

• For classifying a new feature vector     we evaluate: 

!

!

!

We only need to compute that for the support vectors
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Multiple Classes

We can generalize the binary classification 
problem for the case of multiple classes. 

This can be done with: 

•one-to-many classification  

•Defining a single objective function for all 
classes 

•Organizing pairwise classifiers in a directed acyclic 
graph (DAGSVM) 
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Extension: Non-separable problems

margin
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Slack Variables

• The slack variable      is defined as follows: 

• For all points on the correct side:  

• For all other points:  

• This means that points with                    are correct 
classified, but inside the margin, points with  
are misclassified.    

• In the optimization, we modify the constraints: 

!

• and                               
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Summary 

• Kernel methods are used to solve problems by 
implicitly mapping the data into a (high-dimensional) 
feature space 

• The feature function itself is not used, instead the 
algorithm is expressed in terms of the kernel 

• Applications are manifold, including density 
estimation, regression, PCA and classification 

• An important class of kernelized classification 
algorithms are Support Vector Machines 

• They learn a linear discriminative function, which is 
called a hyper-plane 

• Learning in SVMs can be done efficiently
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