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Class Schedule Literature
s
P4 PATTERN RECOGNITIO
Date Topic Recommended textbook for
2SS Jioduction the lecture: Christopher M.
8.11.13 Regression . T .
15.11.13 Probabilistic Graphical Models | BIShOp' F?attern Relcognltlon
22.11.13 Probabilistic Graphical Models Il and Machine Learning
29.11.13 Boosting
6.12.13 Kernel Methods
13.12.13 gaussian Processes More detailed:
20.12.13 Mixture Models and EM
[13 H
10.1.14 Variational Inference e “Gaussian Processes for
17.1.14 Sampling Methods Machine Learning”
24.1.14 MOMo Rasmussen/Williams
31.1.14 Unsupervised Learning « i . L
17 RN ¢ “Machine Learning - A Probabilistic

Perspective” Murphy

Vidon - oo or Comeer Computervian o TLITH R co lient ST TR s
The Tutorials The Exam

« Weekly tutorial classes - No “qualification” necessary for the final exam
« Participation in tutorial classes and submission of « Final exam will be oral

solved assignment sheets is totally free « From a given number of known questions, some will
« The submitted solutions can be corrected and be drawn by chance

returned « Usually, from each part a fixed number of questions
« In class, you have the opportunity to present your appears

solution
« Assignments will be theoretical and practical

problems
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class Webpage ; Computer Vision Group ) ; m

Prof. Daniel Cremers

Technische Universitat Minchen

http://vision.in.tum.de/teaching/ws2013/ml ws13

1. Introduction to Learning and
Probabilistic Reasoning

- Contains the slides and assignments for download
« Also used for communication, in addition to email list
« Some further material will be developed in class
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Motivation

Suppose a robot stops in front of a door. It has a sensor
(e.g. a camera) to measure the state of the door (open
or closed). Problem: the sensor may fail.

S
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Motivation

Question: How can we obtain knowledge about
the environment from sensors that may return
incorrect results?
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Basics of Probability Theory

Definition 1.1: A
of a given experiment.

Examples:
a) Coin toss experiment:
b) Distance measurement:

S={H,T}
S=R}
Definition 1.2: A
assigns a real number to each element of S.
Example: Coin toss experiment: H = 1,7 =0

Values of random variables are denoted with small
letters, e.g.: X =«

S is a set of outcomes

X is a function that

Discrete and Continuous

If S is countable then X is a random variable,
elseitis a random variable.

The probability that X takes on a certain value z is a
real number between 0 and 1. It holds:

Y X =2)=1

Discrete case

/p(X = 2)dz =1

Continuous case
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A Discrete Random Variable

Suppose a robot knows that it is in a room, but it
does not know in room. There are 4
possibilities:

Kitchen, Office, Bathroom, Living room

Then the random variable Room is discrete, because
it can take on one of four values. The probabilities are,
for example:

P(Room = kitchen) = 0.7

P(Room = office) = 0.2
P(Room = bathroom) = 0.08
P(Room = living room) = 0.02
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A Continuous Random Variable

Suppose a robot travels 5 meters forward from a
given start point. Its position X is a continuous
random variable with a :

(X ) 1 1 (z*25)2
p =)= (A 2 o
px =) V2mo®
08 Shorthand:
06 1 1 (z—u)?
e 2 o2
04 V2mo?
- N(z; p,0%)
0 1 2 3 4 5 6 7 8 T

Machine Learning for Computer Dr. Rudolph Triebel
Vision Computer Vision Group

Joint and Conditional Probability

The of two random variables X and Y

is the probability that the events X = xandY =y
occur at the same time:

p(X =z and Y =y)

Shorthand: p(X =2) —— p(x)
p(X =z and YV = y)—> p(z,y)

Definition 1.3: The of X given
is defiy d as:
p(z,y)
pX=x|Y =y)=p|y) =
( | ) =p(z|y) o)

Independency, Sum and Product Rule

Definition 1.4: Two random variables X and Y are
iff:

p(z,y) = p(2)p(y)
For independent random variables Xnd Y e have:

_me_pmmw:(@

p(z|y) = =
p(y) p(y)
Furthermore, it holds:

plx)=> plx.y)  plz,y) =ply|z)p(x)
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Law of Total Probability Bayes Rule

Theorem 1.1: For two random variables X and Y it Theorem 1.2: For two random variables X and Y it

holds: holds:

oo ) — P 20)
p@) =Y | pw) o) = [palpay p)
v ple,y) -
Discrete case Continuous case I p(z|y) = (definition)
p(y)

The process of obtaining p(z) from p(z,y) by summing I ply | z) = p(z,y) (definition)

or integrating over all values of y is called p(x)

——_— (from I1.)
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Bayes Rule: Background Knowledge Computing the Normalizer

For p(y | z) # 0 it holds:

Background knowledge

o1 = P 2)p() o o
plx |y, 2) = py |z, z)p(x | 2) p(z | y) }(J) ;p(J | 2)p(x)

py|=2) Bayes rule S~ Total probability
Shorthand: p(y | z)" ! ——> 17 \ /
“Normalizer”

ply | @)p(e

ple o) = p(ym( g

p(z | y) can be computed without knowing  p(y)

plx |y, 2) =nply|z 2)p|2)
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Conditional Independence Expectation and Covariance
Definition 1.5: Two random variables and Yare I .
) X. Y Definition 1.6: The of a random variable X
given a third random . .
is defined as:

variable 7 iff:

= Z x p(g;) (discrete case)
p(x,y|2) =pl|2)p(y| 2)

= continuous case
This is equivalent to: ElX] /95 p(x)dr )

p(z|2z)=p(x|y,z) and Definition 1.7: The of a random variable X
| is defined as:
py|z)=ply|zz2) is defined as
OOU[X] = E[(X - E[X])2] = E[X2] _ E[X]Z
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Mathematical Formulation of Our Example Causal vs. Diagnostic Reasoning
* Searching for p(open | z) is called

We define two binary random variables:

z and open, where z is “light on” or “light off”. Our e Searching for p(z | open) is called

e . o
question is: What is p(open | 2)° e Often causal knowledge is easier to obtain

/ ¢ Bayes rule allows us to use causal knowledge:

p(z | open)p(open)
p(2)
p(z | open)p(open)
p(z | open)p(open) + p(z | ~open)p(—open)

p(open | z) =
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Example with Numbers Combining Evidence

Suppose our robot obtains another observation 22,

Assume we have this where the index is the point in time.

p(z | open) = 0.6 p(z | —open) = 0.3
. Question: How can we integrate this new
and:  p(open) = p(—open) = 0.5 information?
then:
( ) p(z | open)p(open) Formally, we want to estimate p(open | z1, 22).
open | z = . .
plop p(z | open)p(open) + p(z | =open)p(—open) Using Bayes formula with background knowledge:
0.6-0.5 2
= = - =0.67
0.6-0.5+03-05 3 2
@ m p(open | 21, 2 ).— (22 | open, z)proven | 1)
- — : 1,29) =
Z raises the probabilily that the door is open” | g (2o | 21)
Vdon T or Computer Compaervioncroce LTI ALca, | ViEEHIS SRR o0 ComPHer Compiervsoncrowe  TLITI
Markov Assumption Example with Numbers
“If we know the state of the door attime ¢t =1 Assume we have a second sensor:
fchfen the_meazuremen,’,c z1 does not give any further p(22 ‘ open) = 0.5 p(z2 \ —open) = 0.6
information about z5. p(open ‘ 21) _ % (from above)

Formally: “z1and 23 are conditional independent Then: p(open | z1,22) =
given open.” This means: p(z2 | open)p(open | z1)
p(z2 | open)p(open | z1) + p(22 [ ~open)p(—open | z1)
p(z2 | open, z1) = p(z2 | open) 1.2

— 5 _
r=5=062

This is called the

[ “Zo lowers the probability that the door is open” |
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General Form Example: Sensing and Acting
Measurements: z1,. ..,z Now the robot the door state and (it

] opens or closes the door).
Markov assumption: z, and z,...,z,_1are

conditionally independent given the state .x /

p(Zn ‘ fE)p((L’ | Zlye-- 7Z7L—1)
p(Zn ‘ Zla"wznfl)
Tn p(Zn | J“)p(‘r | Zlv"'aznfl)
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State Transitions The Outcome of Actions
The of an action is modeled as a For a given action u we want to know the
random variable U where U = u in our case probability p(z | u). We do this by integrating over all

: ) ,
means “state after closing the door”. possible previous states .

State transition example:
If the state space is discrete:

0.9 / ,
r|lu)= Z x|l u,xr xr
0.1 ( open closed 1 p(z | u) — p(a | u,z")p(a’)
0 If the state space is continuous:
:;tgg(;:o;raiﬁ ggsegs,.the action “close door” succeeds p(m ‘ u) — /p(x | u, w’)p(x/)dajl
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Back to the Example
> " plopen | u, 2 )p(x')

plopen | u) =

— p(open | u, open’)p(open’) +
p(open | u, ~open’)p(—open’)

15,03

10 8 8
1

= — =0.0625
16

15
p(—open | u) =1 —p(open | u) = 6= 0.9375
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Sensor Update and Action Update

So far, we learned two different ways to update the
system state:

. Sensor update:  p(x | 2)
. Action update:  p(z | u)
« Now we want to combine both:

Definition 2.1: Let D; = uq, 2z1,...,us, 2¢bea
sequence of sensor measurements and actions
until time ¢ Then the of the current state x;
is defined as

Bel(zy) = p(@y | wy, 21,0, U, 2t)

Graphical Representation
We can describe the overall process using a

This incorporates the following
Markov assumptions:

p(Zt | To:ty ULty Zl:t) = p(zt \ SCt) (measurement)

P(@¢ | Tose—1,Utee, 21:) = D(T¢ | Tp—1,us) (State)
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The Overall Bayes Filter

Bel(xy) = p(ay | w1, 21, ..., Uty 2t)
Bayes) =y p(zy | e, w1, 21, u)p(we | UL, 21,00, Ug)
Markov) =17 p(z; | m)p(Te | U1, 21,5 -+ - Ug)
(Tot. prob) = 7 p(z | zt)/p(:pt | wi, 21,0, U, Te—1)

p(l'tfl | ULy 21y - ,Ut)dfﬂt,1

(Markov) =17 p(zt | :Et) /p(xt ‘ ut,mt,1)p(:tt,1 | Uly 21y ,ut)d.’L‘t,1
Markov) =1 p(z¢ | x¢) /p(:L't | wg, wp—1)p(@e—1 | w1, 21, -, 2e—1)dxs—1

=1 p(z¢ | x¢) /p(mt | wg, xe—1)Bel(xi—1)dri—q

The Bayes Filter Algorithm

Bel(x:) =0 p(z: | 1) /P(ﬂﬂt | g, w—1)Bel(z—1)day

Algorithm Bayes_filter (Bel(z), d)
if d is a sensor measurement » then
n=20
for all  do
Bel'(z) « p(z | 2)Bel(z)
n « 1+ Bel'(z)
forallz do Bel'(z) « n~ 'Bel'(z)
else if d is an action u then

forall z do Bel'(z) «— [ p(x | u,2’)Bel(2’)da’
return Bel'(z)

© o NoOORA D=
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Summary

. is necessary to deal with
uncertain information, e.g. sensor measurements

« Using , we can do diagnostic reasoning
based on causal knowledge

« The outcome of a robot‘s action can be described by a

« Probabilistic state estimation can be done recursively
using the using a sensor and a motion
update

« A graphical representation for the state estimation
problem is the
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Bayes Filter Variants

Bel(z:) =1 p(z; | 24) /p(xt | we, we—1)Bel(wp—q)dar_q

The Bayes filter principle is used in
- Kalman filters

- Particle filters

« Hidden Markov models

« Dynamic Bayesian networks

« Partially Observable Markov Decision Processes
(POMDPs)
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Motivation Object Classification Applications

* Most objects in the environment can be classified, €.9.  Two major types of applications:
with respect to their size, functionality, dynamic . Object detection: For a given
properties, etc. test data set find all previously

 Robots need to with “learned” objects, e.g.
the objects (move around, pedestrians
manipulate, inspect, etc.) and
with humans

 For all these tasks it is
necessary that the robot
knows to which an object belongs

« Object recognition: Find the
particular “kind” of object as it
was learned from the training
data, e.g. handwritten character
recognition

Which
object is
a door?

0 5 10 0 5 10 0 5 1 0 5 10 0 5 10
easy D=30 eusy D=33 easg D=35 casy D=41 eaxy D =42
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Learning Mathematical Formulation

Suppose we are given a set X’ of objects and a set )/

* A natural way to do object classification is to first of object categories (classes). In the learning task we

the | the (;a;eggorles of tgle OtI)JeCt? and then bi tfrom search for a mapping ¢ : X — ) such that
€ learned data a possible class Tor a new object. elements in X are mapped to elementsin ).
e The area of deals with the Examples:
formulization and investigates methods to do the . ) o )
learning automatically. ¢ Obiject classification: chairs, tables, etc.

