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Variational Image Segmentation

We already studied a number of segmentation algorithms.
They were based on two complementary concepts:

• Detecting discontinuities of the brighness function, or

• Grouping pixels of similar brightness (color, texture, etc.)

Most of the approaches discussed so far lack a clear
optimization criterion: Edge regions are heuristically fused to
connected lines (Perkins, Canny), or pixels are iteratively
merged to regions (region merging, region growing).

Toward the end of the 1980s, the first variational formulations
for image segmentation emerged, in particular:

• the Snakes (Kass, Witkin, Terzopoulos, Int. J. of Comp.
Vision ’88),

• the Mumford-Shah Functional (Mumford, Shah, J. Appl.
Math. ’89).
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Snakes
In 1988, Kass, Witkin and Terzopoulos proposed to minimize
the following functional:

E(C) = Eext (C) + Eint (C)

with an external energy

Eext (C) = −
1∫

0

|∇I(C(s))|2 ds

and an internal energy

Eint (C) =

1∫
0

{
α

2
∣∣Cs(s)

∣∣2 +
β

2
∣∣Css(s)

∣∣2} ds

Here, I : Ω ⊂ R2 → R denotes the input image, and
C : [0,1]→ Ω denotes a parametric curve. Cs and Css denote
the first and second derivative of the curve C with respect to its
parameter s.
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Snakes: External Energy

The external energy:

Eext (C) = −
1∫

0

|∇I(C)|2 ds

measures for a given curve C how well it coincides with the
maxima of the brightness gradient |∇I|.

Thus rather than first searching for these maxima and then
grouping them to a curve one defines a cost function which
measures the “edge strength” along any conceivable curve.

Subsequently, the optimal curve Ĉ is determined by minimizing
the total energy:

Ĉ = arg min
C

E(C)

Gradient descent on this energy induces an evolution of the
curve toward locations of large image gradient.
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Snakes: Internal Energy

The internal energy is a regularizer which induces some
smoothness on the computed curves:

Eint (C) =

1∫
0

{
α

2
∣∣Cs(s)

∣∣2 +
β

2
∣∣Css(s)

∣∣2} ds

It consists of two components, weighted by parameters α ≥ 0
and β ≥ 0, which penalize the elastic length and the stiffness
of the curve.

Minimizing the total energy

E(C) = Eext (C) + Eint (C)

leads to curves which are short and stiff while passing through
locations of large gradient.
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Snakes: Gradient Descent

The Snakes energy

E(C) = −
1∫

0

|∇I(C)|2 ds +

1∫
0

{
α

2
∣∣Cs(s)

∣∣2 +
β

2
∣∣Css(s)

∣∣2} ds

is of the canonical form

E(C) =

∫
L(C,Cs,Css)ds

The corresponding Euler-Lagrange equation is given by:

dE
dC

=
∂L
∂C
− d

ds
∂L
∂Cs

+
d2

ds2
∂L
∂Css

= −∇|∇I(C)|2−αCss+βCssss = 0.

Consequently, the gradient descent equation reads:

∂C(s, t)
dt

= −dE(C)

dC
= ∇|∇I(C)|2 + αCss − βCssss
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Some Comments on the Snakes
The Snakes are among the most influential publications in
image processing. To date (Nov ’13) they have acquired more
than 15000 citations. In 2005, the three authors were awarded
an Academy Award for realistic simulations of textiles.

The Snakes are considered the first variational approach to
image segmentation.

In comparison to modern segmentation methods, however,
they are only of limited practical use:

• Real images typically have many gradient maxima which
induce local minima in the cost function E . In practice, the
curve must therefore be initialized sufficiently close to the
desired solution. Alternatively one can presmooth the
input image (to remove spurious local minima). Yet, the
smoothing also removes possibly important edge
information.

• The evolution of parametric curves is a numerically
challenging problem as one needs to avoid
self-intersections and instabilities.
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Problem with Initialization

Input (square)
and initial curve

smoothed input final segmentation

Presmoothing makes the edge information “visible” from a
larger distance. Yet it removes finer structures like the corners
of the square.

(Author: D. Cremers)
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Possible solutions
Local minima of the Snakes can be avoided in various ways:

• Ballooning: One extends the cost functional by the balloon
energy

Eballoon(C) = γ

∫
Ωint (C)

d2x

(Cohen & Cohen, Balloons, 1991), which induces the
curve to contract (for γ > 0), or to expand (for γ < 0),
because the balloon energy simply measures the area of
the region Ωint inside the curve C.

• Coarse-to-fine optimization: One minimizes the Snakes
energy starting with a coarse (smoothed image) and
iteratively reducing the smoothness, on each level
initializing with the previously estimated curve. (See Blake
& Zisserman, Graduated Non-Convexity, 1987).

