

Plane detection in RGB-D images

GPU Programming in Computer Vision Praktikum

Johannes Klein, Amad Junaid, Patricia Vitoria Carrera supervised by Lingni Ma

Computer Vision Group

Agenda

- Overview of the Algorithm
- Overview of the main tasks in the project
- Implementation details
- Final results
- What have we done to make the algorithm faster?
- Comparison of speed up

Overview of Algorithm

Fast Plane Extraction in Organized Point Clouds Using Agglomerative Hierarchical Clustering (Chen Feng, Yuichi Taguchi and Vineet R. Kamat)

Graph initialization

Overview of the tasks of the project

Convert depth images to a point cloud

- Input: Depth Image
- Output: Point cloud

$$\left\{egin{array}{l} x=rac{u-o_x}{f_x} imes d\ y=rac{v-o_y}{f_y} imes d\ z=d \end{array}
ight.$$

Convert depth images to a point cloud

Convert depth images to a point cloud

• Divide the point cloud into a set of initial nodes of the size HxW in the image space.

Computer Vision Group

Reject bad initial nodes

- Nodes containing Missing Data
- Nodes containing Depth Discontinuities
- Nodes Having High MSE

Convert Depth images into a point cloud Nonoverlapping node initialization First check bad nodes: Missing data Second check bad nodes: Depth discontinuities Third check bad nodes: High MSE Fourth check bad nodes: edge rejection

Computer Vision Group

Edge Rejection

- Nodes at boundary between two planes.
- Rejected if the angle between every node plane is bigger than a threshold.

Implementation Details

- Our convention is to use:
 - Shared memory block size as the node dimension that the user choose.
 - Then every thread corresponds to one point.
 - This limits us to use a maximum node size of 1024 as a block size.

Implementation Details

Node[0]	stores node data
Node[1]	stores node data
Node[2]	stores node data
Node[n-1]	stores node data

Results:

RGB Data

01/04/2015

1st Check: Missing Data

1st Check: Missing Data

Convert Depth images into a point cloud Nonoverlapping node initialization First check bad nodes: Missing data Second check bad nodes: Depth discontinuities MSE Second check bad nodes: Depth discontinuities Second check bad nodes: Depth

2nd Check: Depth Discontinuity

2nd Check: Depth Discontinuity

Convert Depth images into a point cloud Nonoverlapping node initialization First check bad nodes: Missing data Second check bad nodes: Depth discontinuities Miss

3rd Check: MSE Plane fitting

3rd Check: MSE Plane fitting

Convert Depth images into a point cloud Nonoverlapping node initialization First check bad nodes: Missing data Second check bad nodes: Depth discontinuities Missing discontinuities Missing Depth

4th Check: Edge Rejection

4th Check: Edge Rejection

Convert Depth images into a point cloud Nonoverlapping node initialization First check bad nodes: Missing data Second check bad nodes: Depth discontinuities Missing discontinuities Missing

Computer Vision Group

Steps that improved the performance

- Reduce access to global memory using shared memory whenever it was possible.
- Using parallel reduction for array sumations.
- Intereseting Observations:
 - CULA library usage
 - Atomic adds thread blocking

Comparison of speed up (Per Frame)

Demo

01/04/2015

Thank you for your attention

Questions?

01/04/2015