« Nowadays, machine learning algorithms are more and * Optical character recognition
more used in robotics and computer vision * Speech recognition
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Categories of Learning Categories of Learning
Learning Learning
Unsupervised Supervised Reinforcement Supervised
Learning Learning Learning . Learning
clustering, density from a training No supervision, but from a training
estimation data set, on a data set, on
the test data the test data
/ \ \ Supervised Learning is the main topic of this lecture!
Discriminant Discriminative Generative Methods used in Computer Vision include:
Function Model Model R .
* Regression . i
no prob. formulation, estimates the est. the .c gd't' | Rand Field Suppo'r't Vector Machines
learns a from p(yk | x)  p(x | yx)and use Bayes on |.|ona andom Fields G.au33|an Processes
objects Y’ tolabels )).  for each class rule for the post. Boosting * Hidden Markov Models
\f\lﬂlzg:‘me Learning for Computer g;ﬁ:szm;ﬁgmup TuTI :\//::t;r:‘ine Learning for Computer g; :;ggm;ﬁ:ﬂbgmp TI.ITI
Categories of Learning Categories of Learning
Learning Learning
Unsupervised ' Unsupervised .~ Supervised ~ Reinforcement
Learning Learning 7 R Learning - Learning

no supervision, but

clustéfihg, 7dré'nsity
estimation a

Reinforcement Learning requires an

* the reward defines the quality of an action

* mostly used in robotics (e.g. manipulation)

° can be dangerous, actions need to be “tried out”
° not handled in this course

Most Unsupervised Learning methods are based on
Clustering.

=\\ill be handled at the end of this semester
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Generative Model: Example
Nearest-neighbor classification:
e Given: data points (x4, t1), (x2,t2),. ..

® Rule: Each new data point is assigned to the class
of its nearest neighbor in feature space

Machine Learning for Computer Dr. Rudolph Triebel
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Generative Model: Example
Nearest-neighbor classification:
* Given: data points  (x1,t1), (X2,%2),. ..

¢ Rule: Each new data point is assigned to the class
of its nearest neighbor in feature space

[e]
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Generative Model: Example
Nearest-neighbor classification:
* Given: data points (x4, t1), (x2,t2),. ..

¢ Rule: Each new data point is assigned to the class
of its nearest neighbor in feature space
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Generative Model: Example
Nearest-neighbor classification:
* Given: data points  (x1,%1), (x2,%2), ...

¢ Rule: Each new data point is assigned to the class
of its nearest neighbor in feature space

O«—»0
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Generative Model: Example
Nearest-neighbor classification:
® General case: K nearest neighbors
® \We consider a sphere around each training instance
that has a fixed volume 7.

Ki: Number of points
from class k inside
sphere

N,: Number of all
points from class k

Machine Learning for Computer Dr. Rudolph Triebel
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Generative Model: Example
Nearest-neighbor classification:
® General case: K nearest neighbors
¢ \We consider a sphere around each training instance
that has a fixed volume 7.
e With this we A K
can estimate: P(X |y =k) = NV

. # points in sphere

* and likewise: p(x) = T
¢ using Bayes rule. — #all points
pxly=Fkpply=*k) K
ply=k|x) = .2
( | x) ) %
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Generative Model: Example
Nearest-neighbor classification:

® General case: K nearest neighbors

_pxly=kply=Fk) K
p(x) K

ply =k |x)

¢ To classify the new data point x we compute the
posterior for each class k = 1,2,... and assign the
label that maximizes the posterior.

t = argmgxp(y =k|x)

Machine Learning for Computer Dr. Rudolph Triebel
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Summary

« Learning is a two-step process consisting in a
and an step
« Learning is useful to extract
about the objects in an environment
« There are three main categories of learning:
, and
« Supervised learning can be split into
) ,and
learning

« An example for a generative model is

information, e.g.

learning
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P el o R TUT Categories of Learning (Rep.)

Prof. Daniel Cremers

Technische Universitat Minchen

Learning

Supervised
Learning

3. Regression from a training

data set, on
the test data

e L Compiervsoncrowe  TLITI
Categories of Learning Mathematical Formulation (Rep.)
Learning
_— | ~__ Suppose we are given a set X of objects and a set )/
o s S o T : of object categories (classes). In the learning task we
nsupervise upervise einforcemen : .
Learning Learning Learning SlearCh Ior. a r)r;applng ©- ;\’t—> y SUCT thatt i
clustering, density fom atraining N0 supervision, but elements in are mapped to elementsin ).
estimation data set, on a
the test data Difference between regression and classification:
/ \ \ ¢ |nregression, ) is continuous, in classification it is
Discriminant Discriminative Generative discrete
Function Model Model . L
, : * Regression learns a , classification usually
no prob. formulation, estimates the est. the
learns
learns a from plyr | X)  p(x | yx)and use Bayes . .
objects X’ to labels )). for each class rule for the post. For now we will treat regression
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Basis Functions Simple Example: Linear Regression

In principal, the elements of X" can be anything (e.g. real *Assume: X' =R, V=R, ¢ =1 (identity)

numbers, graphs, 3D objects). To be able to treat these - Given:  data points (1,%1), (z2,%2), ...

objects mathematically we need functions ¢ that map * Goal: predict the value 7 of a new example x
N

from A" to R™. We call these the . « Parametric formulation: ¥(¥, W) = wo + w1

We can also interpret the basis functions as functions

that extract from the input data. 5T

Features reflect the of the objects (width, LI

height, etc.). t,
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Linear Regression Polynomial Regression
To evaluate the function y, we need an error function: Now we have: X =R, Y =R, ¢;(z) = 27
N ) 9 ¥,
B(w) = %Z (y(as, w) — t;)2 Given: data points (z1,t1), (22,t2),. .., (m@<ﬁﬂ
i=1
We search for parameters w* s.th. F(w™) is minimal:
N
. Yy
VE(w) = Z(?J(%,W) —t)Vy(z;, w) = (0 0)
=1
y(ai, w) = wo + wix; = Vy(z;,w) = (1 ;)

Using vector notation: x; :== (1 ;)" y(zi, w) =w'x;

N N N N
VE(w) = Z wlxx] — Z tixI =(0 0)=w’ Z %! = Z tix!
i=1 i=1 i=1 i=1

N—_—— N——
=:AT =:bT €T

Model
Complexity

Machine Learning for Dr. Rudolph Triebel -ry Machine Learning for Dr. Rudolph Triebel
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Polynomial Regression Polynomial Regression

We define:  ¢(z) == (1,¢1(), ..., onm-1(2)), We define:  ¢(z) == (1,¢1(2),...,dn-1(2))
And obtain: 5z w) = qub(x) And obtain: (3 w) = w”p(z)
1 1<, )
ZEEW o(z;) — t;)? E(W)Zgg(w P(xi) —t;)
N N N
VE(w)=w" (Z d(xi)p(xs) ) — Zti¢($z VE(w r (Z (i) p(x; T> — Zti¢($i)T
i=1 i=1 i=1 i=1

Machine Learning for
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Polynomial Regression Polynomial Regression

We define:  #(z) := (1, ¢1(2),..., a1 (x)) Thus, we have: Zﬁb(xz)cb(ﬂ?z)T oo
And obtain: y(z,w) = qub(x) i=1
i =1 $ ot 07 A i B
2 & ! ¢ where & = : : .
VE(w) =w" imiw(wzf) -t nlen) n(on) - bura(ow
i—1 -1 o VE(w) = wloTd — 7o = dTow = dT't
f— X i— It follows:
+ o | | | EEE CRIR o
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Computing the Pseudoinverse

Mathematically, a pseudoinverse ¢+ exists for

every matrix ¢.

However: If @ is (close to) singular the direct
solution of @ is numerically unstable.

Therefore: Singular Value Decomposition (SVD) is
used: & = UDV” where

* matrices U and V' are orthogonal matrices

* D is a diagonal matrix

Then: ot =

vDtu”T

where D' contains the

of all non-zero elements of D
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A Simple Example
¢j(x) = a7

Machine Learning for

data gourca ———
nolsy samped data -+~
regresal

lon ——

02 D04 08 08 1

02 04 08 08 1
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The Resulting Model Parameters

2.500 0.60
0.45
2.375 0.30
0.15
2.250 0
-0.15 Wo .
2.125 -0.30
-0.45
0 —— -0.60
%6 o2z o4 o8 o8 1 fo oz we os s 1 15 8E+05
2
. e . iyt | 8 6E+05
18 regrossion 1 100 - 4E+05
= 0o — 2E+05 I
OE+00
=10 5w w ws  wy -2E+05 l
- -4E+05 | Wo w1 w2 w3 waws e wr Ws we
-6E+05
-30 -8E+05

2
o 02 04 a8 08 1
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Other Basis Functions Gaussian Basis Functions

Other basis functions are possible: o 0o T N=10
- Gaussian basis function:
2 mean val
(r— 1)\ where M~ /
¢j(x) :=exp <—T2] ere ¢ & scale e ' '
. Sigmoidal basis function: I I
P 1 N | N =10
05(w) = o (T ) where g(a) = s ; ,
s 1+ exp(—a) N M =10
In both cases a set of mean values is required. These N |
define the of the basis functions. %0 oz o+ os o8 1 %5 0z o+ o8 o8 1
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Observations

« The higher the model complexity grows, the better
is the fit to the data

« If the model complexity is too high, all data points
are explained well, but the resulting model oscillates
very much. It can not generalize well.
This is called

« By increasing the size of the data set (number of
samples), we obtain a better fit of the model

« More complex models have larger parameters

Problem: How can we find a good model complexity
for a given data set with a fixed size?

Dr. Rudolph Triebel
Computer Vision Group
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Regularization

We observed that complex models yield large
parameters, leading to oscillation. Idea:

Minimize the error function and the magnitude of the

parameters simultaneously

We do this by adding a regularization term :

3 (Wh(a) — 1)+ 2w

E(w) =

=1

where 4 rules the influence of the regularization.
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Regularization
As above, we set the derivative to zero:

VE(w) = Z (whe(z) — ;) p(z)" + Aaw” =07

wioTe +awl =tTed = (A +oT0)w =o't

w =\ +oTd) a7t
With regularization, we can find a complex model for a
small data set. However, the problem now is to find an
appropriate regularization coefficient /.

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for
Computer Vision

TUTI

Regularized Results
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The Problem from a Different View

Assume that y is affected by Gaussian noise :
t=y(r,w)+e where e~ N(.;0,0%)

Thus, we have p(t | z,w,0) = /\/’(t;y(;v,w),aQ)

y($1,W) T
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Maximum Likelihood Estimation

Aim: we want to find the w that maximizes p.

p(t | z,w,o)is the of the measured data
given a model. Intuitively:

Find parameters w that maximize the probability of
measuring the already measured data .

We can think of this as fitting a model w to the data .

Note: o is also part of the model and can be estimated.
For now, we assume ¢ is known.

Machine Learning for

Dr. Rudolph Triebel

Maximum Likelihood Estimation

Given data points: (z1,t1), (z2,t2),..., (TN, tN)

Assumption: points are drawn independently from p:

N
pt|x,w,0) = [[pti|x w,0)
=1
N
= [ING;w"d(x:),0%)
=1
where Instead of maximizing p we
can also maximize its
X (x1,22,...,2N) ..
¢ (bt ) (monotonicity of
D2 TN the logarithm)

Machine Learning for Dr. Rudolph Triebel
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Maximum Likelihood Estimation

p(t | x,w,0) —

N
Z Inp(t; | x,w,0)

. —Z—ln

~n(2r) — Ui(w b(z) — 1)

Constant for all w Is equal to (w)
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Maximum Likelihood Estimation

Inp(t |x,w,0) = § Inp(t; | x,w, o) N ﬁf%(rg)z
—1§N31 ~n(2m) — (W () ~ 1)
ol n(o n(2m) = —5 (W' ¢(z;
N(n(o?) +In(27)) 1 al
- w’l 32
= 5 ] Eﬁ d(x) — ;)
wirp = argmaxInp(t | x,w,0) = argmin E(w) = (07®) 1ot
w w
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize

the data likelihood. Now, we assume a Gaussian
p(w | o2) = N(w;0,021)

Using this, we can compute the (Bayes):

e

Posterior | Likelihood | Prior
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Computer Vision

Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize
the data likelihood. Now, we assume a Gaussian
p(w | o2) :N(W; 0,021)

Using this, we can compute the (Bayes):

p(w |z, t,01,02) < p(t|z,w,01)p(W|o02)

strictly: p(t |z, w,01)p(w | 02)

p(w |zt

01,02) = Jp(t ]z, w,o1)p(w|o2)dw

but the denominator is independent of w and we want
to maximize p.
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Maximum A-Posteriori Estimation

Inp(w | z,t,01,02) cInp(t |z, w,01) + Inp(w | 02)

1 /1
const. — — > (wp(x) — 1) const. — 2—2WTW
1 =1 03
1 a o?
X ——5 (Z(wTd)(m) — )2+ ;WTW>
71 \iZ1 03

This is equal to the regularized error minimization.

Machine Learning for Dr. Rudolph Triebel

Summary

« Regression is a method to find a mathematical model
(function) for a given data set

« Regression can be done by minimizing the sum of
squared (SSE) errors, i.e. the distances to the data

« Maximum-likelihood estimation uses a probabilis-tic
representation to fit a model into noisy data

« Maximume-likelihood under Gaussian noise is
equivalent to SSE regression.

