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Inverse Problems, Ill-Posedness and Regularization

In mathematics, the conversion of measurement data into
information about the observed object or the observed physical
system is referred to as an inverse problem.

Following Hadamard (1902), a mathematical problem is called
well-posed iff:

1 A solution exists.

2 The solution is unique.

3 The solution’s behavior changes continuously with the
initial conditions.

Inverse problems are often ill-posed. Since the measurement
data is often not sufficient to uniquely characterize the
observed object or system, one introduces prior knowledge to
disambiguate which solutions are apriori more likely. In the
context of variational methods this prior knowledge gives rise
to the regularity term.
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Image Restoration: Denoising
Image restoration is a classical inverse problem: Given an
observed image f : Ω→ R and a (typically stochastic) model of
an image degradation process, we want to restore the original
image u : Ω→ R.

Image denoising is an example of image restoration where we
assume that the true image u is corrupted by (additive) noise:

f = u + η, η ∼ N (0, σ).

Assuming that u is smooth, one can compute a denoised
image by minimizing (Rudin, Osher, Fatemi ’92):

min
u

1
2

∫
|u − f |2dx +

∫
|∇u|dx .

This gives rise to the Euler-Lagrange equation

u − f − div
(
∇u
|∇u|

)
= 0.

Other noise models and regularizers are conceivable.
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Image Restoration: Denoising

original noisy denoised

(Goldlücke, Strekalovskiy, Cremers, SIAM J. Imaging Sci. ’12)
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Image Restoration: Deblurring

A prototypical blur model is given by

f = A ∗ u + η η ∼ N (0, σ),

with a blur kernel A.

In a variational setting, this process can be inverted by
minimizing the TV deblurring functional:

min
u

1
2

∫
|A ∗ u − f |2dx +

∫
|∇u|dx .

For symmetric kernels A, the Euler-Lagrange equation is given
by:

A ∗ (A ∗ u − f )− div
(
∇u
|∇u|

)
= 0,

and the gradient descent equation

∂u
∂t

= −A ∗ (A ∗ u − f ) + div
(
∇u
|∇u|

)
.
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Image Restoration: Deblurring

Original blurred and noisy deblurred

(Source: Goldluecke, Cremers, ICCV 2011)
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Inverse Problems and Bayesian Inference

The framework of Bayesian inference allows to systematically
derive functionals for different image formation models.

Let u be the unknown true image and f the observed one, then
we can write the joint probability for u and f as:

P(u, f ) = P(u|f )P(f ) = P(f |u)P(u).

Rewriting this expression we obtain the Bayesian formula
(Thomas Bayes 1887):

P(u|f ) =
P(f |u)P(u)

P(f )
.

Maximum Aposteriori (MAP) estimation aims at computing the
most likely solution û given f by maximizing the posterior
probability P(u|f )

û = arg max
u
P(u|f ) = arg max

u
P(f |u)P(u).

P(f |u) is called the likelihood and P(u) the prior.
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MAP Estimation in the Discrete Setting

Let us assume n independent pixels. For each the measured
intensity fi is given by the true intensity ui plus additive
Gaussian noise. This corresponds to the likelihood

P(fi |ui ) ∝ exp
(
− (ui − fi )2

2σ2

)
.

Since all measurements are mutually independent, we obtain
for the entire vector f = (f1, . . . , fn) of pixel intensities:

P(f |u) =
n∏

i=1

P(fi |u) =
n∏

i=1

P(fi |ui ) ∝
n∏

i=1

exp
(
− (ui − fi )2

2σ2

)
.

We now expand the prior:

P(u) = P(u1 . . . un) = P(u1|u2 . . . un)P(u2 . . . un) ∝
n−1∏
i=1

P(ui |ui+1),

where we assumed a Markov property, namely that the
probability of ui is sufficiently characterized by its neighbor.
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MAP Estimation in the Discrete Setting

Assuming a simple smoothness prior, we have:

P(u) ∝
n−1∏
i=1

P(ui |ui+1) ∝
n−1∏
i=1

exp (−λ|ui − ui+1|) .

With these assumptions, the posterior distribution is given by:

P(u|f ) ∝
n∏

i=1

exp
(
−|fi − ui |2

2σ2

) n−1∏
i=1

exp
(
− λ|ui − ui+1|

)
Rather than maximizing this probability distribution, one can
equivalently minimize its negative logarithm (because the
logarithm is strictly monotonous).

It is given by the energy

E(u) = − logP(u|f ) =
n∑

i=1

|fi − ui |2

2σ2 + λ

n−1∑
i=1

|ui − ui+1|+ const.
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MAP Estimation in the Continuous Setting

Similarly one can define Bayesian MAP optimization in the
continuous setting, where the likelihood is given by:

P(f |u) ∝ exp
(
−
∫
|f (x)− u(x)|2

2σ2 dx
)
,

and the prior is given by

P(u) ∝ exp
(
−λ
∫
|∇u(x)|dx

)
.

Thus the data term in variational methods corresponds to the
likelihood, whereas the regularizer corresponds to the prior:

E(u) = − logP(u|f ) =

∫
|f (x)− u(x)|2

2σ2 dx+λ

∫
|∇u(x)|dx+const.

A systematic derivation of probability distributions on
infinite-dimensional spaces requires a more formal derivation
(introduction of measures etc). This is beyond our scope.
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Image Restoration: Motion Blur
Assume the camera lens opens instantly and remains open
during the time interval [0,T ] in which the camera moves with
constant velocity V in x-direction. The observed brightness is

g(x , y) =
1
T

∫ T

0
f (x − Vt , y)dt .

Inserting x ′ ≡ Vt , we get a convolution

g(x , y) =
1

VT

VT∫
0

f (x−x ′, y)dx ′ =

∞∫
−∞

f (x−x ′, y−y ′)h(x ′, y ′)dx ′dy ′,

with the anisotropic blur kernel:

h(x ′, y ′) =
1

VT
· δ(y ′) · χ[0,VT ](x ′),

and

χ[a,b](x ′) =

{
1, if x ′ ∈ [a,b]
0, else (box filter)
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Example: Motion Blur

Original Motion-blurred

(Author: D. Cremers)
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Image Restoration: Defocus Blur

Defocus blur arises with real (in particular thick) lenses
because structures are increasingly blurred, the further they
are from the focal plane.

Depending on the focal setting and the depth of the scene, we
will therefore observe a space-varying blur which allows us to
infer the local depth (shape from focus / defocus).

Scene captured with three different focal settings.

(Source: Favaro, Soatto, PAMI 2005)
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Image Restoration: Super Resolution

Super resolution from video exploits the redundancy available
in multiple images. We assume that each image fi is a blurred
and downsampled version of a high-resolution scene.

We can try to recover a high-resolution image u with a
variational approach of the form:

min
u

n∑
i=1

∫
|A(u ◦ wi )− fi |dx + λ

∫
|∇u|dx .

The deformation field wi : Ω→ Ω models the warping from the
original scene into image i , and A is a linear operator modeling
the blurring and downsampling. Again, the variational approach
aims at inverting an image formation process of the form:

fi = A(u ◦ wi ) + η,

which states that the observed image is obtained from the
“true” image by nonrigid deformation, blurring and
downsampling plus additive Poisson-distributed noise η.
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Image Restoration: Super Resolution

One of several input images Superresolution estimate

(Schoenemann, Cremers, IEEE T. on Image Processing 2012)
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