• Global optimization: One reformulates the optimization
problem and computes globally optimal solutions (using
graph cut methods or convex relaxation methods).
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The Mumford-Shah Approach

In 1989, Mumford and Shah proposed to compute a piecewise
smooth approximation u of the input image I : Ω ⊂ R2 → R by
minimizing the functional:

E(u,C) =

∫
Ω

(
I(x)− u(x)

)2 dx + λ

∫
Ω\C

|∇u(x)|2 dx + ν|C|,

jointly with respect to an approximation u : Ω→ R and a
one-dimensional discontinuity set C ⊂ Ω. The three terms have
the following meaning:

• The data term assures that u is a faithful approximation of
the input I.

• The smoothness term, weighted by λ > 0, assures that u
is smooth everywhere except for the discontinuity set.

• A further regularizer, weighted by ν > 0, assures that this
discontinuity set has minimal length |C|.
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The Piecewise Constant Mumford-Shah
For increasing values of the weight λ, the approximation u is
forced to be smoother and smoother outside of C. In the limit
λ→∞ we obtain a piecewise constant approximation of the
image I:

E(u,C) =

∫
Ω

(
I(x)− u(x)

)2 dx + ν|C|,

where u(x) is constant in each of the regions separated by the
boundary C. If we denote these regions by {Ω1, . . . ,Ωn} and
the constants by ui , this can be rewritten as:

E({u1, . . . ,un},C) =
n∑

i=1

∫
Ωi

(
I(x)− ui

)2 dx + ν|C|,

For the case of two regions, a spatially discrete formulation of
this energy is known as the Ising model (Lenz 1920, Ising
1925, Heisenberg 1928). It models the phenomenon of
ferromagnetism and is among the most studied models in
statistical physics.
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Discrete Approximation

continuous representation discrete representation

The length of the curve C can be approximated as:

|C| ≈ 1
2

∑
i∼j

(
ui − uj

2

)2

=
1
8

∑
i∼j

u2
i +u2

j −2uiuj = const−1
4

∑
i∼j

uiuj ,

with summation over neighboring pixels i and j . This leads to:

E(u) =
∑

i

(Ii − ui )
2 − ν

4

∑
i∼j

uiuj .

E. Ising, “Beitrag zur Theorie des Ferromagnetismus”, 1925.
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Solution via Graph Cuts

Original f noisy: I = f + η

thresholding: I > θ arg min E(u)

Minimization of the discrete two-region model using graph cuts
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Ernst Ising

1925 1995

Ernst Ising ∗ 1900 in Cologne, † 1998 in Peoria, Illinois)

Doctoral thesis with Wilhelm Lenz in Hamburg, emigration to
the US in 1947.
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The Piecewise Constant Mumford-Shah
For λ→∞ one obtains a special case of the Mumford-Shah
functional known as the piecewise constant approximation:

E({u1, . . . ,un},C) =
n∑

i=1

∫
Ωi

(
I(x)− ui

)2 dx + ν|C|,

This functional is of interest for several reasons:

• It is the spatially continuous version of the discrete spin
models (Lenz 1920, Ising 1925, Potts 1956, ...).

• It is quite powerful, yet mathematically well understood.

In the following, we will therefore discuss several aspects of
this functional in more detail:

• Some important mathematical results.

• Euler-Lagrange equations and possible
implementations.

• A statistical interpretation.
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Mathematical Insights

For a given boundary C, the minimizing constants ui are
uniquely determined. The are given by the average brightness
in each region:

∂E
∂ui

= 2
∫

Ωi

(
I(x)− ui

)
dx = 0 ⇒ ui =

∫
Ωi

I(x)dx∫
Ωi

dx

As a result, the cost function is merely a function of the
boundary C: E(C) ≡ minu E(C,u). In particular, the
segmentation has the same mean intensity as the input image.

Existence of minima: There exist minima of the functional
E(C). The minimizing boundaries C are closed and
differentiable up to discontinuities of the following type:

• Three boundary segments meet at equal angles (120◦).

• The boundary meets the domain boundary at a 90◦ angle.

Minimia of E(C) are generally not unique.
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Euler-Lagrange Equations

Unfortunately, the Mumford-Shah functional in its original
formulation is not in a canonical form, since the variable of
interest (the boundary C) appears in the integrand.

There exists an entire research community dedicated to such
optimization problems known as shape optimization or shape
sensitivity analysis.

In the following we will derive the Euler-Lagrange equation
using Green’s theorem (following S.C. Zhu ’95).