« Maximum-a-posteriori (MAP) estimation assumes a
(Gaussian) prior on the model parameters

« MAP is solved by regularized regression
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Prof. Daniel Cremers

Technische Universitat Minchen

Bayesian Linear Regression

Some Useful Formulas Before

If we are given this:
l. p(x) = N(x| p,X1)

Il plyx)=N(y|Ax+b,%,)
Then it follows (properties of Gaussians):
. p(y) =N(y | Ap+b, Ty + AR AT)
V. p(x|y) =N(x|Z(ATS;(y —b) + 37 '0), )
where

(ot ATS A

Dr. Rudolph Triebel
Computer Vision Group
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Bayesian Linear Regression

o Using MAP, we can find optimal model parameters,
but for practical applications two questions arise:

- What happens in the case of sequential data, i.e. the
data points are observed subsequently?

- Can we model the probability of measuring a new
data point, given all old data points? This is called
the predictive distribution:

(L]t x)
p tx)_

‘ New data ‘ ’ Old targets ‘ | old data|

New target |

Dr. Rudolph Triebel

Machine Learning for
Computer Vision Group

Computer Vision

U

Sequential Data

Given: Prior meanmg and covariance S, noise
covariance o po(w | So) = N (w;myg, So)
1.Set i=0
2.0bserve data point (i, t;)
3.Formulate the likelihood p(t; | =, w) as a function of w
(= Gaussian with mean ¢(z;)"w and covariance o)
4. Multiply the likelihood with the prior p;(w | S;) and
normalize (= Gaussian with m;,; and ;)
5.This results in a new prior p;+1(w | Sit1)
6.Go back to 1. if there are still data points available

Dr. Rudolph Triebel
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Comparison: the Standard Bayes Filter

Bel(a) = p(ay | uy, 21, ..., g, 21)

(Bayes) =np(ze | wp,ur, 21, u)p(ae | ur, 21, ..o, up)
Markov) =1 p(zy | 2)p(ay | ur, 21, ..o u)
(Tot.prob) = 7 p(z | z) /p(q:t | w1, 21500y gy 1)

p(l'tfl ‘ ULy 21y - - 7ut)dwt71

Markov) =1 p(2¢ | 2¢) /P(iEt | we, xp—1)p(@e—1 | wi, 21, ..., w)dag—

Markov) =1 p(z | It)/p(xt | g, s 1)p(@e—1 | U1, 2150005 2—1)dTs )

= 0 plr | 22) / P | e, o) Bel (i1 )de_y

Machine Learning for Computer Dr. Rudolph Triebel
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Comparison: the Standard Bayes Filter

Bel(ay) = p(ay | w1, 21, .o, Uy 21)
(Bayes) =1 p(zt | ‘/L'taulvzlv"",ut)p(it ‘ Uy, 21, 7ut)
Markov) =0 p(2y | @)p(y | v, 21,0, u)

Machine Learning for Computer Dr. Rudolph Triebel
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A Simple Example

Our aim to fit a straight line into a set of data points.
Assume we have:

Basis functions are equal to identity ¢(x) =x

Prior mean is zero, prior covariance ag = 0.5, noise
variance is o3 = 0.2?

Ground truthis  f(x,a) = ag + a1
Data points are sampled from ground truth ao
Thus:

where a; = 0.5

We want to recover ay and a; from the sequentially
incoming data points (x1,t1), (z2,t2),...

Dr. Rudolph Triebel
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Bayesian Line Fitting

No data points observed

Prior Data Space

-1 0 x 1

Line examples drawn
from the prior

m

From: C.M. Bishop
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Bayesian Line Fitting Bayesian Line Fitting

One data point observed | Ground Truth | Two data points observed

Likelihood Pri Data Space Likelihood Prior Data Space

1 1

wy Y Yy
0 0 0 O
1 -1 -1 -1
1 0 gy ! -1 0 gy ! -1 0 g I -1 0 oz 1
\/ Line examples drawn Line examples drawn
from the prior from the prior

From: C.M. Bishop From: C.M. Bishop
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Bayesian Line Fitting The Predictive Distribution

We obtain the predictive distribution by integrating over
all possible model parameters:

Pt | @,t,%) = / p(t | 2, w)p(w | x,t)dw

‘New data Iikelihood‘ | Old data posterior
As before the posterior is prop. to the likelihood times the
prior. But now, we don’t maximize. The posterior can be
computed analytically, as the prior is Gaussian.

20 data points observed

Likelihood Prior Data Space

1

Sy =5y +o 0T

o -
Prior cov Prior mean
—

From: C.M. Bishop WN = SN(Sglmo +o20Tt)

Machine Learning for Dr. Rudolph Triebel - Machine Learning for Dr. Rudolph Triebel
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p(w | x,t) = N(w | m,, Sy) where

Line examples drawn
from the prior ,

The Predictive Distribution The Predictive Distribution (2)

Using formula Ill. from above,

« Example: Sinusoidal data, 9 Gaussian basis
p(t]zt,x)= /P(t | 2, w)p(w | x,t)dw functions, 1 data point

= /N(t;quzS(x),a)./\/(W;mN,SN)

= N(t; my(x), o3 (x)) 0 0
where S -
2 2 T
o%(2) = 0% + 9(2) Sy b(a) ; T —
N The predictive distribution Some samples from
From: C.M. Bishop the posterior
e Sompuarvison o TLITI NE  Computervison Compaervisonaro  TLITI
Predictive Distribution (3) Predictive Distribution (4)
« Example: Sinusoidal data, 9 Gaussian basis « Example: Sinusoidal data, 9 Gaussian basis
functions, 2 data points functions, 4 data points
1 1 1 1
t t t t
0 0 0 0
-1 -1 -1 -1
0 . 0 | 0 I 0 s !
The predictive distribution Some samples from The predictive distribution Some samples from
From: C.M. Bishop the posterior From: C.M. Bishop the posterlor
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Predictive Distribution (5) Summary

- Regression can be expressed as a least-squares problem
- To avoid overfitting, we need to introduce a regularisation
term with an additional parameter 4

« Example: Sinusoidal data, 9 Gaussian basis
functions, 25 data points

« Regression without regularisation is equivalent to
Maximum Likelihood Estimation

« Regression + reg = Maximum A-Posteriori

- Bayesian Linear Regression operates on sequential data
and provides the predictive distribution

- When using Gaussian priors (and Gaussian noise), all

xr 1 b . .
The predictive distribution Some samples from computations can be done analytically
the posterior

From: C.M. Bishop

Dr. Rudolph Triebel
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The Bayes Filter (Rep.)
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Technische Universitat Manchen

Bel(a) = p(ae | ur, 21, ... Uy 2t)

=1 pz | xe,u1, 21, ue)p(ae | ur, 21, .0, Ut)
=0 pz | x)plry | wr, 21,000, u)

4. Probabilistic Graphical Models — npz| It)/p(xt|u1,zl7...,ut,zt,1)

Directed Models plair w2, ug)dey
=n p 2t | «Tt) /p(l”t ‘ Uty Ti—1 p(mtfl | U1721>--->Ut)d17t71

=np(z | 2) /p @y | g, zpm1)p(Te—1 | wr, 21,0 21 )d@

=0 p(ze | 2) | p(xe | ue, ve—1)Bel(ai—1)dai—y

Machine Learning for Dr. Rudolph Triebel
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Graphical Representation (Rep.) Definition

A Probabilistic Graphical Model is a diagrammatic
representation of a probability distribution.

We can describe the overall process using a

« In a Graphical Model, random variables are
@ 0 @ represented as nodes, and statistical dependencies are

@ e @ represented using edges between the nodes.
« The resulting graph can have the following properties:
« Cyclic / acyclic

@ 6 @ « Directed / undirected

e This incorporates the following Markov assumptions: « The simplest graphs are Directed Acyclig Graphs
Pzt | Towts ure, 214) = p(2 | ;) (ME@SUrement) (DAG).

p(ﬂ?t | Lo:t—1, Ul:t, Zl:t) — p(.’Et ‘ wt—lyut) (state)

e Gompuervsoncroce T Ui Gomoervison Gompaervsonarowe LTI
Simple Example Simple Example
« Given: 3 random variables a, b, and ¢ eIngeneral: K random variables z1,x2,...,Zx
o Joint prob: p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(bla)p(a) « Joint prob:
| a) p(r1,...,2x) =plxk|®1, ..., Tx—1) - .. plx2]z1)p(21)
O P , ¢ Random « This leads to a fully connected graph.
variables can be « Note: The ordering of the nodes in such a fully
diSC_Fete or connected graph is arbitrary. They all represent the
continuous joint probability distribution:
p(C ‘ a, b) c

p(a, b, c) = p(alb, c)p(blc)p(c)

A Graphical Model based on a DAG is called a p(a,b, ¢) = p(bla, )plalep(c)

Bayesian Network

Machine Learning for Dr. Rudolph Triebel ” Machine Learning for Dr. Rudolph Triebel
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Bayesian Networks Bayesian Networks

Statistical independence can be represented by the We can now define a one-to-one mapping from
absence of edges. This makes the computation graphical models to probabilistic formulations:
efficient.

p(x1,.. . x7) = plor)p(ze)p(es)p(wa|es, 22, 23)
p(zs|z1, 23)p(z6|Ta)p(T7| 24, 25)

General Factorization:

K
p(x) = ][ plexlpay,)

k=1

Intuitively: only ;.. and,,

have an influence on
s where

pay 2 ancestors of p;,

and

p(X) = p(xla [ERE) wK)
Machine Learning for Dr. Rudolph Triebel it Machine Learning for Dr. Rudolph Triebel
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Elements of Graphical Models Elements of Graphical Models (2)

In case of a series of random variables with equal
dependencies, we can subsume them using a plate: We distinguish between input variables and explicit
hyper-parameters:

N
p(t.w) = p(w) [ pitafw) R I )
n=1

3
Il
-

in

Cormpurer veton. " Computervian o TLITH (e Computer vidan Comparvoncroe  TUTI
Elements of Graphical Models (3) Regression as a Graphical Model

hidden variables:

p(t,t,w| &%, a,0%) =
N

N
p(w|t) o< p(w p(tn|Ww Tn [ed PN
(wit) () [ pltalw) {Hmn | mn,w,a%} p(w | )p(El2, w,o%)
T . n=1
(deterministic parameters omitted) Here: conditioning on all
>W deterministic parameters
t’!L
N Using this, we can obtain
the
o? '\/g\ i p(t|Z, x, t, o, 02) o</‘p(i‘\,t.,w|§?,x,a,02)dw

Machine Learning for Dr. Rudolph Triebel it Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group e Computer Vision Computer Vision Group

Two Special Cases Discrete Variables: Example

« We consider two special cases:

« Two dependent variables: K2 - 1 parameters

. All random variables are discrete; i.e. Each x;

. 71 xy | p(ze | 1)
is represented by values pui,...,ux Where ] ] 025 }K .
e S, b e I
pla| p) = H HE D mi =1 92500 ! 02 K -1 2 1 0.1 }K 1 =D
k=1 j=1 0.1250 2 0.8 a
0 M1 M2 2 2 0.9
. . X1 X2
« All random variables are Gaussian O_,O
K-1+K(K-1)=K*-1
xi ~ N (5 pi,02) %58 « Independent joint distribution: 2(K- 1) parameters

o.25
0.2

0.5
.1

R T O O K-1+K-1=2(K—1)

Machine Learning for Dr. Rudolph Triebel e Machine Learning for Dr. Rudolph Triebel
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Discrete Variables: General Case

In a general joint distribution with M variables we need
to store KM -1 parameters

If the distribution can be described by this graph:

X1 X2 XM

then, we have only K-1 + (M -1) K(K-1) parameters.
This graph is called a with M nodes.

The number of parameters grows only with
the number of variables.

Machine Learning for Dr. Rudolph Triebel

Gaussian Variables

Assume all random variables are Gaussian and we
define
=N a5 Y wiyzs+biv;
jepa,;
Then one can show that the joint probability p(x) is a
multivariate Gaussian. Furthermore:

ple; | pa;)

= Z wijx; + by + Ve e ~N(0,1)
J€pa;
Thus:
= wiyEls,
JEpa;

Machine Learning for Dr. Rudolph Triebel
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Gaussian Variables

Assume all random variables are Gaussian and we
define
p(z; | pa) =N | o5 Z Wiy + by, v;
Jjepa;
The same can be shown for the covariance. Thus:
¢ Mean and covariance can be calculated recursively
Furthermore it can be shown that:

¢ The fully connected graph corresponds to a Gaussian
with a general symmetric covariance matrix

¢ The non-connected graph corresponds to a diagonal
covariance matrix

Machine Learning for
Computer Vision

Dr. Rudolph Triebel
Computer Vision Group

TUTI

Conditional Independence (Rep.)

Definition 1.5: Two random variables X and Y are
given a third random
variable 7 iff:

p(z,y | 2) =px | 2)p(y | 2)

This is equivalent to:

p(z | z) =pl(z |y z) and
p(y | z) =ply| =, z2)
[Notation: zllylz |

Machine Learning for
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Conditional Independence: Example 1

« Now, we condition on ¢ (it is assumed to be known):

(&

p(a,b,c)
pla,blc) = ————
(o0l p(©)
g 4 = plale)p(ble)
Thus: «and b are conditionally independent given c: q 116 | ¢

We say that the node at ¢ is a
path between ¢ andb

on the

Machine Learning for
Computer Vision
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Independence (Rep.)

Definition 1.4: Two random variables X and Y are

iff: p(a,y) = p(x)p(y)
For independent random variables x and y- we have:

_plzy)  plx)ply) .
Pl ="y = ey P
[Notation: z1ly|0 |

Independence does not imply conditional independence.
The same is true for the opposite case.

