

Poisson Image Editing

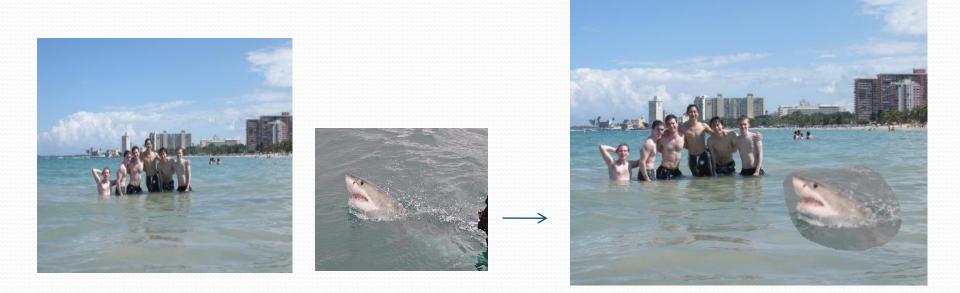
Supervisor : Thomas Möllenhoff Implemented By : Saion Chatterjee Gaurav Krishna Joshi

- Introduction
- Technical Overview
- Functional Implementation
- Optimizing Techniques
- Performance comparison
 - GPU vs. CPU
 - Gauss-Seidel vs. SOR Red-Black Scheme
- Conclusion
- Live Demo

Introduction- The Need

Using Classic tools

- seams are clearly visible.
- Can only be partly hidden using classic tools.



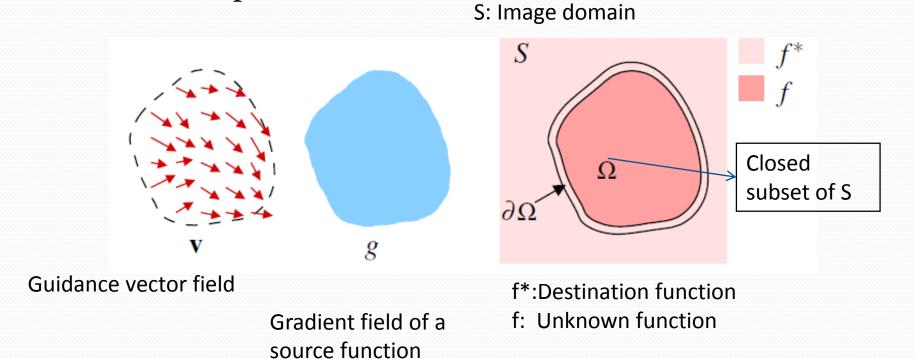
Poisson Image Editing

- A technique for "seamless blending" of one image's selected region into another image.
- Mathematical tool used:-
 - Poisson's equation
 - Laplacian of unknown function over the domain of interest
 - Dirichlet boundary conditions
 - Known function value along the boundary

Poisson Image Editing by Gaurav & Saion

Poisson Solution to Guided Interpolation

Guided Interpolation



Properties of the Poisson's Equation

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 with \quad f|_{\partial \Omega} = f^*|_{\partial \Omega}$$

 $\Delta f = \operatorname{div} \mathbf{v} \operatorname{over} \Omega \operatorname{with} f |_{\partial \Omega} = f^* |_{\partial \Omega}$

$$\operatorname{div} \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

- Second-order variations extracted by Laplacian operator are the most significant "perceptually"
- Scalar function on a bounded domain is uniquely defined by its values on the boundary and its Laplacian in the interior
 - Poisson equation therefore has a unique solution

With no guidance vector field

Membrane inter-polant

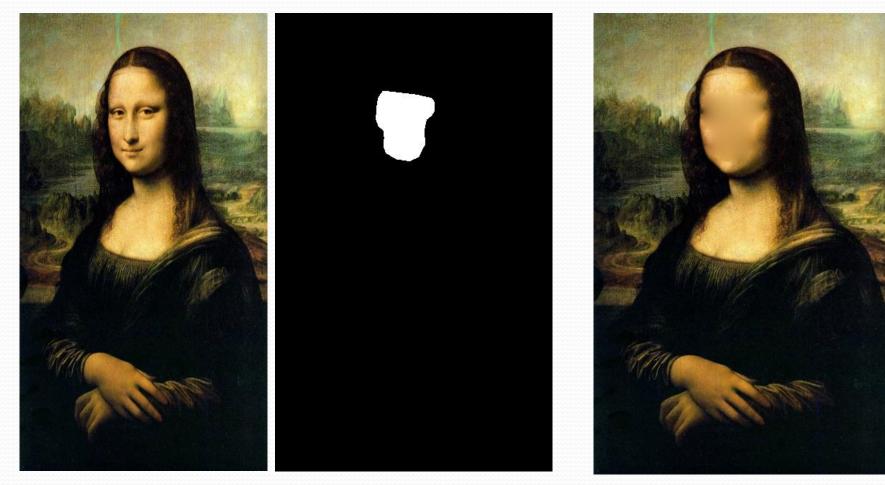
$$\begin{split} \min_{f} \iint_{\Omega} |\nabla f|^{2} with \quad f|_{\partial\Omega} &= f^{*}|_{\partial\Omega} \\ \text{gradient operator } \nabla_{\cdot} &= \left[\frac{\partial_{\cdot}}{\partial x}, \frac{\partial_{\cdot}}{\partial y}\right] \end{split}$$

The minimizer must satisfy the associated Euler-Lagrange equation

$$\Delta f = 0 \text{ over } \Omega \text{ with } f \mid_{\partial \Omega} = f^* \mid_{\partial \Omega}$$