Assume we are given an energy of the form

E(C) =

∫
int(C)

f (x , y)dxdy ,

where int(C) denotes the region inside a curve C. Let
C : [0,1]→ R2 be a parametric closed curve, with
C(s) =

(
x(s), y(s)

)
.
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Euler-Lagrange Equations

Green’s Theorem: For a vector field of the form
~v = (a(x , y), b(x , y)) ∈ R2 and a closed boundary C ⊂ Ω we
have: ∫

int(C)

(∇× ~v)d2x =

∫
C

~vds,

where the rotation of v is defined as ∇× ~v ≡ ∂xb − ∂y a. Thus:∫
int(C)

(bx − ay )dxdy =

∫
C

adx + bdy

Chosing a vector field ~v such that f = (bx − ay ), we can rewrite
the energy in the canonical form:

E(C) =

∫
int(C)

f dxdy =

∫
C

adx+bdy =

1∫
0

(aẋ+bẏ)ds ≡
1∫

0

L(x , ẋ , y , ẏ)ds.

where ẋ ≡ dx(s)
ds and ẏ ≡ dy(s)

ds .
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Euler-Lagrange Equations

The functional

E(C) =

∫
int(C)

f (x , y) dxdy =

1∫
0

(aẋ + bẏ)ds ≡
1∫

0

L(x , ẋ , y , ẏ)ds.

is equal to an integral along the curve C and we can compute
the functional derivative with respect to C(s) = (x(s), y(s)):

∂L
∂x
− d

ds
∂L
∂ẋ

=
∂a
∂x

ẋ +
∂b
∂x

ẏ − d
ds

a =

(
∂b
∂x
− ∂a
∂y

)
ẏ = f ẏ

∂L
∂y
− d

ds
∂L
∂ẏ

=
∂a
∂y

ẋ +
∂b
∂y

ẏ − d
ds

b =

(
−∂b
∂x

+
∂a
∂y

)
ẋ = −f ẋ

In summary we obtain the simple functional gradient:

dE
dC

= f (x , y)

(
ẏ
−ẋ

)
= f (x , y)~nC , where ~nC = outer normal
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Minimizing the Mumford-Shah Functional

The above calculation shows that functionals of the form
E(C) =

∫
int(C)

f (x , y)dxdy have the functional derivative:

dE
dC

= f (x , y)~nC .

For the piecewise constant Mumford-Shah functional (without
boundary length term) and only two regions separated by a
curve C we have:

E(C) =

∫
int(C)

(I(x)− uint )
2d2x +

∫
ext(C)

(I(x)− uext )
2d2x ,

so the functional derivative is given by:

dE
dC

=
(

(I(x)− uint )
2 − (I(x)− uext )

2
)
~nC ,

because both regions contribute to the gradient and the outer
normal for the outside region is simply −~nC .
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Gradient Descent

The gradient descent equation is therefore:

∂C(s, t)
∂t

= −dE(C)

dC
=
(

(I − uext )
2 − (I − uint )

2
)
~nC .

At each boundary point:

Displace the curve

• outwards, if |I − uint | < |I − uext |

• inwards, if |I − uint | > |I − uext |

Intuition (Zhu & Yuille, Region Competition, PAMI ’96):

If the local brightness I(x) at point x is more similar to the
average brightness of the interior then x is assigned to the
interior (the curve moves outward) and vice versa.
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Gradient Descent with Length Regularity

For the two-region piecewise constant Mumford-Shah with
length regularity we get:

E(C) =

∫
int(C)

(I(x)− uint )
2d2x +

∫
ext(C)

(I(x)− uext )
2d2x + ν|C|

and the gradient descent reads:

∂C(s, t)
∂t

= −dE(C)

dC
=
(

(I − uext )
2 − (I − uint )

2−νκC

)
~nC ,

where κC denotes the local curvature of the curve C.

This means that in addition to separating bright and dark
areas, the evolution aims at suppressing large curvature of the
curve. This is what leads to a local minimization of the
boundary length |C|.
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Implementations

The paper of Mumford and Shah is focused on aspects of
existence and uniqueness of solutions and the study of
properties of solutions. For example, it is shown that triple
junctions can only exist in the minimizer if the contours meet at
equal (120◦) angles.

The paper of Mumford and Shah does not propose a numerical
implementation for finding minimizers.

There exist a number of alternative methods, for example:

• Koepfler et al. ’95, Multiscale Algorithm: an
implementation of the piecewise constant model in the
spirit of region merging based on the notion of 2-normal
segmentations.

• Cremers et al. ’02, Diffusion Snakes: Implementation of
the piecewise smooth and piecewise constant models
using closed parametric spline curves (hybrid of the
Mumford-Shah and the Snakes).
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2-normal Segmentations

Definition (Koepfler et al.’95):

A 2-normal segmentation is a partitioning of the image plane Ω
into pairwise disjoint regions Ω1, . . . ,Ωn, such that each
segmentation obtained by merging two neighboring regions
has a larger or equal energy (in the sense of the piecewise
constant Mumford-Shah energy).

