Variational Methods for Computer Vision: Solution Sheet 3

Part I: Theory

1. (a) Suppose x^{*} is a local but not a global minimizer. Then we can find a point $z \in \mathbb{R}^{n}$ with $f(z)<f\left(x^{*}\right)$. Consider the line segment joining z and x^{*}, that is defined as follows:

$$
x=\lambda z+(1-\lambda) x^{*} \text { for some } \lambda \in(0,1)
$$

Then by convexity:

$$
f_{\lambda}(x) \leq \lambda f(z)+(1-\lambda) f\left(x^{*}\right)<f\left(x^{*}\right)
$$

This means that the neighborhood of x^{*} (any $\lambda \in[0,1)$) contains a point $f_{\lambda}(x)$ that has a lower energy which is in contradiction to the assumption.
(b) Reminder: The directional derivative of functional f in direction p is defined as

$$
D(f(x), p)=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon p)-f(x)}{\epsilon}=\nabla f(x)^{T} p
$$

Then:

$$
\begin{aligned}
\nabla f\left(x^{*}\right)^{T}\left(z-x^{*}\right) & =\lim _{\epsilon \rightarrow 0} \frac{f\left(x^{*}+\epsilon\left(z-x^{*}\right)\right)-f\left(x^{*}\right)}{\epsilon} \\
& \stackrel{\text { Convexity }}{\leq} \lim _{\epsilon \rightarrow 0} \frac{\epsilon f(z)+(1-\epsilon) f\left(x^{*}\right)-f\left(x^{*}\right)}{\epsilon} \\
& =f(z)-f\left(x^{*}\right)<0
\end{aligned}
$$

$\Rightarrow \nabla f\left(x^{*}\right)^{T} \neq 0 \Rightarrow x^{*}$ not stationary.
2. " \Rightarrow "

Let f be convex and $(u, a),(v, b) \in \operatorname{epi} f$. Then

$$
\begin{aligned}
f(\lambda u+(1-\lambda) v & \leq \lambda f(u)+(1-\lambda) f(v) \\
& \leq \lambda a+(1-\lambda) b
\end{aligned}
$$

Thus $\lambda(u, a)+(1-\lambda)(v, b) \in \operatorname{epi} f$.
$" \Leftarrow "$
Let epi f be convex. Define $a:=f(x), b:=f(y)$. Then $\binom{x}{a},\binom{y}{b} \in$ epi f. Because of the convexity of epi $f, \lambda\binom{x}{a}+(1-\lambda)\binom{y}{b}=\binom{\lambda x+(1-\lambda) y}{\lambda a+(1-\lambda) b} \in$ epi f.
Thus:

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leq \lambda a+(1-\lambda) b \\
& =\lambda f(x)+(1-\lambda) f(y) \\
& \Rightarrow f \text { convex }
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\alpha f(\lambda x+(1-\lambda) y)+\beta g(\lambda x+(1-\lambda) y) & \leq \alpha(\lambda f(x)+(1-\lambda) f(y))+\beta(\lambda g(x)+(1-\lambda) g(y)) \\
& =\lambda(\alpha f(x)+\beta g(x))+(1-\lambda)(\alpha f(y)+\beta g(y))
\end{aligned}
$$

(b)

$$
\begin{aligned}
h(\lambda x+(1-\lambda) y) & =\max (f(\lambda x+(1-\lambda) y), g(\lambda x+(1-\lambda) y)) \\
& \leq \max (\lambda f(x)+(1-\lambda) f(y), \lambda g(x)+(1-\lambda) g(y)) \\
& \leq \lambda \max (g(x), f(x))+(1-\lambda) \max (f(y), g(y))
\end{aligned}
$$

(c) Counterexample: convince yourself that the graph $\min \left((x-1)^{2},(x+1)^{2}\right)$ is not convex.
4.

$$
\begin{aligned}
h^{\prime \prime} & =f(g(x))^{\prime \prime} \\
& =\left(f^{\prime}\left(g(x) g^{\prime}(x)\right)^{\prime}\right. \\
& =\underbrace{f^{\prime \prime}(g(x))}_{\geq 0} \underbrace{\left(g^{\prime}(x)\right)^{2}}_{\geq 0}+f^{\prime}(g(x)) \underbrace{g^{\prime \prime}(x)}_{\geq 0}
\end{aligned}
$$

Thus:

$$
h^{\prime \prime} \geq 0 \Leftrightarrow f^{\prime}(g(x)) \geq 0 \Leftrightarrow f(g(x)) \text { monotonously increasing. }
$$