Machine Learning for
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Conditional Independence: Example 1

This graph represents the
¢ probability distribution:

p(a,b,c) = p(alc)p(ble)p(c)
Marginalizing out ¢ on
both sides gives

b) =>_ plale)p(ble)p(c

This is in general not equal to p(a)p(b).

IS

Thus: « and b are notindependent: o i b | ()

Machine Learning for
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Conditional Independence: Example 2

This graph represents the
distribution:

p(a,b,¢) = p(a)p(cla)p(blc)

a c b

O—0O—=0

Again, we marginalize over c:
Zp cla)p(ble)

Zpd
Zp ibca_ Zpbc\
= ()(b\)

And we obtain: allb|

p(ble, a)
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Conditional Independence: Example 2 Conditional Independence: Example 3

As before, now we condition on ¢ : Now consider this graph:
yb,c) = b )b
) ) SR pla,b,c) b p(a,b,c) = p(a)p(b)p(cla, b)
O O O ) p(c) “ using:
_ M S pla.b.e) = pla)p(h) Y ple | a,b)
plc c c
= plalc)p(blc) we obtain:
And we obtain: a 1l b|c ¢

p(a,b) = p(a)p(b)

We say that the node at cis a _
on the path between o and 5. And the resultis: a 160

Machine Learning for Dr. Rudolph Triebel - Machine Learning for Dr. Rudolph Triebel
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Conditional Independence: Example 3 To Summarize

Again, we condition o
9 "t « When does the graph represent (conditional)

independence?
2 b poy — Plabo . " . .
pa,ble) = »(0) Tail-to-tail case: if we condition on the tail-to-tail node
 pla)p(b)p(cla,b) ~ Head-to-tail case: if we cond. on the head-to-tail node
N p(c) Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants)
¢ This results in: al b

In general, this leads to the notion of D-separation for

We say that the node at ¢ is a directed graphical models.

on the path between ¢ and p.

Machine Learning for Dr. Rudolph Triebel - Machine Learning for Dr. Rudolph Triebel
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D-Separation

Say: A, B, and C are non-intersecting subsets of
nodes in a directed graph.

A path from A to B is blocked by C if it contains D'Separatlon IS a

a node such that either property of graphs
a) the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or and nOt Of
b) the arrows meet head-to-head at the node, and neither A H
the node, nor any of its descendants, are in the set C. prObablllty
.If all paths from A to B are blocked, A is said to distributions
be d-separated from B by C.
Notation: dsep(4, B|C) dsep(A, B|C)
e computervsincrow  TLITI Ui Gomoervison Gompaervsonarowe LTI
D-Separation: Example I-Map
f a f Definition 4.1: A graph G is called an for a
a C X .
distribution p if every D-separation of G corresponds
to a conditional independence relation satisfied by p:
e b ¢ b
VA,B,C :dsep(4,B,C)= A 1L B|C
€
C
—dsep(a, b|c) dsep(a, b|f) Example: The fully connected graph is an I-map for any
We condition on a descendant We condition on a tail-to-tail distribution, as there are no D-separations in that
of e, i.e. it does not block the  node on the only path from a graph.
path from a to b. to b, i.e f blocks the path.

Machine Learning for Dr. Rudolph Triebel ” Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group Computer Vision Computer Vision Group



D-Map Perfect Map

Definition 4.2: A graph G is called an for a o _
distribution p if for every conditional independence Definition 4.3: A graph G is called a fora
relation satisfied by p there is a D-separation in G : distribution p if it is a D-map and an I-map of p.
VA,B,C: A1l B|C = dsep(A,B,C) VA,B,C : A1l B|C < dsep(4, B,C)

Example: The graph without any edges is a D-map for A perfect map uniguely defines a probability distribution.
any distribution, as all pairs of subsets of nodes are
D-separated in that graph.
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The Markov Blanket Summary

« Graphical models represent joint probability

o Consider a distribution of a node x_i conditioned on distributions using nodes for the random variables

all other nodes:

p(xilxp) = P(X1;- - Xar) and edges to express (conditional) (in)dependence
T JF - g
/ P(X1s- -y Xar)dX; « A prob. dist. can always be represented using a fully
T p(xiloa) connected graph, but this is inefficient
- k. « In a directed acyclic graph, conditional indepen-
= / [ p(eklpag)dx dence is determined using D-separation
k

« A perfect map implies a one-to-one mapping
between c.i. relations and D-separations

« The Markov blanket is the minimal set of observed
nodes to obtain conditional independence

= ]J(Xi ‘ XMi)

Factors independent of x;

M; at cancel between numerator
x; . all parents, children

and co-parents of x;.

and denominator.
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Repetition: Bayesian Networks

TUTI

Technische Universitat Minchen

Directed graphical models
can be used to represent
probability distributions

This is useful to do
inference and to generate
samples from the
distribution efficiently

4. Probabilistic Graphical Models
Undirected Models

p(x1,. . 27) = plzr)p(@2)p(xs)p(walzr, 22, 23)
p(ws|ry, 23)p(z6|Ta)p(T7| 24, T5)

o e S e o TLTI
Repetition: D-Separation In-depth: The Head-to-Head Node

¢ % 1 Example:
a: Battery charged (0 or 1)
¢ v b: Fuel tank full (0 or 1)

c: Fuel gauge says full (0 or 1)

¢ p(a) =0.9 p(b) =0.9
» D-separation is a property of graphs that can be . e We can compute p(-c) = 0.315
easily determined - - — and p(—c|—b) =0.81
* An I-map assigns every d-separation a c.i. rel ; P 02 and obtain p(-b | —c) ~ 0.257
* A D-map assigns every c.i. rel a d-separation 0 1 0.2 similarly: p(=b | —¢,—a) ~ 0.111
» Every Bayes net determines a unique prob. dist. 0 0 0.1 “q explains ¢ away”
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Repetition: D-Separation Directed vs. Undirected Graphs
a f a f Using D-separation we can identify conditional
independencies in directed graphical models, but:

« Is there a simpler, more intuitive way to express
conditional independence in a graph?

€ b € b . Can we find a representation for cases where an
sordering“ of the random variables is inappropriate
. B (e.g. the pixels in a camera image)?

Yes, we can: by removing the directions of the
—dsep(a, b|c) dsep(a, b|f) edges we obtain an Undirected Graphical Model,
also known as a Markov Random Field

Computer viion” Gomputer vison Group Vi oo v Compiervsoncrowe  TLITI
Example: Camera Image Markov Random Fields
Markov
Blanket
N l'
ke ALB|C We only need to condition
« directi ter-intuitive for | All paths from A4 to B go on the of
Irections are counter-intuitive Tor images p . 9 x to get c.i., because these
* Markov blanket is not just the direct neighbors through C, i.e. C blocks all  already block every path
when using a directed model paths. from x to any other node.
Computer viion” Computervian o TLITH Ve Gompuer Vit Compiervsoncrowe  TUTI
Factorization of MRFs Factorization of MRFs
Any two nodes x; and x, that are not connected in an In general, a Markov Random Field is factorized as
" . . . ‘ 1
MRF are conditionally independent given all other nodes: p(x) = Zﬂﬁcbc;z(c;/ =3 T éctxe) (41)
p(xi7l'j | X\{i,j}) :p(aci | X\{i’j})p(.’I}j | X\{i,j}) . x Llo C . . .
In turn: each factor contains only nodes that are where C'is the set of all (maximal) cliques and & is a
connected positive function of a given clique x. of nodes, called

This motivates the consideration

of cliques in the graph:

¢ A clique is a fully connected subgraph.

« A maximal clique can not be extended
with another node without loosing the
property of full connectivity.

the clique potential. Z is called the partition function.
Theorem (Hammersley/Clifford): Any undirected
model with associated clique potentials @ is a perfect
map for the probability distribution defined by Equation
4.1).

As a conclusion, all probability distributions that can be
factorized as in (4.1), can be represented as an MRF.

Maximal Clique

o i e e oo Sl oo TUT]
Converting Directed to Undirected Graphs (1) Converting Directed to Undirected Graphs (2)
x €3 T Z3
T X TN-1 TN
s
p(x p(x1 $2\561 p(xs|z2) - plen|sn_1)
Ty T4
;; / \ p(x) = p(z1)p(x2)p(r2)p(2s | 71,22, 73)
- dn 2(m1,32) Yo 3(z2,23) - - Yn—1, N (TN-1,TN) In general: conditional distributions in the directed graph

- By —_— o are mapped to cliques in the undirected graph

O_O_ _O_O However: the variables are not conditionally independent

given the head-to-head node

In this case: Z=1 Therefore: Connect all parents of head-to-head nodes with
each other (moralization)
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Converting Directed to Undirected Graphs (2) Representability

«As for DAGs, we can define an I-map, a D-map
and a perfect map for MRFs.

« The set of all distributions for which a DAG
exists that is a perfect map is different from
that for MRFs.

p(x) = p(z2)p(w2)p(24 | 21,72, 23) 131, 2,3, 1:4

Problem: This process can remove conditional
independence relations (inefficient)

Generally: There is no one-to-one mapping between the
distributions represented by directed and by undirected
graphs.

Machine Learning for Dr. Rudolph Triebel - Machine Learning for Dr. Rudolph Triebel
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Directed vs. Undirected Graphs Using Graphical Models

We can use a graphical model to do inference:

c
A .
3 « Some nodes in the graph are observed, for others
4 3 we want to find the posterior distribution
« Also, computing the local marginal distribution p(x,)
¢ at any node x, can be done using inference.
D

AL B AL B0 Question: How can inference be done with a
ALEB|C ALl B|CUD graphical model?
CID|AUB . o -
Both distributions can not be represented in the other We will see that when exploiting conditional
framework (directed/undirected) with all conditional independences we can do efficient inference.
independence relations.
Campurer viton” Compoervon o TUTI Ve Compuervison. Compiervsoncrowe  TUTI
Inference on a Chain Inference on a Chain
() ()
@ O—0O——(0O——0 O—0O—C0——0
The joint probability is given by pes) =33 > 3 pl)

1 T2 T4 Ts

P(X) = Sipn (21, 32 a5 (52, ). (5, 20 o5 (51, 5) e This would mean KV computations! A more efficient

Z , way is obtained by rearranging:
The marginal at x;is  p(as)=>_> > p(x) 1
T T2 T4 TS p(zs) = - Z Z Z Z Y1,2(1, 02)2,3(T2, ¥3)103,4(T3, T4)1a,5(Ta, T5)
In the general case with N nodes we have A2
1 = 7 Z ZTbl,z(l’l-,$2)¢2,3($2,$3)¢3,4(333, 24)ha 5 (T4, T5)
p(x) = 2%,2(9517%2)@’12,3(9327%3) YN N (TN -1, TN) wy w1 za s
= _ZUQS(I%I% Zwm 9517172)ZW34 T3,T4 Zws Z4,T5)
and p(zn) = Z Z Z Zp(x \Z2 J %4 '
R 1o
e Compuarvionaro  TLITI NE  Gompuervison Compaervisonaro  TLITI
Inference on a Chain Inference on a Chain
bo(@n 1) pal@a)  ws(@n)  ps(@ni1) The messages x, and u; can be computed
— — - -— .
O_ ..... _O_O_O_ ..... _O recursively: _
1 Tn—1 Ty Tn+1 TN ,Ua(-l'n) = Z '(/}n—l,n(xn—lvxn) Z c
In general, we have ot S
= Z Tﬁn—l,n(m'n—l’$7L)Ha($rl,—l)-
1 Tn—1 _ _
Tn = = /n—',n Tn—1,Tn) " / 2(%1, 2
p(zn) 7 L;lv 1,n(@Tn—1,Tn) {;Mz( 1 2)} np(zn) = Z%’nﬂ(xmxnﬂ) Z
J Tt | Tnt2 ]
fra(Tn) ) = Y Vst (@0 Tap1)1p(@nt1)-
Lpg1
U1 (T s Trg1) n_i,n(@N—1,ZN)| - . .
[; ; | } Computation of y, starts at the first node and
1(2n) computation of u, starts at the last node.
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Inference on a Chain Inference on a Chain

pal@n 1) pal(zn)  ppln)  p(Bni1) To compute local marginals:

O— """ —O—O—O— """ —O «Compute and store all forward messages, ta(zn).

x Tp— Tn T xZ
! ! o v .Compute and store all backward messages, /s(z»)

e The first values of x, and y; are: .Compute Z atanodex,: Z=Y Ho(tm)us(@m)

fa(T2) = 27/)1,2(371, z2) pe(rN-1) = ZwN,l,N(‘TN—h TN) .Compute 1 o
o o p(n) = Eﬂa(mn)ﬂﬁ(xn)
« The partition function can be computed at any node:

223 talenup(n) for all variables required.

