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Nonlinear Filtering
• The convolution of an input image f (x) with a kernel G(x):

g(x) = (G ∗ f )(x) =

∫
G(x ′)f (x − x ′)dx ′

is a classical example of a linear filter.
• Convolutions can be efficiently implemented in frequency

space because in frequency space the convolution
corresponds to a simple (frequency-wise) product and
because the Fast Fourier transform allows a quick
conversion to and from frequency space.

• In practice, however, linear filters are often suboptimal. In
smoothing/denoising, for example, the Gaussian
smoothing removes both noise and signal – semantically
relevant structures tend to disappear along with the noise.
Instead, one would like to remove noise in an adaptive
manner such that semantically important structures
remain unaffected. In principle this could be done with a
Gaussian smoothing where the filter width σ is adapted to
the local structure (larger in noise areas, smaller at
important edges).
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Image Filtering by Diffusion

• Formally this would amount to the following:

g(x) =

∫
Gσ(f ,x)(x ′)f (x − x ′)dx ′,

where now the width σ of the convolution kernel G
depends on the brightness values in a local neighborhood.

• It turns out that there exist other more elegant solutions to
model such adaptive denoising processes by means of
Diffusion filtering.

• The key observation is that image smoothing can be
modeled with a diffusion process. In this process, the local
brightness diffuses to neighboring pixels due to
differences in the local concentration of grayvalue.

• Mathematically diffusion processes are represented by
partial differential equations (PDEs).
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Review: Partial Differential Equations

• A partial differential equation (PDE) is an equation
containing the partial derivatives of a function of several
variables.
Example — the wave equation:

∂2ψ(x , t)
∂t2 = c2∆ψ(x , t)

• For functions of a single variable we have the special case
of ordinary differential equations (ODEs) (gewöhnliche
Differentialgleichungen).
Example — the pendulum:

m
d2x(t)

dt2 + γ
dx(t)

dt
+ kx(t) = 0

• Many natural phenomena can be modeled by partial
differential equations. In most cases, one can derive the
respective equation from a few basic principles. A solution
of a differential equation is a function for which the
differential equation is true.
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Analytical Solutions

• A few PDEs can be solved analytically, i.e. the solution
can be written in closed form.

• Example — The wave equation (in 1D):

∂2ψ(x , t)
∂t2 = c2 ∂

2ψ(x , t)
∂x2

has the (not necessarily unique) solution:
ψ(x , t) = sin(x − ct)

• If solutions are not unique one can impose additional
assumptions boundary conditions or initial conditions, for
example ψ(x ,0) = ψ0(x).

• Example — The harmonic oscillator (without friction):

m
d2x(t)

dt2 + kx(t) = 0

has the (generally not unique) solution:

x(t) = sin(ωt), with ω =
√

k/m.
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The Diffusion Equation

• Diffusion is a physical process which aims at minimizing
differences in the spatial concentration u(x , t) of a
substance.

• This process can be described by two basic equations:
• Fick’s law states that concentration differences induce a

flow j of the substance in direction of the negative
concentration gradient:

j = −g∇u

The diffusivity g describes the speed of the diffusion
process.

• The continuity equation

∂tu = −div j

where div j ≡ ∇j ≡ ∂x j1 + ∂y j2 is called the divergence of the
vector j .

• Inserting one into the other leads to the diffusion equation:

∂tu = div (g · ∇u)
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Solution of the Linear Diffusion Equation

The one-dimensional linear diffusion equation (g = 1)

∂tu = ∂2
x u.

with initial condition

u(x , t = 0) = f (x)

has the unique solution:

u(x , t) = (G√2t ∗ f )(x) =

∞∫
−∞

G√2t (x − x ′)f (x ′)dx ′,

where
Gσ(x) =

1√
2πσ

e−
x2

2σ2 ,

is a Gaussian kernel of width σ =
√

2t .
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Smoothing by Diffusion

• The above result implies that smoothing of an image
f : Ω ⊂ R2 → R with Gaussian kernels of increasing width
σ can be realized through a diffusion process of the form

∂tu(x , t) = ∆u
u(x ,0) = f (x) ∀x ∈ Ω

∂nu|
∂Ω

= 〈∇u,n〉|
∂Ω

= 0
.

• The latter boundary condition states that the derivative of
the brightness function u along the normal n at the image
boundary ∂Ω must vanish. This assures that no brightness
will leave or enter the image, i.e. the average brightness
will be preserved.

• With increasing time t the solution u(x , t) of this process
will correspond to increasingly smoothed versions of the
original image f (x).
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Image Smoothing via Diffusion

Lena original diffusion t = 2

diffusion t = 20 diffusion t = 100
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Nonlinear and Anisotropic Diffusion

• General diffusion equation:

∂tu = div (g∇u)

• For g = 1 (or g = const. ∈ R) the diffusion process is
called linear, isotropic and homogeneous.

• If the diffusivity g is space-dependent, i.e. g = g(x), the
process is called an inhomogeneous diffusion.

• If the diffusivity depends on u, i.e. g = g(u), then it is
called a nonlinear diffusion because then the equation is
no longer linear in u.

• If the diffusivity g is matrix-valued then the process is
called an anisotropic diffusion. A matrix-valued diffusivity
leads to processes where the diffusion is different in
different directions.

• Note: In the literature this terminology is not used
consistently.
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Edge-preserving Diffusion

• Idea: Less diffusion (smoothing) in locations of strong
edge information.

• Gradient norm |∇u| =
√

u2
x + u2

y serves as edge indicator

• Diffusivity should decrease with increasing |∇u|. For
example (Perona & Malik, Scale Space and Edge
Detection using Anisotropic Diffusion, PAMI 1990):

g(|∇u|) =
1√

1 + |∇u|2/λ2

• λ > 0 is called a contrast parameter. Areas where
|∇u| � λ will not be affected much by the diffusion
process.

• The Perona-Malik model had a huge impact in image
processing because it allowed a better edge detection
than classical edge detectors (such as the Canny edge
detector).
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Implementation with Finite Differences

• Nonlinear diffusion equation:

∂tu = ∂x (g(|∇u|)∂xu) + ∂y (g(|∇u|)∂y u)

• Discretize the operators as:

∂tu ≈
ut+1

ij − ut
ij

τ

and

∂x (g∂xu) ≈
(

(g∂xu)t
i+1/2,j − (g∂xu)t

i−1/2,j

)
≈
(

gt
i+1/2,j (u

t
i+1,j − ut

ij )− gt
i−1/2,j (u

t
ij − ut

i−1,j )
)

where gi+1/2,j =
√

gi+1,jgij assures that no diffusion takes
place as soon as g is zero at one of the two pixels.

• Insert, solve for ut+1
ij and iterate in t .

• Source: J. Weickert, Anisotropic Diffusion in Image
Processing.
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Nonlinear Diffusion

Lena original diffusion t = 9 diffusion t = 25

diffusion t = 100 diffusion t = 400 diffusion t = 900
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