The algorithm of Koepfler et al. allows to compute 2-normal
segmentations. To this end it iteratively merges neighboring
regions until convergence.

Minima of the piecewise constant Mumford-Shah are always
2-normal segmentations.

However: Not all 2-normal segmentations are minimizers of the
Mumford-Shah functional.

Two questions arise:

• In which order should one merge neighboring regions?

• How should one select the parameter ν?
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Properties of 2-normal Segmentations

Koepfler et al. show a number of properties of 2-normal
segmentations which provide an intuitive understanding of the
optimization problem.

Proposition: The number n of regions of a 2-normal
segmentation is bounded by the following function of the scale
parameter ν:

n ≤ |Ω|osc(I)4

c0 ν2 .

|Ω| ≡ image size, and osc(I) ≡ sup(I)− inf(I) is called the
oscillation of the brightness function (difference between
largest and smallest brightness).

In particular, this implies: The smaller Ω and the larger ν, the
stronger the constraint on the number of regions.

Thus, the scale parameter ν defines the spatial scale on which
segmentation is performed – on a coarse scale for large ν and
on a finer scale for smaller values of ν.
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Properties of 2-normal Segmentations

Moreover, one can compute bounds on the size and shape of
segments.

Proposition: The individual segments of a 2-normal
segmentation have a a positive minimal size:

|Ωi | ≥ c1(I, ν,Ω) ∀i .

In particular, this implies that the Mumford-Shah segmentation
process (for ν > 0) leads to an elimination of small regions. In
historical approaches this was introduced through a heuristic
post-processing step.

Proposition: For every individual segment Ωi the length of its
boundary ∂Ωi is bounded by a mutiple of its area |Ωi |:

|∂Ωi | ≤ c2(I,Ω) |Ωi | ∀i .

This implies that minimization of the Mumford-Shah functional
(for ν > 0) also leads to an elimination of elongated regions.
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Multiscale Implementation

The implementation of Koepfler et al. allows to compute a
2-normal segmentation by the following region merging
process:

1 Initialize: every pixel is its own region.

2 For all neighboring pairs of regions, compute the change
∆E in energy obtained by merging the two regions.
Obviously it is of the form:

∆E = ∆Eregion + ν∆Elength

3 For all pairs of adjacent regions determine the value ν̂, for
which there is an energy decrease (∆E < 0). This value
always exists because ∆Elength < 0 and ∆Eregion ≥ 0.

4 In each step, merge the region pair with the smallest value
of ν̂.

5 Repeat steps (2.) - (4.) until the desired number of regions
or a sufficiently large value of ν is reached.
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Multiscale Implementation

Input Segmentations

Segmentations for ν=2022 (above) and ν=6173 (below)

Koepfler et al., SIAM J. of Numer. Analysis ’95
http://www.math-info.univ-paris5.fr/~gk/papers/heidelberg95.pdf

http://www.math-info.univ-paris5.fr/~gk/papers/heidelberg95.pdf
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Multiscale Implementation

Original and segmentation with ν = 1024 and ν = 4096

Koepfler, Morel, Solimini ’95
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Diffusion Snakes

The Diffusion Snakes minimize the functional

E(u,C) =

∫
Ω

(
I(x)−u(x)

)2 dx+λ

∫
Ω\C

|∇u(x)|2 dx+ν

1∫
0

∣∣C′(s)
∣∣2 ds

by alternating two gradient descent evolutions:

∂C(s, t)
∂t

= −∂E
∂C

=
(

(I − u)2 + λ|∇u|2
)
~n + 2νC′′, ~n = normal

∂u(x , t)
∂t

= −∂E
∂u

= λ∇(wc∇u) + (I − u), wc(x) =

{
0, x ∈C
1, else

We therefore have a curve evolution in alternation with an
inhomogeneous diffiusion process (constant diffusion inside
regions, no diffusion acrosss boundary). Thus the Diffusion
Snakes simultaneously perform denoising (in each of the
separated regions) and boundary estimation.
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Diffusion Snakes

The evolution of the curve C is implemented by evolving a finite
number of control points p1, . . . ,pn ∈ R2:

C(s, t) =
n∑

i=1

pi (t) Bi (s).

Here Bi (s) are spline basis functions:

spline basis functions Spline & control points
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Diffusion Snakes: Curve Evolution

Cremers et al., Int. J. of Computer Vision, 2002
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Diffusion Snakes

ν large ν small

Cremers et al., Int. J. of Computer Vision, 2002
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