TU MUNCHEN

FAKULTAT FUR INFORMATIK
DRr. RUDOLPH TRIEBEL
MATTHIAS VESTNER

Machine Learning for Robotics and Computer Vision
Winter term 2013

Solution Sheet 4
Topic: Boosting
December 6th

Exercise 1: Constructing kernels

During this solution we assume the feature spaces of k; and ks to have finite dimensions.
Thus they can be written as ki(w1,22) = ¢1(21)"d1(x2), ko(x1,22) = ¢o(x1)" d2(w2),
where ¢1(x) € R™ ¢o(x) € R"™. Note however that in general feature spaces can be
infinite dimensional (e.g. ¢(z) € I>(R), see 4.). We now have to define new kernels via a

scalarproduct k(z1,72) = (¢(21), ¢(x2))
1. To warm up:
d1 (x))
x) = € Rmitn2
o) = (o)
2. Note that the matrix-products do not commute, so it is a bit of work:

k(x1, m2) = d1(21)" o1 (w2) o (1) a2 (x2)
= (Z(th(l"l))‘(cf) (932))2‘)(2(%(961))3‘(¢2(932))j)

_ ZZ d1(21))i(d1(22))i(P2(x1))(P2(x2)),
_ZZ ¢1(21))i(P2(21)); (P1(22))i(P2(22));

-~

\“/_/ ¢k(21) or(x2)

>k
(¢1(21))1 (¢2(5U1))

_ (¢1(9€1))1(¢2(1‘1))n2 n1na
=@ = e)alale))s | €F

(61(21))mn (32(21))m

3. ¢(z) = f(z)¢1(x)

4. Again we write the scalarproduct as a sum:

exp((¢1(2)) 6(y)) = exp(D_(61(x))i(¢1(1))s)
= [[exp((61(2))i(61())s)

Since we already know that the product of kernels is again a kernel it remains to
show, that exp((¢(x)):(¢(y)):) is a kernel for a fixed index i. In the following we
will omit ¢ and imagine ¢; to be a scalar-valued function

exp(d1(a Z,% b1(y))*

This is an inner product in [*(R) with

¢(a) = VAz, (A= Q"AQ = VA =Q"VAQ, (VA)' VA= A)

Exercise 2: Polynomial kernel

1. d =1: ¢(x) = z. Inductionstep: Exercise 1, 2.
2. Consider first d = 2:

(27 2)* = (zawj1 + wipwj2)*
= I?ll'?l + 2I11Ij1$121’j2 + 1‘321’?2
T
o(x) = (22 V2may 23)
For larger d the coefficients can be obtained by using the Binomial theorem /Pascal’s
triangle:

ko(wi,) = (x]2; +d)? = (] 2;)* + 2da] 2 + d°

o(2) = (42 V2w ¥} V2dw, V2dr, d)

Exercise 3: Programming

function [above] = feature_test (X,n,c,phi)

% FEATURE.TEST returns a boolean vector, indicating on whether the features
% of X lies above a hyperplane

% X: matrix of elements in the original space, e.g. R"2

% n: normal of the hyperplane in the feature—space, e.g. R"3

% c¢: distance of the hyperplane to the origin, scalar

% phi: function—handle for the mapping from the original space to the

% feature—space, e.g. R"2 —> R"3

psi = phi(X(:,1) ,X(:,2));
above = (psixn>c);
end