« Overall, we have O(NK?) operations to compute the
marginal p(zn)

Machine Learning for
Computer Vision
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Summary

¢ Undirected Models (also known as Markov
random fields) provide a simpler method to
check for conditional independence

* A MRF is defined as a factorization over clique .
potentials and normalized globally 4a. Inference in

* Directed models can be converted into Graphical Models
undirected ones, but there are distributions that
can be represented only in one kind of model

e For undirected Markov chains there is a very
efficient inference method based on message

passing
Computer viion” Computervian o TLITH
Inference on a Chain (Rep.) More General Graphs
Halong) Haly)  Hglen)  wplann) The message-passing algorithm can be extended to
O— ----- —O—O—O— ----- —O more general graphs:
T Ty Tn T T .
' ' b " Undirected Directed Polytree
« The first values of x, and py are: Tree Tree
() = Zw112($17$2) pe(rN-1) = Z@/)J\'—I,J\T(I]\/'—l-,ﬂfz\l)
« The partition function can be computed at any node:
Z = Zﬂa(mn)ﬂﬂ(gﬁn)
« Overall, we have O(NK?) operations to compute the Itis then known as the s
marginal  p(z,) A special case of this is
e Gompuervsoncroce T Ui Gomoervison Gompaervsonarowe LTI
More General Graphs More General Graphs
The message-passing algorithm can be extended to The message-passing algorithm can be extended to
more general graphs: more general graphs:
i . Directed
Unqlllrr:gted A directed tree has Tree Conversion from
An undirected tree is defined only one node a directed to an
as a graph that has exactly one without parents and undirected tree is
path between any two nodes all other nodes no problem,
have exactly one because no links
parent are inserted

The same is true for the
conversion back to a
directed tree
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More General Graphs Factor Graphs

The message-passing algorithm can be extended to

more general graphs: « The Sum-product algorithm can be used to do

inference on undirected and directed graphs.

Polytree « A representation that generalizes directed and
undirected models is the

Polytrees can contain nodes with
several parents, therefore

moralization can remove 9 N’ & N’
independence relations 4
p(x) = p(z1)p(z2)p(w3|71, T2) fz1,22,73) = p(v1)p(z2)p(23 | 21, 72)
Directed graph Factor graph
Computer viion” Computervioncrows — TLITH Vi oo v Compiervsoncrowe  TLITI
Factor Graphs Factor Graphs
_ Factor graphs ! T3
« The Sum-product algorithm can be used to do . tai ltiole fact fa
inference on undirected and directed graphs. can contain muftipie tactors
for the same nodes fo

- A representation that generalizes directed and
undirected models is the * are more general than -
undirected graphs

« are bipartite, i.e. they consist
of two kinds of nodes and all
edges connect nodes of
different kind

x1 Z2

T3
(21,22, 23) (1,29, 23) =9 $17I2,I3)
Undirected graph Factor graph

Machine Learning for Dr. Rudolph Triebel Ty Machine Learning for Dr. Rudolph Triebel m
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Factor Graphs The Sum-Product Algorithm

* Directed trees convert to s Assumptions:
tree-structured factor graphs / « all variables are discrete
* The same holds for « the factor graph has a tree structure

undlrec.ted trees The factor graph represents the joint distribution
* Also: directed polytrees as a product of factor nodes:

convert to tree-structured l T3
factor graphs p(x) =[] fs(xs)
« And: Local cycles in a ’
directed graph can be The marginal distribution at a given node x is
removed by converting to a pa) =3 p(x)

factor graph x\z

Machine Learning for Dr. Rudolph Triebel .k Machine Learning for Dr. Rudolph Triebel
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The Sum-Product Algorithm The Sum-Product Algorithm

For a given node x the joint
can be written as

\#‘m —7.(zar)

The factors in the messages
can be factorized further:

xr

Fi(z, X,)

FS(Z‘7XS) = fé'(zlex cee ,:EM)G1(.T1,X51) oo GM(xMr XSM)
Gm(zmaXsm)
Product of all

factors associated
Thus, we have »@) =) [] F(@.X,) with £ ' The messages can then be computed as

x\z sene(x)

Key insight: Sum and product can be exchanged! e @) =S fwarna) [ Gulems Xo,)
a T M meNe(fs)\z Xs,,
pi)= [] Y F@X)= [[ nnoele
sene(z) Xo sene(z) \ ‘Messages from = ; T ; Js(z 21, 2m) menle_([f " Ha . (Tm)
factors to node x” / ’ \ “Messages from

nodes to factors”
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The Sum-Product Algorithm The Sum-Product Algorithm

fr . . .
Summary marglnal ization:

The factors G of the

neighboring nodes can 1.Consider the node x as a root note
. again be factorized further: 2.Initialize the recursion at the leaf nodes as:
Fy(@m, Xomt) Gt (zm, Xs,) = H Fy(Zm, Xom,) ,Uf—m(x) =1 (var) or /‘xﬂf(x) = f(l’) (fac)
1ene(em)\fs 3.Propagate the messages from the leaves to the
This results in the exact same situation as above! root x
We can now recursively apply the derived rules: 4.Propagate the messages back from the root to
opsr @)= [ D F(wm Xm,) the leaves
LEnelem)\ o Xmy 5.We can get the marginals at every node in the
- (H)\f 1 (Tm) graph by multiplying all incoming messages
ene(zm)\fs
P compaervsorarow T 2 Gomouervion compasrvsonaro TN
The Max-Sum Algorithm The Max-Sum Algorithm

Sum-product is used to find the marginal Observation: the max-operator is distributive, just
distributions at every node, but: like the multiplication used in sum-product:

How can we find the setting of all variables that max(ab,ac) = amax(b,c) if a>0
maximizes the joint probability? And what is the Idea: use max instead of sum as above and
value of that maximal probability? exchange it with the product

Idea: use sum-product to find all marginals and Chain example:

then report the value for each node x that max p(x) = %nﬁtx. max[ (21, 22) . .. N1 N(ZN_1,TN)]
maximizes the marginal p(x)

= (e1.2) ( )
However: this does not give the overall =z maxWrz(en, @) [ maxynoy v (@n-1,2n)]

maximum of the joint probability

Message passing can be used as above!

Comperson Sompiervaencrowe  TLTI s ot v Sompiervenaroe  TUTI
The Max-Sum Algorithm The Max-Sum Algorithm

To find the maximum value of p(x), we start again Solution to the second problem:
at the leaves and propagate to the root. Keep track of the arg max in the forward step,
Two problems: i.e. store at each node which value was
« no summation, but many multiplications; this responsible for the maximum:

leads to numerical instability (very small values) $(an) = argmax(In fr_1n(Tn-1,%n) + Hay s 0 (Tn)]
» when propagating back, multiple configurations

of x can maximize p(x), leading to wrong Then, in the back-tracking step we can recover

assignments of the overall maximum the arg max by recursive substitution of:
Solution to the first: AKX — (g Max)

Transform everything into log-space and use sums

e Gompuervsoncroce T e Gomputer vikon. Gompaervsonarowe LTI
Other Inference Algorithms Other Inference Algorithms

Junction Tree Algorithm: Loopy Belief Propagation:
« Provides exact inference on general graphs. « Performs Sum-Product on general graphs,
« Works by turning the initial graph into a junction particularly when they have loops

tree and then running a sum-product-like algorithm - Propagation has to be done several times, until a
« A junction tree is obtained from an undirected convergence ctriterion is met

model by triangulation and mapping cliques to « No guarantee of convergence and no global

nodes and connections of cliques to edges optimum
« It is the maximal spanning tree of cliques - Messages have to be scheduled
Problem: Intractable on graphs with large cliques. - Initially, unit messages passed across all edges
Cost grows exponentially with the number of - Approximate, but tractable for large graphs

variables in the largest clique (“tree width”).
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Conditional Random Fields Conditional Random Fields

« Another kind of undirected graphical model is known Derivation of the formula for CRFs:
as Conditional Random Field (CRF). (.| ) (5.5 | ) L o ) 7
, X | W , X | W - (Xe, Yo w
. CRFs are used for classification where labels are p(y [ x,w) = ppy(x W) E:« Z(y’-,x W) " 7 iyfnocﬁﬁciw,y’c;w)
represented as c.ilscrete random varlables yand In the training phase, we compute parameters w that
features as continuous random variables x maximize the posterior:

« A CRF represents the conditional probability

w' = argmaxp(w | X", y") o< p(y” [ X", w)p(w)

e ¢c(xeryos;w)

p(y | x,w) = — where (x",y") is the training data and p(w) is a Gaussian
2y 1o pelxe,yoiw) prior. In the inference phase we maximize
where w are parameters learned from training data. argmyaxp(y | x, w*)

« CRFs are discriminative and MRFs are generative

Machine Learning for Dr. Rudolph Triebel - Machine Learning for Dr. Rudolph Triebel
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Conditional Random Fields CRF Training

We minimize the negative log-posterior:

Ti—1,5-1 Ti—1,j
Typical example:
. w* = argmin{—Inp(w | x*,y*)} = argmin{— Inp(y* | x*,w) — Inp(w
J! / - e e gmin{—Inp(w | x*,y")} = argmin{~Inp(y" | x",w) — Inp(w)}
Li g

gy EliS LTSy Computing the likelihood is intractable, as we have to

Fig=1 values of pixels in ~ _
. an image and compute the partition function for each w. We can
Yij—1 Yij hidden variables y,, approximate the likelihood using pseudo-likelihood:
// /\/ are object labels )
p(y* | x"w) & [ [ oy | M), x" W)
i
Note: the definition of x;; and y,; is different where [ Markovblanket | | c; Al cliques containing , |

/

p(y; | M(y)),x*,w)

from the one in C.M. Bishop (pg.389)!

_ HC, d)cz (XZ‘,- 3 y;v Y?,y } W)
Zy: Hcl ¢C(Xa ) y,ﬁ ya? w)

Machine Learning for Dr. Rudolph Triebel - Machine Learning for Dr. Rudolph Triebel
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Pseudo Likelihood Pseudo Likelihood

y Y ¥ i/g :

Yi,j
U/

Pseudo-likelihood is computed only on the Markov
blanket of y; and its corresp. feature nodes.

e Gompuervsoncroce T Ui Gomoervison Gompaervsonarowe LTI
Potential Functions CRF Training and Inference
. . . . Training:
« The only requirement for the potential functions is a _ 9 o o o
that they are positive. We achieve that with: . Usmg _ps_eudo-llkellhood, training is efficient. We have
to minimize:
. ¢C(X07y07v‘f) :.:. eXP(WTf('XCayc)) . . L(W) _ flpl(y* ‘ X*,W) + %WTW
Where f |s.a compatibility function that is large if the [Cog-peeudokelood] |
labels yc fit well to the features x. « This is a convex function that can be minimized using
e This is called the Iog-linear model. gradient descent

« The function f'can be, e.g. a local classifier Inference:

« Only approximatively, e.g. using loopy belief
propagation
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« Undirected Graphical Models represent conditional
independence more intuitively using graph
separation

« Their factorization is done based on potential
functions The normalizer is called the partition
function, which in general is intractable to compute 5. Hidden Markov Models

« Inference in graphical models can be done
efficiently using the sum-product algorithm
(message passing).

« Another inference algorithm is loopy belief
propagation, which is approximate, but tractable

« Conditional Random Fields are a special kind of
MRFs and can be used for classification

Machine Learning for Dr. Rudolph Triebel
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Graphical Representation (Rep.) Graphical Representation

We can describe the overall process using a We can describe the overall process using a

Notation Discrete
differs from .
Bishop! Variables
- This incorporates the following Markov assumptions: - This incorporates the following Markov assumptions:
p(zt \ To:t, Ul:t, Zl:t) = p(Zt | It) (measurement) p(zt | L0:ts Zl:t) = p(Zt | lUt) (measurement)
P(xy | 2ow—1, UL, 21:0) = D(2g | Ty—1,uy)  (StALE) p(wy | zo:—1, 214) = p(wy | 2y ) (State)

Machine Learning for Dr. Rudolph Triebel i Machine Learning for Dr. Rudolph Triebel
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Example Formulation as HMM

« . . . 1.Discrete random variables
Occasionally dishonest casino”:

* observations: faces of a die z; € {1,2,...,6}
¢ hidden states: two different dice, one fair, one

* Observation variables: {z,},n=1..N

* State variables (unobservable): {x,},n=1.N

loaded * Number of states K: x,e{l..K} Model Pzrameters
095 /&0»9" 2.Transition model p(x; |x;.;)
16 01 1110 * Markov assumption (x; only depends on x;
2: 16 2: 110
3:1/6 3: 1110 g .
e | oos . o * Represented as a KxK transition matr @
o o 5o * Initial probability: p(x,) repr. as

3.0bservation model p(z,|x;) with parameter
Rolls: 664153216162115234653214356634261655234232315142464156663246 ° Obser\/at'on only depends on the Current State
Die: LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFLLLLLLLL
» Example: output of a “local” place classifier
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The Trellis Representation Application Example (1)

time * Given an observation sequence z,,z,,z;...
» Assume that the model parameters
k=1 Ass A
0 =(A, &, @) are known

» What is the probability that the given observation
sequence is actually observed under this model,

k=2 i.e. p(Z| 0)?

- If we are given several different models, we can
choose the one with highest probability

k=3 P A » Expressed as a supervised learning problem,
33 33 this can be interpreted as the inference step
(classification step)

n-2 n-1 n
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Application Example (2) Application Example (3)

* Given an observation sequence z,,z,,z;... » Given an observation sequence z,,z,,z;...
« Assume that the model parameters « What are the optimal model parameters
0 =(4, &, @) are known 0=(A, &, 0)?

« This can be interpreted as the
training step
« It is in general the most difficult problem

* What is the state sequence x,,x,,x;... that
explains best the given observation sequence?

« In the case of place recognition: which is the
sequence of truly visited places that explains
best the sequence of obtained place labels
(classifications)?

Machine Learning for Dr. Rudolph Triebel - Machine Learning for Dr. Rudolph Triebel
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Computer Vision

Summary: 3 Operations on HMMs 1. Computing the Data Likelihood
* Assume: given a state sequence x;,x,,x;...

