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Convexity and Globally Optimal Solutions
In the last section, we saw that level set methods allow to
minimize geometric optimization problems in such a way that
the represented curve or surface can undergo topological
changes like splitting or merging. Due to the implicit
representation of the geometry, the resulting optimization
process can take into account a larger space of feasible
solutions (including shapes of different topology).

Nevertheless, respective energies are not convex and thus
level set methods typically only determine local optima. While
the computed solutions are often good, we generally do not
have a performance guarantee, i.e. we do not know how far we
are from the optimal solution.

Starting in 2005, researchers have proposed novel variational
approaches which are aimed at approximating the original
energies with convex functionals. Rather than minimizing the
original energy locally, they minimize an approximation of the
original energy globally. How far this framework can be
extended to the kinds of energies arising in computer vision is
among the major challenges in current research.
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Convex Two-Region Segmentation

Let us start with a Mumford-Shah-like model with two regions
(foreground / background) and fixed color models:

min
Ω1

∫
Ω1

f1(x) dx +

∫
Ω−Ω1

f2(x) dx + ν |∂Ω1|,

with integrals over Ω1 ⊂ Ω and its complement Ω− Ω1.

The integrands may for example arise

• from a Gaussian color model for each region:

fi (x) =
(I(x)− µi )

2

2σ2
i

+ logσi

• or from a general color distribution pi :

fi (x) = − log pi (I(x))

The term |∂Ω1| denotes the length of the boundary ∂Ω1.
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Convex Two-Region Segmentation

In Chan, Esedoglu, Nikolova, Trans. on Image Proc. 2006, the
authors propose to encode the two-region segmentation by a
binary indicator function

u : Ω → {0,1}, u(x) =

{
1, if x ∈ Ω1

0, else

In terms of u, the segmentation problem is

E(u) =

∫
Ω

f1(x) u(x) dx +

∫
Ω

f2(x)
(
1−u(x)

)
dx + ν

∫
Ω

|∇u(x)|dx .

It is related to the Chan-Vese model by associating u ≡ H(φ).

The above functional is convex in u because the first two terms
are linear in u and the total variation of u is also convex.

The overall optimization problem is not convex because the
space of binary functions u is not a convex space: Convex
combinations of binary functions are typically no longer binary.
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Convex Two-Region Segmentation

The two-region segmentation problem is defined over the
space BV(Ω; {0,1}), the space of functions of bounded
variation, i.e. functions u for which the total variation TV(u) is
finite.

Relaxation denotes the technique of simply dropping certain
constraints from the overall optimization problem. Convex
relaxation means that upon relaxation the problem becomes
convex.

Chan et al. (2006) convexify the two-region segmentation
problem by simply dropping the constraint that u must be
binary. They allow u to take on values in the entire interval
[0,1], which is the convex hull of the original domain:

min
u∈BV(Ω;[0,1])

E(u).

By construction, this is a convex optimization problem. The
hard labeling of each pixel as 0 or 1 is replaced by a soft
labeling of each pixel with some value between 0 and 1.
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Convex Relaxation & Global Optimality

In general, the optimum of the relaxed problem

u? = arg min
u∈BV(Ω;[0,1])

E(u)

is not binary. A binary function is obtained by thresholding:

1u?>θ(x) =

{
1, if u?(x) > θ

0, else

Such relaxation techniques can be applied to many
optimization problems. In general, one loses optimality as the
thresholded solution is typically not an optimum for the original
binary labeling problem.

Surprisingly, this is not the case for the functional considered
here. More specifically, one can show that the thresholded
solution 1u?>θ has the same energy as the relaxed solution u?.
As a consequence, it is indeed a global optimum of the original
binary labeling problem.
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Thresholding Theorem

Let
u? = arg min

u∈BV(Ω;[0,1])

∫
fu + |∇u|dx ,

be a global minimizer of the relaxed problem with an arbitrary
function f . Then the function 1u?>θ is a global minimizer of the
corresponding binary optimization problem for any threshold
value θ ∈ (0,1).

The proof of this theorem makes use of the layer cake formula

u(x) =

∫ 1

0
1u>θ(x)dθ

and the coarea formula

TV(u) =

∫
Ω

|∇u|dx =

∫ 1

0

∫
Ω

|∇1u>θ(x)|dx dθ,

stating that TV(u) equals the sum of the lengths of all level
lines of u.
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Proof by Contradiction

Using the layer cake and coarea formula, we can write

E(u) =

∫
Ω

fu+|∇u|dx =

1∫
0

∫
Ω

f1u>θ+|∇1u>θ|dx =

1∫
0

E(1u>θ) dθ.

