Variational Methods for Computer Vision: Exercise Sheet 7

Exercise: 28 November 2013

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Calculate the Euler-Lagrange equation of the following form of the internal energy of the Snakes segmentation model:

$$
E(C)=\frac{1}{2} \int_{0}^{1} \alpha(s)\left|C(s)^{\prime}\right|^{2} d s+\frac{1}{2} \int_{0}^{1} \beta(s)\left|C(s)^{\prime \prime}\right|^{2} d s
$$

Note that the parameters β and α depend on s.
2. Let $c:[0 ; 1] \rightarrow \mathbb{R}^{2}$ be a parametrized curve on the image plane. Consider the following functional:

$$
L(C):=\int_{0}^{1}\left|C^{\prime}(s)\right| d s
$$

(a) Calculate the Euler-Lagrange Equation of $L(C)$.
(b) Prove that the measure $L(c)$ is independent of a parametrization m of the curve C hence

$$
\int_{0}^{1}\left|C^{\prime}(m(s))\right| d s=\int_{0}^{1}\left|C^{\prime}(s)\right| d s
$$

where $m:[0,1] \rightarrow[0,1]$ denotes a strictly increasing function such that $m(0)=0$ and $m(1)=1$.
(c) Prove that the following equality:

$$
\int_{0}^{1}\left|C^{\prime}(s)\right| d s=\int_{0}^{1}\left|C^{\prime}(s)\right|^{2} d s
$$

if $\left|C^{\prime}(s)\right|$ is constant.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Continue with the practical exercise of last weeks exercise sheet.