Two possible operations:
* Filtering: computes p(z; | z1.4), i.€. state

1. Compute data likelihood p(Z|6) from a known model
» Can be computed with the forward-backward algorithm

2. Compute Optlma| state seqguence with a known model probablllty Only based on pre\“ous observatlons
« Can be computed with the Viterbi-Algorithm .
» Smoothing: computes p(z; | z.1), state
3L, del tors f b " probability based on all observations (including
. Learn model parame grs orano _serva IO-n .sec!uence those from the future)
» Can be computed using Expectation-Maximization (or : - o e mT
Baum-Welch) 2
£ £
w %)

it Sempoarvenarow  TUTL w0 Comervaon Compoervencro  TLITI
The Forward Algorithm The Forward-Backward Algorithm
* First, we compute the prediction from the last - As before we set o, (j) == p(z: = j | z1:)
time step: + We also define  8:(j) == p(ze+1:1 | 2 = J)

plze =7 | 214-1) = ZP(th =j w1 =iplai—1r =1 21:0-1)

[

* Then, we do the update using Bayes rule:
ai(j) :=plwe =j | 21:4) = p(we = J | 20, 21:0-1)

1
= Zp(zt | 2y = jaz)zt/—l)p(l’t =J|2z14-1)

* This is exactly the same as the Bayes filter from
the first lecture!

Comperson Sompuarvison o TLITI Ui Corperveor Somputarvson o TLITI

The Forward-Backward Algorithm The Forward-Backward Algorithm
* As before we set «;(j) := p(z; = j | z1.4) * As before we set «;(j) := p(x; = 7 | z1.4)
* We also define  6:(j) :== p(zt4+1:7 | 2 = j) » We also define  8:(j) == p(zt+1.7 | 20 = j)
« This can be recursively computed (backwards): « This can be recursively computed (backwards):

Bi—1(i) = p(ze.7 | ©4-1 = 1) Bi—1(i) = p(ze.T | 24-1 = 1)
= Zp(xt = J, 2t, 17 | Te1 =) =Y Bz | @ = iplwe = j | @ =)
- J

J
= Zp(zt+1:T | 2: = 7, It//z ia//t}p(ft =J,z | 241 =1) L .
; « This is exactly the same as the message-passing

J
= 2Pl | @ = iz | o= oo p(en = j | @1 =) algorithm (sum-product)!
! A ) , A - forward messages «; (vector of length K)
= " Bip(a | we = j)plae = j | w1 =)
; + backward messages g3, (vector of length K)

Machine Learning for Dr. Rudolph Triebel ot Machine Learning for
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2. Computing the Most Likely States 2. Computing the Most Likely States

* Goal: find a state sequence x,,x,,x;... that * Goal: find a state sequence x,,x,,x;... that
maximizes the probability p(X,Z|0) maximizes the probability p(X,Z|0)

* Define 4,(j) := o 0ax p(xieo1, @ = j | 21) * Define 4,(j) := L e p(xue-1, @ = j | 74)
This is the probability of state j by taking the This can be computed recursively:

most probable path.

6¢(j) = max Ot—1()p(xs | we—1)p(2¢ | 24)

@) O, D we also have to compute the argmax:
0 @ > ar(j) := argmax 6,1 ()p(e | xe-1)p(ze | 24)
Comperveion Computervioncrows — TLITH S i Gompervsencros LTI
The Viterbi algorithm 3. Learning the Model Parameters
. Ir:lts(z;i plx0) Pize | Xg) - Given an observation sequence z;,2,,25...
* Yxo)=0 * Find optimal model parameters 6

« Compute recursively for n=1...N:
° 6(Xn)z p(znlxn) n)ﬁX [6()(”_1) p(xnlxn-1)]
* alxy)= argmax [8(x.1) POy ,-1)]

* We need to maximize the likelihood p(Z|6)
« Can not be solved in closed form

« Iterative algorithm:
Expectation Maximization (EM) or for the case
* P(Z,X|6) = max d(xy) of HMMs: Baum-Welch algorithm

Xy = argmax d(xp)
‘N

» On termination:

- Backtracking:

° Xr: = a(Xn+1)

o compaorvsorarow T V5 Gompervison Gompuervaencros LTI
Expectation Maximisation The Baum-Welsh algorithm
« Objective: Find the model parameters knowing * E-Step (assuming we know m,A,¢, i.e. Boid)

the observations: mA.¢ « Define the posterior probability of being in state

. Result: i at step k:
* Train the HMM to recognize sequences of input Define Y(x,)= p(x |Z)
. nl=— n

¢ Train the HMM to generate sequences of input
« Technique: Expectation Maximisation

*E: Find the best state sequence given the
parameters

e M: Find the parameters using the state sequence

e Maximisation of the log-likelihood:
argmax ,, , . —log (P ({Zl. }"J'E , ACh ))

Machine Learning for Dr. Rudolph Triebel e Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group e Computer Vision Computer Vision Group

The Baum-Welsh algorithm The Baum-Welsh algorithm

* E-Step (assuming we know mt,A,9, i.e. Bold)

« Define the posterior probability of being in state i at
step k:

- Define Y(x,)= p(x,|2)
* It follows that y(x,)= a(x,) B(x,) / p(2)

* E-Step (assuming we know m,A,¢, i.e. B0ld)

* Define the posterior probability of being in state
i at step k:

- Define Y(x,)= p(x;|2)
* It follows that y(x,)= a(x,) B(x,) / p(2)

* Define E:(Xn—1 JXn): p(Xn—1 !anz)

« It follows that

E(Xn-1 'Xn): O((Xn-1)p(znlxn)p(xnlxn-1)B(Xn) / p(2)
» We need to compute: Expected

complete data

Q(6,89)= % p(X|Z, Bold)log pZ,X|0)  jog-likelihood

Machine Learning for Dr. Rudolph Triebel e Machine Learning for Dr. Rudolph Triebel
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The Baum-Welsh algorithm

» Maximizing Q also maximizes the likelihood:
P(Z]6) = p(Z]8°9)
« M-Step:

[ ] T =

2o Y(X)T 1k
Zj:l > V(X)z1y
here, we need forward and backward step!
® _ Zthg f(l“t—m,xtk)
Aji = K T
et 2rme §(@io1,j, )
« With these new values, Q is recomputed
» This is done until the likelihood does not
increase anymore (convergence)

Machine Learning for Dr. Rudolph Triebel
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The Baum-Welsh algorithm - summary
* Start with an initial estimate of 8=(1T1,A,®)
e.g. uniformly and k-means for ¢

* Compute Q(6,0¢°19) (E-Step)
» Maximize Q (M-step)
« lterate E and M until convergence

* In each iteration one full application of the
forward-backward algorithm is performed

* Result gives a local optimum

« For other local optima, the algorithm needs to
be started again with new initialization

Machine Learning for Dr. Rudolph Triebel
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The Scaling problem

Computer Vision

« Probability of sequences

Hp(mi |...) <<1
i <
¢ Probabilities are very small

e The product of the terms soon is very small
« Usually: converting to log-space works
 But: we have sums of products!

« Solution: Rescale/Normalise the probability
during the computation, e.qg.:

Q(Xn)= X(Xy) / PEZ1,Zs---1Zp)

Dr. Rudolph Triebel
56 Computer Vision Group
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Technische Universitat Minchen

Machine Learning for
Computer Vision

Tm

un Computer Vision Group :
4 e Prof. Daniel Cremers Nupuerty M gt

5. Boosting

Some Questions

1.Can we do the same for classification?
As a special case we consider two classes:
t;e{-1,1} Vi=1,...,N
2.Can we use a different (better?) error function?

3.Can we learn the basis functions together with
the model parameters?

4.Can we do the learning sequentially, i.e. one
basis function after another?

Answer to all questions: Yes, using Boosting!

Machine Learning for Dr. Rudolph Triebel

Computer Vision Computer Vision Group

Summary

* HMMs are a way to model sequential data

» They assume discrete states

« Three possible operations can be performed
with HMMs:
¢ Data likelihood, given a model and an observation

* Most likely state sequence, given a model and an
observation

e Optimal Model parameters, given an observation
 Appropriate scaling solves numerical problems

+« HMMs are widely used, e.g. in speech
recognition

Dr. Rudolph Triebel
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Repetition: Regression

We start with a set of basis functions

P(x) = (¢o(x), P1(x), ..., drr—1(x))

The goal is to fit a model into the data
y(x,w) = w'¢(x)

To do this, we need to find an error function, e.g.:

x € R?

1 N

B(w) = 5 > (w"o(x) ~ 1)
i=1
To find the optimal parameters, we derived E with

respect to w and set the derivative to zero.

Dr. Rudolph Triebel
Computer Vision Group

The Loss Function

Machine Learning for
Computer Vision

TUT

Definition: a real-valued function L(¢,y(x)),

where t is a target value and y is a model, is
called a loss function.

Examples:
0 ift=

01-loss: Lo (t, y(x)) = { | e y(x)

squared error l0ss: L. (t,y(x)) = (t — y(x))?

exponential loss: L., (t,y(x)) = exp(—ty(x))

Machine Learning for Dr. Rudolph Triebel
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Loss Functions Sequential Fitting of Basis Functions

0110ss ——
sqeloss - -

TR Idea: We start with a basis function ¢(x):
4o | yo(x,wo) = woo(x) wo =1
SN Then, at iteration m, we add a new basis

I 1 function ¢,,(x) to the model:

T ] Ym (X, W05+« Win) = Ym—1(X, W0, -+, Win—1) + Wi P (X)
a2 Two questions need to be answered:
T R T R F— 1.How do we find a good new basis function?

ty(x)

2.How can we determine a good value for w,,?
Idea: Minimize the exponential loss function

¢ 01-loss is not differentiable
e squared error loss has only one optimum

e Comporvioncroce LTI VEe  Computervison Compirvsoncrowe LTI
Minimizing the Exponential Loss Minimizing the Exponential Loss
Aim: find w,, and ¢,,, so that Aim: find w,, and ¢,,, so that
N N
(wms §m) = argmin }  L(ti, ym-1(xi) + wh(xi)) (wns m) = argmin }  L(t:, ym-1 (xi) + wh(xi))
A i)
where L(t,y) = exp(—ty) where L(t,y) = exp(—ty)

N
Solution:  ¢m = arg Hgnzvi,m]l(ti # o(x:))
i=1

e Computervion v TLITH o Gompuervion Computervaon cros LTI
Minimizing the Exponential Loss Minimizing the Exponential Loss
Aim: find w,, and ¢,,, so that Aim: find w,, and ¢,,, so that
N N
(Win, o) = arg rgigz L(ti, ym—1(x:) + wo(x;)) (Wi, dm) = arg migz L(ti, ym—1(x:) + wo(x;))
? = WP
where  L(t,y) = exp(—ty) where  L(t,y) = exp(—ty)
N N
Solution: & = argmin 3 viml(ti # 6(x)) Solution:  ¢m = argmin}_viml(t: # 6(x;)
=1 =1
Wy, = 1 log 1-ertm Wy, = 1 log 1=ctrm Vi;mt1 = Vi,m XP (2w 1(t; # dm(x:))
2 €rr,, 2 err,,

Computer vikn. Sompaarvaenarows  TLITI Ve G Computervsen o TLITI
The AdaBoost Algorithm The “Basis Functions”
1.For i=1,....N: v« 1/N ¢ Can be any classifier that can deal with weighted
2.For m=1,....M data
Fit a classifier (“basis function”) ¢,, that minimizes * Most importantly: if these “base classifiers”
N provide a training error that is at most as bad as
Z”"H(t" 7 Pml(xi)) a random classifier would give (i.e. it is a weak
=l _ . e
Compute ity — >N m(% 2 dm (%)) and o, — log L= %m cla§5|f|<_ar), then Ad.al_?aoost can return an .
SN v elT, arbitrarily small training error (i.e. AdaBoost is a

strong classifier)
* Many possibilities for weak classifiers exist, e.g.:
" ¢ Decision stumps
y(x) = sgn 221 U O (X) « Decision trees

Update the weights:  v; < v; exp(a., [(t; # dm(xi)))
3.Use the resulting classifier:

Machine Learning for Dr. Rudolph Triebel B Machine Learning for Dr. Rudolph Triebel
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Decision Stumps Classification Example

are a kind of very simple weak

classifiers. N 2 @) | 0 o m =1
Goal: Find an axis-aligned hyperplane o) 0o p
that minimizes the class. error Q)
This can be done for each feature (i.e. 0 o) | o O
for each dimension in feature space) d) %
It can be shown that the classif. error is @ o o
always better than 0.5 (random guessing) (@) (o) (o)
Idea: apply many weak classifiers, where each is ) ohfle) (@]
trained on the misclassified examples of the
previous. . . o .
Compurer o Comporvioncroce LTI VEe  Computervison Compirvsoncrowe LTI
Classification Example Classification Example
2 o l | o o m : 2 1 2 [, ' ' . . m :' 3
o o . - o
Or ., o
I

’ e O o1 . O
2 o%‘? :Cj _ - — _°_°_°e_:.C)._ S
, | o .