Assume that the thresholded version 1u?>θ0 is not the optimum
of the binary problem for some value θ0 ∈ (0,1), i.e. there
exists a set Σ ⊂ Ω with E(1Σ) < E(1u?>θ0 ).

Then due to continuity of the energy, there exists some ε > 0
with:

E(1Σ) < E(1u?>θ) ∀ θ ∈ (θ0 − ε, θ0 + ε).

As a consequence, we get:

E(1Σ) = E(1Σ)

∫ 1

0
dθ =

∫ 1

0
E(1Σ) dθ <

∫ 1

0
E(1u?>θ) dθ = E(u?).

This contradicts the assumption that u? is a global minimizer.
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Some Comments

The thresholding theorem is somewhat surprising at first
glance. It does not hold for general binary labeling problems.
Otherwise, one could solve all sorts of NP hard binary
optimization problems by simply embedding them in a
continuous space and solving them there.

The main ingredient in the proof is that the energy of any
function u can be obtained by simply summing the energies of
all its upper level sets 1u>θ. If u is optimal then so are all its
upper level sets. They must in fact have the same energy.

A closer look reveals that this property of the energy being
decomposable into energies of the upper level sets is tightly
related to respective properties of the total variation and its
geometric interpretation being the sum of the lengths of all
level lines. It is one of the many properties which make the
total variation extremely popular in the field of optimization.

In the spatially discrete setting, corresponding binary labeling
problems can be solved in polynomial time using the min-cut /
max-flow duality of Ford and Fulkerson (1962).



Convex Relaxation
Methods

Prof. Daniel Cremers

Convexity and Globally
Optimal Solutions

Convex Two-Region
Segmentation

The Thresholding
Theorem

Primal-Dual Algorithms

Interactive Two-Region
Segmentation

Convex Multi-Region
Segmentation

Segmentation with
Space-varying Color
Distributions

updated 2014-01-08 11/23

General Definition of Total Variation
So far, we worked with a definition of total variation which is not
differentiable and which only applies to differentiable functions.

A remedy is given by introducing a dual variable ξ ∈ R2 (“Xi”):

|∇u| = sup
|ξ|≤1

ξ · ∇u,

where the supremum is attained at ξ = ∇u
|∇u| if ∇u 6= 0.

It allows to generalize the total variation to a differentiable
expression which also applies to discontinuous functions u:

TV(u) := sup
ξ∈K

∫
u divξ dx u diffable

= sup
ξ∈K

∫
ξ∇u dx =

∫
|∇u|dx ,

with the dual variable ξ being a differentiable vector field with
compact support (i.e. ξ = 0 at the boundary), constrained to
the unit disc at every point x ∈ Ω:

K =
{
ξ ∈ C1

c (Ω;R2)
∣∣∣ |ξ(x)| ≤ 1 ∀x ∈ Ω

}
.
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Minimization with Primal Dual Algorithm

The two-region segmentation with known color models can be
solved by thresholding the solution of the relaxed (convex)
problem which is of the form

min
u∈C

∫
fu dx + TV(u) = min

u∈C
sup
ξ∈K

∫
fu + u divξ dx ,

where C = BV(Ω; [0,1]).

An efficient algorithm for minimizing this saddle point problem
was proposed in Pock, Cremers, Chambolle, Bischof, ICCV
2009. It amounts to an alternating projected gradient descent /
ascent with an extrapolation step:

ξn+1 = ΠK (ξn − σ∇ūn) ,

un+1 = ΠC
(
un − τ(div ξn+1 + f )

)
,

ūn+1 = un+1 + (un+1 − un) = 2un+1 − un,

where ΠK and ΠC denote the back-projections onto K and C. It
provably converges for sufficiently small step sizes σ and τ .
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Back Projection onto Convex Sets

For the primal variable u the projection onto the set
C = BV(Ω; [0,1]) is done by clipping:

(ΠCu)(x) = min
{

1,max{0,u(x)}
}

=


u(x), if u(x) ∈ [0,1]

1, if u(x) > 1

0, if u(x) < 0

For the dual variable ξ projection onto the unit disk K is done
as follows:

(ΠKξ)(x) =
ξ(x)

max{1, |ξ(x)|}
.

Both of these projections can obviously be done in closed form.

