Machine Learning for Robotics and Computer Vision Winter term 2013

Solution Sheet 4

Topic: Boosting December 6th

Exercise 1: Constructing kernels

During this solution we assume the feature spaces of k_1 and k_2 to have finite dimensions. Thus they can be written as $k_1(x_1, x_2) = \phi_1(x_1)^T \phi_1(x_2)$, $k_2(x_1, x_2) = \phi_2(x_1)^T \phi_2(x_2)$, where $\phi_1(x) \in \mathbb{R}^{n_1}$, $\phi_2(x) \in \mathbb{R}^{n_2}$. Note however that in general feature spaces can be infinite dimensional (e.g. $\phi(x) \in l^2(\mathbb{R})$, see 4.). We now have to define new kernels via a scalar product $k(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle$

1. To warm up:

$$\phi(x) = \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix} \in \mathbb{R}^{n_1 + n_2}$$

2. Note that the matrix-products do not commute, so it is a bit of work:

$$k(x_{1}, x_{2}) = \phi_{1}(x_{1})^{T} \phi_{1}(x_{2}) \phi_{2}(x_{1})^{T} \phi_{2}(x_{2})$$

$$= (\sum_{i} (\phi_{1}(x_{1}))_{i} (\phi_{1}(x_{2}))_{i}) (\sum_{j} (\phi_{2}(x_{1}))_{j} (\phi_{2}(x_{2}))_{j})$$

$$= \sum_{i} \sum_{j} (\phi_{1}(x_{1}))_{i} (\phi_{1}(x_{2}))_{i} (\phi_{2}(x_{1}))_{j} (\phi_{2}(x_{2}))_{j}$$

$$= \sum_{i} \sum_{j} (\phi_{1}(x_{1}))_{i} (\phi_{2}(x_{1}))_{j} (\phi_{1}(x_{2}))_{i} (\phi_{2}(x_{2}))_{j}$$

$$\phi_{k}(x_{1}) \qquad (\phi_{1}(x_{1}))_{1} (\phi_{2}(x_{1}))_{1}$$

$$\vdots$$

$$(\phi_{1}(x_{1}))_{1} (\phi_{2}(x_{1}))_{n_{2}} (\phi_{2}(x_{1}))_{n_{3}}$$

$$\vdots$$

$$(\phi_{1}(x_{1}))_{n_{1}} (\phi_{2}(x_{1}))_{n_{3}} (\phi_{2}(x_{1}))_{n_{3}}$$

3.
$$\phi(x) = f(x)\phi_1(x)$$

4. Again we write the scalar product as a sum:

$$\exp((\phi_1(x))^T \phi(y)) = \exp(\sum (\phi_1(x))_i (\phi_1(y))_i)$$

= $\prod \exp((\phi_1(x))_i (\phi_1(y))_i)$

Since we already know that the product of kernels is again a kernel it remains to show, that $\exp((\phi(x))_i(\phi(y))_i)$ is a kernel for a fixed index i. In the following we will omit i and imagine ϕ_1 to be a scalar-valued function

$$\exp(\phi_1(x))(\phi_1(y)) = \sum_{k=0}^{\infty} \frac{1}{k!} (\phi_1(x))^k (\phi_1(y))^k$$

This is an inner product in $l^2(\mathbb{R})$ with

$$\phi(x) = \begin{pmatrix} \phi_1(x) \\ \frac{1}{\sqrt{2}}\phi_1(x)^2 \\ \frac{1}{\sqrt{6}}\phi_1(x)^3 \\ \vdots \\ \frac{1}{\sqrt{k!}}\phi_1(x)^k \\ \vdots \end{pmatrix}$$

5.
$$\phi(x) = \sqrt{A}x$$
, $(A = Q^T \Lambda Q \Rightarrow \sqrt{A} = Q^T \sqrt{\Lambda}Q$, $(\sqrt{A})^T \sqrt{A} = A$)

Exercise 2: Polynomial kernel

- 1. d=1: $\phi(x)=x$. Inductionstep: Exercise 1, 2.
- 2. Consider first d=2:

$$(x_i^T x_j)^2 = (x_{i1} x_{j1} + x_{i2} x_{j2})^2$$

= $x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2$
$$\phi(x) = (x_1^2 \sqrt{2} x_1 x_2 x_2^2)^T$$

For larger d the coefficients can be obtained by using the Binomial theorem/Pascal's triangle:

3.

$$\tilde{k}_2(x_i, x_j) = (x_i^T x_j + d)^2 = (x_i^T x_j)^2 + 2dx_i^T x_j + d^2$$

$$\phi(x) = (x_1^2 \quad \sqrt{2}x_1 x_2 \quad x_2^2 \quad \sqrt{2d}x_1 \quad \sqrt{2d}x_2 \quad d)^T$$

Exercise 3: Programming

```
function [above] = feature_test(X,n,c,phi) % FEATURE_TEST returns a boolean vector, indicating on whether the features % of X lies above a hyperplane % X: matrix of elements in the original space, e.g. R^2 % n: normal of the hyperplane in the feature—space, e.g. R^3 % c: distance of the hyperplane to the origin, scalar % phi: function—handle for the mapping from the original space to the % feature—space, e.g. R^2 —> R^3 % psi = phi(X(:,1),X(:,2)); above = (psi*n>c); end
```