-0 12 0 1 2

Machine Learning for Dr. Rudolph Triebel ak e Machine Learning for Dr. Rudolph Triebel
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Computer vien. Somptervoon oo TLITI e ot v compaervienarowe TUTI
Classification Example Decision Trees
2. [ = 1501 * A more general version of decision stumps are
| ° decision trees:
. “ el |
0 O I
|o O .
c. (-] )
o l@ Q * At every node, a decision
) oY - ] is made
. e _ * Dan be used for classification and for regression
1 0 1 5 (Classification And Regression Trees CART)

Machine Learning for Dr. Rudolph Triebel S Machine Learning for Dr. Rudolph Triebel
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Decision Trees for Classification

- - color
"% O |i= tg L
(@]
o © @A 4,0 shape size < 10
- @ O - ellipﬁ/ \other yes \10
( ? @ ? m? 11 02 40 05

e Stores the distribution over class labels in each
leaf (number of positives and negatives)

¢ With these, we can class label probabilities, e.qg.
p(y=1|x)=1/2 if we have a red ellipse

Machine Learning for

Dr. Rudolph Triebel
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Growing a Decision Tree
¢ Finding the optimal partition of the data is an
NP-complete problem!
¢ Instead: use a greedy strategy:
function fitTree(node, D, depth):
1. node.prediction = class label distribution
2.(j*,t*, D1, Dg) = split(D)
3. if not worth splitting then return node
4. node.test « z;- < t*
5. node.left = fitTree(node,D;, depth +1)
6. node.right = fitTree(node,Dr, depth +1)

Machine Learning for

Computer Vision

Growing a Decision Tree

* The Split-function finds an optimal feature and an
optimal value for that feature

e For classification, it finds a split that minimizes
some cost function, e.g. misclassification
¢ A decision stump is a decision tree with depth 1
 Stopping criteria for growing the tree are:
e reduction of cost too small?
e maximum depth reached?
eis the distribution in the sub-trees homogenous?
eis the number of samples in the sub-trees too small?

Machine Learning for

Dr. Rudolph Triebel
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Tree Pruning

e If the tree grows too large, the algorithm overfits

e Simply stopping to grow can lead to situations
where the tree is not expressive enough

e |dea: Build first full tree and then prune it
* Pruning can be done using cross-validation

Machine Learning for

Computer Vision

Random Forests

¢ To reduce the variance of the classification
estimate, we can train several trees on
randomly sampled subsets of the data

* However, this can result in correlated classifiers,
limiting the reduction in variance

e |dea: chose data subset and variable (feature)
subset randomly

* The resulting algorithm is known as Random
Forests

* Random Forests have very good accuracy and
are widely used, e.g. body pose recognition

Dr. Rudolph Triebel
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Back to Boosting

Computer Vision

¢ AdaBoost has been shown to perform very well,
especially when using decision trees as weak
classifiers

Eight Node Trees -2 Classes

[y

Numbor of Toms

* However: the exponential loss weighs
misclassified examples very high!

Machine Learning for
Computer Vision
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Using the Log-Loss

01loss ——
sqeloss - -

exploss - - - -
6l \ logloss.

2 1.5 Bl 05 05 1 1.5 2

* The log-loss is defined és
L(t, y(x)) = logy(1 + exp(—2ty(x))

¢ [t penalizes misclassifications only linearly

Machine Learning for

The LogitBoost Algorithm

1.For i=1,...,N:
2.For m=1,...,M
Compute the working response z; =
Compute the weights v; = m;(1 — ;)

Find ¢., that minimizes
N

Z vz — ¢(Xi))2

=1
1
Update y(x) < y(x) + 50m(x) and 7
3.Use the resulting classif]i}ar:

y(x) =sgn Y dm(x)
m=1

ti—ﬂ'i

71'1'(1 — 7T7;)

1
< 1+ exp(—2y(x;))

Machine Learning for
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Weighted Least-Squares Regression
¢ Instead of a weak classifier, LogitBoost uses
“weighted least-squares regression”
e This is very similar to standard least-squares
regression:

1 N
Bw) =3 > vi(who(xi) — i)’
i=1

e This results in a matrix & = v/2% where
yi/2 = diag(y/v1, ..., /UN)
® The solution is
w = (07d) 19Tt

Dr. Rudolph Triebel
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GentleBoost

Gentle AdaBoost
1. Start with weights wy = 1/N,i=1,2,...,N, F(z) = 0.

2. Repeat form =1,2,... ,M:

(a) Tit the regression function fm(z) by weighted least-squares of y; to z; with weights w;.
(b) Update F(z) « F(z) + fm(z)
(c) Update w; + wie ¥/ and renormalize.

3. Output the classifier sign[F(z)] = sign[z,‘?le fm(z)]

Algorithm 4: A modified version of the Real AdaBoost algorithm, using Newton stepping rather than
ezact optimization at each step

* Numerically more stable than LogitBoost

¢ Tends to perform better than AdaBoost and
LogitBoost

Dr. Rudolph Triebel
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Generalization: Gradient Boost

e |nitialize N
fo(x) = arg rr17in Z L(ti, ¢(x4,7))

efor m=1,....M -
e Compute the gradient residual
S [BL(tnf(Xz‘))
af(x;)
e Use the weak I(?Varner to compute that minimizes
Z(nm — B(%i;7m))”

e Update fn(X) = frm_1(x) + vd(x,7)
eReturn f(x) = fa(x)

} f(xi)=Fm—1(xi)

Dr. Rudolph Triebel
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Application of AdaBoost: Face Detection

* The biggest impact of AdaBoost was made in
face detection

e |dea: extract features (“Haar-like features”) and
train AdaBoost, use a cascade of classifiers

* Features can be computed very efficiently

¢ Weak classifiers can be decision stumps or
decision trees

¢ As inference in AdaBoost is fast, the face
detector can run in real-time!

Dr. Rudolph Triebel
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Haar-like Features

* Defined as difference of
rectangular integral area:

* The sum of the pixels which lie
within the white rectangles are

subtracted from the sum of pixels * ?
in the grey rectangles.
(ffWhize[(x’ y)dXdy> qureyI(x’y)dXdy)
* One feature defined as: c D

e Feature type: A,B,C or D
e Feature position and size

Dr. Rudolph Triebel
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The integral image
« Defined as :

Iim (Xa Y)= f f I(X9Y) dy dX

xsX y<Y
« Integral on rectangle D can
be computed in 4 access to

Iint:

[[1x») =1, (H+ 1, (D)~ 1, (2)- 1, (3)

- Very efficient way to compute
features

Dr. Rudolph Triebel
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Computer Vision

Weak Classifiers Used
» A weak classifier has 3 attributes:
* A feature f; (type, size and position)
* A threshold 6
* A comparison operator op; = ‘<‘ or >’
* The resulting weak classifier is:

h(x)=f;(x) op, 8,
* x is a 24x24 pixels window in the image

Machine Learning for Dr. Rudolph Triebel

A classifier with only this two features can be trained to recognise
100% of the faces, with 40% of false positives

Machine Learning for Dr. Rudolph Triebel
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The Inference Algorithm
* scale = 24x24
* Do {
e For each position in the image {

*Try classifying the part of the image starting at this
position, with the current scale, using the classifier

selected by AdaBoost
}

eScale = Scale x 1.5

1 until maximum scale

Machine Learning for
Computer Vision
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Another Improvement: the Cascade
* Basic idea:
e |t is easy to detect that something is not a face

¢ Tune(boost) classifier to be very reliable at saying

NO (i.e. very low false negative)

* Stop evaluating the (o sub-windous )

cascade of classifier . ——

T T T Futher
. , O O O e
if one classifier says NO lF I F —

Dr. Rudolph Triebel
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Advantage of the Cascade

« Faster processing
¢ Quick elimination of useless windows

- Each individual classifier is trained to deal only
with the example that the previous ones could
not process
e\ery specialised

» The deeper in the cascade, the more complex
(the more features) in the classifiers.

Dr. Rudolph Triebel
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Results (2)
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6. Kernel Methods

Summary
* Boosting is a method to use a weak classifier
and turn it into a strong one (arbitrarily small
training error!)

¢ AdaBoost minimizes the exponential loss

* To be more robust against outliers, we can use
LogitBoost or GentleBoost

¢ Weak learners can be decision stumps or
decision trees

¢ Face detection can be solved with Boosting

Dr. Rudolph Triebel
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Motivation

¢ Usually learning algorithms assume that some
kind of feature function is given

* Reasoning is then done on a feature vector of a
given (finite) length

¢ But: some objects are hard to represent with a
fixed-size feature vector, e.g. text documents,
molecular structures, evolutionary trees

¢ |dea: use a way of measuring similarity without
the need of features, e.g. the edit distance for
strings

¢ This we will call a kernel function

Machine Learning for Dr. Rudolph Triebel

m

Computer Vision Computer Vision Group



Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

ISt e A b
Jw) = 5 D (W Blx) = t)? + SwTw é(xn) € R

Machine Learning for Dr. Rudolph Triebel

Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

N

J(w) = % Z(WT¢(xn) —tn)? + %WTW d(xn) € RP
n=1

if we write this in vector form, we get

1 A
Jw)=-wioTow—wieTt+t"t+ wiw  teRV

2 2

Machine Learning for Dr. Rudolph Triebel
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1N T 2 AT D
J(w) =5 D (Wlo(xn) = tn)” + Swhw b(x,) € R

if we write this in vector form, we get

1 A
J(w) = swieTow —wieTt +t7t + Swiw  teRY

2

and the solution is
w= (070 + \Ip)'®Tt

Dr. Rudolph Triebel
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Dual Representation

Computer Vision

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 A
J(w) = §WT<I>T<I>W —wlelt +tTt + §WTW
w=(®T® + \p) Tt

However, we can express this result in a different
way using the matrix inversion lemma:

(A+BCD) ' =A"' — A 'B(C"'4+ DA 'B)"'DA™!

Dr. Rudolph Triebel
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 A

J(w) = §WT(I)TCPW —wlelt 4 tTt + §WTW
w= (070 + \Ip)'@Tt

However, we can express this result in a different

way using the matrix inversion lemma:

(A+BCD) ' =A4' - A'B(C"'+ DA 'B)"'DA™!

w =0T (®dT 4 AIy) 't

Dr. Rudolph Triebel
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

J(w) = %WT@T(I)W —wlelt +tTt + %WTW

w=(®T® + \p) '@t

w = &7 (®dT + \Iy) 't
=.a
Plugging w = #7a into J(w) gives:

“Dual Variables”

1 A
J(a) = 5aquI)qubTa —a’edTt +t7t + 5aT<1>q>Ta

Dr. Rudolph Triebel
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 A
J(w) = §WT<I>T<I>W —wlelt 4 tTt + §WTW

1 1
J(a) = §aTKKa —al'Kt+ 5tTt + %aTKa K =007

This is called the dual formulation.
Note: acRY weRP

Machine Learning for Dr. Rudolph Triebel

Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 A
J(w) = §WT(DT(I)W —wlelt +tTt + §WTW

1 1 A
J(a) = §aTKKa —alKt + itTt + iaTKa

This is called the dual formulation.
The solution to the dual problem is:

a=(K+My)™ 't

Machine Learning for Dr. Rudolph Triebel
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

J(w) = %WTCDT(I)W —wlelt +tTt + %WTW

1 1 A
J(a) = §aTKKa— a’ Kt + EtTt + §aTKa

a=(K+My)!

This we can use to make predictions:
y(x) = w'¢(x) = a’ @o(x) =

now x is unknown and a is given from training

Tim

k() (K + My) ™"

Machine Learning for Dr. Rudolph Triebel

Dual Representation

y(x) = k(x)T(K + My)™?

where:

d(x1)T(x) B(x1)Tp(x1)
k(x) = K=

o(x1)"d(xn) )
P(xn)"o(x) Pxn) T (x1)

$xn)Td(xw)

Thus, y is expressed only in terms of dot products
between different pairs of ¢(x), or in terms of the
kernel function

k(xi %) = o(xi) " d(x;)

Machine Learning for Dr. Rudolph Triebel
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Representation using the Kernel

y(x) = k(x)T (K + M)t

Computer Vision Group

Now we have to invert a matrix of size N x N,
before it was M x M where M < N, but:

By expressing everything with the kernel
function, we can deal with very high-dimensional
or even infinite-dimensional feature spaces!

Idea: Don’t use features at all but simply define a
similarity function expressed as the kernel!

Machine Learning for Dr. Rudolph Triebel
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Constructing Kernels

The straightforward way to define a kernel function is to
first find a basis function ¢(x) and to define:

k(xi,x;) = ¢(x;)" d(x;5)
This means, k is an inner product in some space #, i.e:
1.8ymmetry: k(xi,x;) = (¢(x;), o(xi)) = (B(xi), o(x;))
2.Linearity: (a(é(x;) +2), ¢(x;)) = a{d(x:), d(x;)) + a(z, ¢(x;))
3.Positive definite: (¢(x:), o(x:)) > 0, equal if ¢(x;) =0

Can we find conditions for & under which there is a
(possibly infinite dimensional) basis function into %,

where k is an inner product?

Machine Learning for Dr. Rudolph Triebel
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Constructing Kernels

Theorem (Mercer): If kis
1.symmetric, i.e. k(x;,x;) = k(x;,x;) and
2.positive definite, i.e.
k(x1,x1) k(x1,xn)
K- :

k(xn,x1) k(xn,xn)

is positive definite, then there exists a mapping ¢(x)

into a feature space # so that k can be expressed

as an inner product in #.