For more complicated convex constraint sets, the constraints
can typically no longer be imposed in closed form. In such
cases one reverts to alternating several simple projections or to
Lagrange multipliers and related approaches.
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Interactive Two-Region Segmentation
Algorithm:

• Determine color distributions pobj (I) and pbg(I) for object
and background from user scribbles.

• Compute for all pixels f (x) = log pobj (I(x))
pbg(I(x)) .

• Solve the relaxed convex problem and threshold the
solution.

Input Segmentation

Unger, Pock, Cremers, Bischof, TVSeg, BMVC 2008
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Interactive Two-Region Segmentation

Input Segmentation

Unger, Pock, Cremers, Bischof, TVSeg, BMVC 2008
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Convex Multi-Region Segmentation

The multiregion segmentation problem is of the form

min
Ω1,...,Ωn

n∑
i=1

∫
Ωi

fi (x) dx +
1
2
|∂Ωi |,

with arbitrary data terms fi , for example fi = − log pi (I(x)).

In Chambolle, Cremers, Pock, 2008, a convex formulation was
proposed using the indicator function for region Ωi :

vi (x) = 1Ωi (x) =

{
1, if x ∈ Ωi

0, else

Then the multi-region segmentation problem is equivalent to

min
v∈B

n∑
i=1

∫
Ω

fi (x) vi +
1
2
|∇vi |dx

with B =
{

(v1, . . . , vn) ∈ BV(Ω; {0,1})n
∣∣ ∑

i
vi (x) = 1 ∀x ∈ Ω

}
.
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Convex Multi-Region Segmentation

In Chambolle, Cremers, Pock, 2008, it is shown that

min
v∈B

n∑
i=1

∫
Ω

fi (x) vi +
1
2
|∇vi |dx = min

v∈B
sup
p∈K

n∑
i=1

∫
Ω

fi (x) vi +vi divpi dx

with the convex set

K =
{

(p1, . . . ,pn)> ∈ Rn×2
∣∣∣ |pi − pj | ≤ 1 ∀i , j

}
.

Intuitively, the dual variables pi account for the discontinuities in
the labeling vi . The coupling constraint |pi − pj | ≤ 1 implies that
the transition from label i to label j should not count more than
1 (in fact, exactly 1 in the supremum).

As in the two-region case of Chan et al., 2006, one obtains a
convex problem by dropping the binarity constraint:

v ∈ Brel =

{
(v1, . . . , vn) ∈ BV(Ω; [0,1])n

∣∣∣ ∑
i

vi (x) = 1 ∀x ∈ Ω

}
.
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Convex Multi-Region Segmentation

Algorithm:

• Specify Gaussian color models pi (I) for each region i .

• Compute for all pixels fi (x) = − log pi (I(x)).

• Solve the relaxed convex problem and binarize the
solution.

Note:

There is no thresholding theorem for the multi-region case.
While the relaxed problem can be solved optimally, the
subsequent binarization does not assure an optimal solution to
the original labeling problem.

It provides approximate solutions to the original problem which
are independent of initialization.

Since the multilabel problem in its spatially discrete form is NP
hard, it is unlikely that such a thresholding theorem exists.
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Convex Multi-Region Segmentation

Input Segmentation

Chambolle, Cremers, Pock, 2008, SIAM Imaging Sci. 2012
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Minimal Boundary Inpainting

missing colors inpainted

Chambolle, Cremers, Pock, 2008, SIAM Imaging Sci. 2012



Convex Relaxation
Methods

Prof. Daniel Cremers

Convexity and Globally
Optimal Solutions

Convex Two-Region
Segmentation

The Thresholding
Theorem

Primal-Dual Algorithms

Interactive Two-Region
Segmentation

Convex Multi-Region
Segmentation

Segmentation with
Space-varying Color
Distributions

updated 2014-01-08 21/23

Interactive Multi-Region Segmentation
Algorithm:

• Determine a space-varying color distribution pi (I | x) for
each region i from user scribbles.

• Compute for all pixels fi (x) = − log pi (I(x)|x).

• Solve the relaxed convex problem and threshold the
solution.

x1 x2

Input & scribbles Space-varying color likelihoods

Nieuwenhuis, Cremers, PAMI 2013
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Interactive Multi-Region Segmentation

Input & scribbles Segmentation

Nieuwenhuis, Cremers, PAMI 2013
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Interactive Multi-Region Segmentation

Input & scribbles Segm. with p(I) Segm. with p(I|x)

Nieuwenhuis, Cremers, PAMI 2013
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