Variational Methods for Computer Vision: Exercise Sheet 8

Exercise: 9 January 2014

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $I(x): \Omega \rightarrow \mathbb{R}$ with $\Omega \subset \mathbb{R}^{2}$ be an image. Consider this generalized version of the ChanVese functional:

$$
\begin{equation*}
E(\phi)=\int_{\Omega} f_{1}(x) H(\phi(x)) d x+\int_{\Omega} f_{2}(x)(1-H(\phi(x))) d x+\nu \int_{\Omega}|\nabla H(\phi(x))| d x \tag{1}
\end{equation*}
$$

Where f_{i} is a data term which arises from a general gray value distribution p_{i} hence:

$$
f_{i}(x)=-\log p_{i}(I(x))
$$

$H(\phi(x))$ denotes the Heaviside step function:

$$
H(\phi(x))= \begin{cases}1 & \text { if } \phi(x)>1 \\ 0 & \text { else }\end{cases}
$$

Prove that the Euler-Lagrange equation of (2) can be written as follows:

$$
\frac{d E}{d \phi}=\delta(\phi)\left[f_{1}-f_{2}-\nu \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right)\right]=0
$$

The delta distribution $\delta(\phi)$ can be considered as the derivative of H.
2. The level set formulation of geodesic active contours (Chapter 8 , Slide 15) can be formulated as the following functional:

$$
\begin{equation*}
E(\phi)=\int_{\Omega} g(x)|\nabla H(\phi(x))| d x \tag{2}
\end{equation*}
$$

where $H(\phi(x))$ is defined as in exercise 1. Compute the Euler-Lagrange equation of $E(\phi)$.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

In this practical exercise we are going to consider the the Chan-Vese functional :

$$
\begin{equation*}
E(\phi)=\int_{\Omega}\left(I(x)-\mu_{1}\right)^{2} H(\phi(x)) d x+\int_{\Omega}\left(I(x)-\mu_{2}\right)^{2}(1-H(\phi(x))) d x+\nu \int_{\Omega}|\nabla H(\phi(x))| d x \tag{3}
\end{equation*}
$$

1. Download the archive file vmcv_ex08.zip from the homepage and unzip it in you home folder and complete the code in chan_vese.m as follows:
(a) In order to minimize above functional an optimal μ_{1} and μ_{2} have to be obtained. For a given curve the optimal values for μ_{1} and μ_{2} are the mean values of the inner and outer region. Implement a function $[m u 1, m u 2]=a p p r o x R e g i o n s(P h i, I)$ that returns for a given image I and a level set function Phi the mean values inside and outside the contour.
(b) Further implement a function $\mathrm{dPh} i=u p d a t e(\mathrm{Phi}, \mathrm{I})$ which computes a gradient descent direction using the the result of exercise 1.
(c) Implement an energy minimization of (3). Initialize the level set function with a circle of radius R in the center of the image.
2. Test your implementation on the image image. png with various Radii R.