This means, we don’t need to find ¢(x) explicitly!
We can directly work with &

Machine Learning for Dr. Rudolph Triebel
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Constructing Kernels

Finding valid kernels from scratch is hard, but:

A number of rules exist to create a new valid kernel k&
from given kernels k; and k,. For example:

k(Xl,Xg) :Cl{,‘l(Xl,Xg) c>0
k(x1,x2) = f(x1)k1(x1,%2) f(x2)

(
(Xl,XQ) = exp (k1(x1,x2))
(
(

™

k(x1,x2) = k1(x1,%2) + ka(x1,X2)
k X1,X2) = kl(Xl,Xz)kQ(Xl,X2)

where A is positive semidefinite

and symmetric

k(x1,x%2) = x3 T Ax

Machine Learning for Dr. Rudolph Triebel
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Examples of Valid Kernels

Computer Vision Group

¢ Polynomial Kernel:
k(xi,x;) = (x{ x; +¢)?

e Gaussian Kernel:

c>0 deN

k(x,x;) = exp(—|x; — x,]1>/207)
e Kernel for sets:
k(A Ag) = 2140 42|

e Matern kernel:
91-v (“ﬁ)z( <m

k(r) =

= |Ixi —x;|[,v > 0,1 >0
) i ; ) r=|x; — x|, v > >

Machine Learning for Dr. Rudolph Triebel
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A Simple Example
Define a kernel function as
k(x,x") = (xTx')?

This can be written as:

x,x' € R?

/ /\2 /2
(212 4 zoxh)? = 22277 + 2212 woxhy 4 2ial

(xlv%» fxle)(xl T3 ,\[351932)
= ¢(x)"¢(x')
It can be shown that this holds in general for

k(xi, x;5) = (x] %)

Machine Learning for Dr. Rudolph Triebel
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Visualization of the Example

¢(x) = (27,23, V2x125)  Decision boundary

becomes a hyperplane

o
o

o

Original decision
boundary is an ellipse

Machine Learning for Dr. Rudolph Triebel
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Application Examples

Kernel Methods can be applied for many different
problems, e.g.:

¢ Density estimation (unsupervised learning)
* Regression

¢ Principal Component Analysis (PCA)

¢ Classification

Most important Kernel Methods are

* Support Vector Machines

¢ Gaussian Processes

Machine Learning for Dr. Rudolph Triebel
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Kernelization

* Many existing algorithms can be converted into
kernel methods

e This process is called “kernelization”
Idea:

e express similarities of data points in terms of an
inner product (dot product)

e replace all occurrences of that inner product by
the kernel function

This is called the kernel trick

Machine Learning for Dr. Rudolph Triebel
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Example: Nearest Neighbor

* The NN classifier selects the label of the nearest
neighbor in Euclidean distance

1%, xj||2 = xzrxi + X?xj + QX?XJ'

Machine Learning for Dr. Rudolph Triebel
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Example: Nearest Neighbor

Computer Vision Group

e The NN classifier selects the label of the nearest
neighbor in Euclidean distance

||xi,xj||2 =xIx; + XJTXJ- + leTXj
¢ \We can now replace the dot products by a valid
Mercer kernel and we obtain:
cl(x,‘,xj)2 = k(xi, %) + k(x5,%;5) + 2k(x;,%x;)
* This is a kernelized nearest-neighbor classifier
¢ We do not explicitly compute feature vectors!

Machine Learning for Dr. Rudolph Triebel
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- Given: dataset {x,} n=1,...,N x,cRP

* Project data onto a subspace of dimension M
so that the variance is maximized
(“decorrelation”)

* For now: assume M is equal to 1

* Thus: the subspace can be described by a D-
dimensional unit vector u;, i.e.: ufu; =1

- Each data point is projected onto the subspace
using the dot product:

T
u; X,

Machine Learning for Dr. Rudolph Triebel
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Principal Component Analysis
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Visualization:
u; Xp X X
w
x * X *
x
* . * xx Xn,
Mean: | X 1 N
T T T<
o= NZulxn = Nul an =u X
. n=1 n=1
Variance:

=

Machine Learning for Dr. Rudolph Triebel

1 & 1
7 = 3 (ulx, — ul% = S, — )2 = 1
n=1 n=1
S
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Principal Component Analysis

Goal: Maximize ulSu; s.t. uf'u; =1
Using a Lagrange multiplier:

S symmetric

u* = argmaxu? Su; + A\ (1 —uluy)
up

Setting the derivative wrt. u; to 0 we obtain:

Su; = AMuy
Thus: u; must be an eigenvector of S.
Multiplying with u{ from left gives: u?Su;, = A,
Thus: o? is largest if u; is the eigenvector of the
largest eigenvalue of §

Machine Learning for Dr. Rudolph Triebel
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Principal Component Analysis

We can continue to find the best one-
dimensional subspace that is orthogonal to u;

If we do this M times we obtain:

uy, ..., uy are the eigenvectors of the M largest
eigenvalues of S:  Ai,...,A\m

To project the data onto the M-dimensional
subspace we use the dot-product:

T
u;
xt = : (x —x)
T
Wy
Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for

Reconstruction using PCA

¢ We can interpret the vectors uy, ...,
basis if M =D

* A reconstruction of a data point x into an M-
dimensional subspace (M<D) can be written:

Xp 7szul+ z bu;

i=M+1

* Goal is to minimize the squared error:

- N Z [0 — Xn“
n=1

uy as a

® This results in:
Zni = X,

These are the coefficients of the eigenvectors

Machine Learning for

Computer Vision

Reconstruction using PCA

Plugging in, we have:
M

D
X, = Z(xfui)ui + Z (iTui)ui
=1 i=M+1
D M M
= Z(xTuz)ui — Z()‘( w;)u; + Z(xn u;)u;
i=1 i=1 i=1
M
=X+ Z(xzul —X W)y
i=1
M
=X+ Z((xn —X) u)w;
i=1

Machine Learning for
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Application of PCA: Face Recognition

Computer Vision

Database ) .
Image to identify

Identification

Machine Learning for
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Computer Vision

Application of PCA: Face Recognition
Approach:

e Convert the image into a nm vector by stacking the
columns:

=

¢ A small image is 100x100 -> a 10000 element vector,
i.e. a point in a 10000 dimension space

e Then compute covariance matrix and eigenvectors
e Select number of dimensions in subspace
eFind nearest neighbor in subspace for a new image

Dr. Rudolph Triebel
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Results of Face Recognition
» 30% of faces used for testing, 70% for learning.

e

3
$

Machine Learning for
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Can We Use Kernels in PCA?

o
)

e What if data is distributed along non-linear
principal components?

e ldea: Use non-linear kernel to map into a space
where PCA can be done

Machine Learning for

Kernel PCA

Here, assume that the mean of the data is zero:
an =0
Then, in standard PCA we have the eigenvalue

problem: 1
Sui = )\iui S = N Z_:lxnxz

Now, we use a non-linear transformation ¢(x,,)
and we assume Zo‘m -o. We define C as

quxn

Goal: find eigenvalues without using features!

, with Cv; = \v;

Machine Learning for

Dr. Rudolph Triebel
Computer Vision Group

Computer Vision

Dr. Rudolph Triebel
Computer Vision Group

Computer Vision



Kernel PCA

Plugging in: . Z (%) (30) Vs = Aivi

= —cR

N
This means, there are values a;,, so that v, = Zamqﬁ(xn).
With this we have: i=1
1 N N N
N Z D(xn)p(xn)" Z Aim®(Xm) = Ai Z ain®(Xn)
= m=1 =1

Multiplying both sides by o(x;) gives:

N§ kxl7xn § a’L’VTL Xnvxm _)\ § azn lexn

n=1 m=1

where k(x;,x,) = ¢(X1)T¢(X
terms of the kernel function!

»)- This is our expression in

Machine Learning for Dr. Rudolph Triebel
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Kernel PCA

The problem can be cast as finding eigenvectors
of the kernel matrix K:

Kai = )\1Naz

With this, we can find the projection of the image
of x onto a given principal component as:

N N
TVz = Z:laanS(X) ¢(Xn) = Z:laink(x7 X")

Again, this is expressed in terms of the kernel
function.

Machine Learning for Dr. Rudolph Triebel
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Kernel PCA: Example

Eigenvalue=21.72 Eigenvalue=21.65 Eigenvalue=4.11 Eigenvalue=3.93

Eigenvalue=3.66 Eigenvalue=3.09 Eigenvalue=2.60 Eigenvalue=2.53

Dr. Rudolph Triebel
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Example: Classification

¢ We have seen kernel methods for density
estimation, PCA and regression

¢ For classification there are two major kernel
methods: Support Vector Machines (SVMs) and
Gaussian Processes

* SVMs are probably the most used classification
algorithm

* Main idea: use kernelisation to map into a high-
dimensional feature space, where a linear
separation between the classes can be found
(“hyper-plane”)

Dr. Rudolph Triebel
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Support Vector Machines

Support Vector Machines learn a linear discriminant
function (“hyper-planes”):

wlg(x) —b
|

feature
function

y(X, W) =

data
point

parameters of the
hyperplane (normal vector)

Bias parameter

Assumptions for now: Data is linearly separable,
Binary classification ( ¢, € {—1;+1}).

“Maximum Margin”: find the decision boundary that
maximizes the distance to the closest data point

Dr. Rudolph Triebel
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Maximum Margin

P&Gntspwith o
minilfetidistance °

Dr. Rudolph Triebel
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Maximum Margin

« The distance of a point x, to the decision hyperplane is

‘y(xn)‘ _ tny(xn) _ tn(WT¢(Xn) + b)

l[wll Iwi [[wl

« This distance is independent of the scale of w and 5

tn(oW?6(xn) +0b) _ - [tn(wTd(xn) +B)|

llaow]| l[wll
« Maximum margin is found by

angnp { o minftn (w7 60) + )

o Rescaling: We can choose a so that

to(awT d(x,) +ab) =1
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Rescaling

Machine Learning for
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Maximum Margin

For all data points we have the constraint
(W p(x2)+0) > 1,  n=1,...,N
This means we have to maximize:

dIgIndX{W} s.th. ta(wlo(x,) +b) > 1, n=1...,N

which is equivalent to

argmig{%”w\\z} s.th. to(who(x,) +0) > 1, n=1,...,N

Machine Learning for Dr. Rudolph Triebel

Computer Vision

Maximum Margin

argmig{%”w“z} s.th.  ta(WwTo(x,) +b) > 1, n=1...,N

This is a constrained optimization problem.
It can be solved with a technique called quadratic
programming.

Machine Learning for
Computer Vision

Dr. Rudolph Triebel
Computer Vision Group

Computer Vision Computer Vision Group

Dual Formulation

For the constrained minimization we can introduce
a,,:

min L(w,b,a) —Hw||2 Zan tn (Wb (xn) + ) — 1)
Setting the derivatives of th|s wrt. w and b to 0 yields:

W= Zann¢xn O—Zann

If we plug these constraints back into L(w,b,a)

N N
Z Ap — = Z Z anamtntmk(xnvxm)

n=1m=1

max L

Machine Learning for

Dual Formulation

N N
Zan—

a Z Z anamtntmk(xnaxm)
subject to the constramts

n=1m=1
N
a, >0, n=1,....N > ant, =0

This is called the o"f:tlhe constrained
optimization problem. The function k is again the
and is defined as:

k(%n, Xm) = ¢(X£)¢(Xm)
The simplest example of a kernel function is given for

max L

@= 1. It is also known as the

k(Xpn,Xm) = xgxm

Machine Learning for
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The Kernel Trick in SVMs

¢ Other kernels are possible, e.g. the polynomial:

Computer Vision

d(x) = (22, 22, 2120, Tow1) x € R?
k(%n, Xm) = ¢(XZ)¢(Xm) = (XTX)2

Kernel Trick for SVMs: If we find an optimal solution

to the dual form of our constrained optimization

problem, then we can replace the kernel by any other

valid kernel and obtain again an optimal solution.

e Consequence: Using a non-linear feature transform @
we obtain non-linear decision boundaries.

Machine Learning for
Computer Vision

Dr. Rudolph Triebel
Computer Vision Group

Observations and Remarks

« The kernel function is evaluated for each pair of
training data points during training

« It can be shown that for every training data point it
holds either «, =0 or t,y(x,) = 1 In the latter case,
they are support vectors.

« For classifying a new feature vector x we evaluate:

N
= Z antnk(x,%,) + b
n=1

We only need to compute that for the support vectors

Machine Learning for

Multiple Classes

We can generalize the binary classification
problem for the case of multiple classes.

This can be done with:
.one-to-many classification

.Defining a single objective function for all
classes

.Organizing pairwise classifiers in a directed acyclic
graph (DAGSVM)
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Extension: Non-separable problems

Machine Learning for
Computer Vision

Dr. Rudolph Triebel
Computer Vision Group

Slack Variables

¢ The slack variable &, is defined as follows:

« For all points on the correct side: ¢, =0

« For all other points: ¢, = |t, — y(x,)|

o This means that points with 0 < ¢, <1 are correct

classified, but inside the margin, points with &, > 1
are misclassified.
« In the optimization, we modify the constraints:
toy(xn) > 1— &, n=1,...,N

eand &, >0
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Summary

« Kernel methods are used to solve problems by
implicitly mapping the data into a (high-dimensional)
feature space

« The feature function itself is not used, instead the
algorithm is expressed in terms of the kernel

- Applications are manifold, including density
estimation, regression, PCA and classification

- An important class of kernelized classification
algorithms are Support Vector Machines

« They learn a linear discriminative function, which is
called a hyper-plane

« Learning in SVMs can be done efficiently
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