Laplacian operator $\Delta = \left[\frac{\partial^2}{\partial x^2}, \frac{\partial^2}{\partial y^2}\right]$

With no guidance vector field



Target

Mask

With source guiding gradient

Source (That's Me)

Target

Output

Discrete Poisson solver

- S, Ω become finite point sets defined on a discrete grid
 - For each pixel p in S, Np is its 4-connected neighbors in S
 - The boundary $\partial \Omega = \{ p \in S \setminus \Omega : N_p \cap \Omega \}$
 - Pixel pair $< p, q >, q \in N_p$
 - The task is to compute the pixel values over the region:

$$f|_{\Omega} = \{f_p, p \in \Omega\}$$

 $\min_{f|_{\Omega}} \sum_{\langle p,q \rangle \cap \Omega \neq \Phi} \left(f_p - f_q - v_{pq} \right)^2 with \quad f_p = f_p^*, \text{ for all } p \in \partial \Omega$

Discrete Poisson solver

- Solution: linear equations for all $p \in \Omega$, $|N_p| f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \partial \Omega} f_q^* + \sum_{q \in N_p} v_{pq}$
- For all pixels p interior to Ω , no boundary terms

$$\left|N_{p}\right|f_{p} - \sum_{q \in N_{p} \cap \Omega} f_{q} = \sum_{q \in N_{p}} v_{pq}$$

This is an iterative solver which can be solved by Jacobian method.

Seamless Cloning

- Importing gradients
 - Gradient field directly from source image g

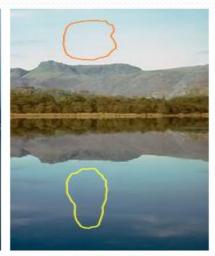
$$\mathbf{v} = \nabla g$$

$$\Delta f = \Delta g \text{ over } \Omega, \text{ with } f \mid_{\partial \Omega} = f^* \mid_{\partial \Omega}$$

for all
$$\langle p, q \rangle$$
, $v_{pq} = g_p - g_q$

Seamless Cloning

sources



destinations

cloning

seamless cloning

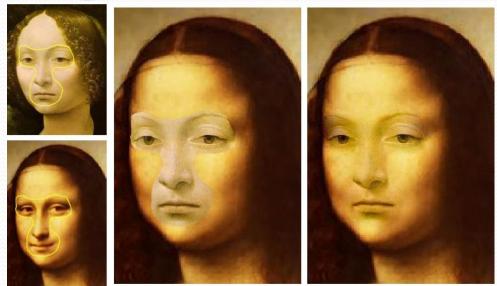
sources/destinations

cloning

seamless cloning

Feature Exchange

- A need to draw precise boundary for specific object.
- Doesn't sounds that good?



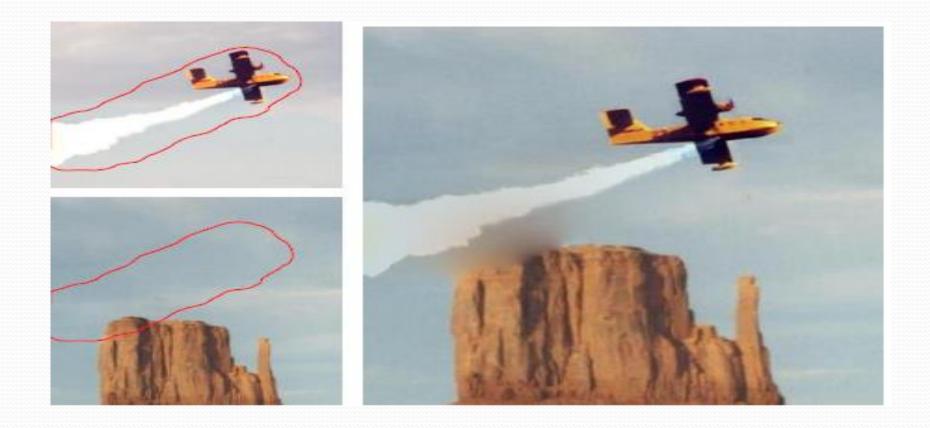
source/destination

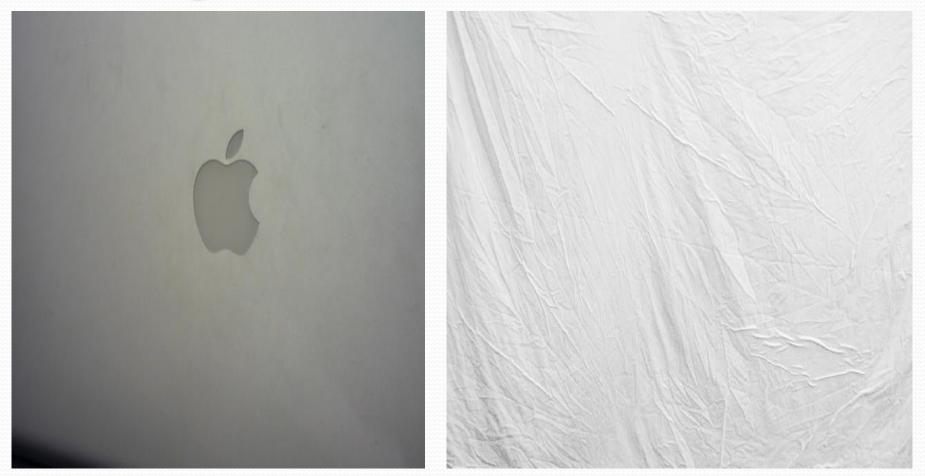
cloning

seamless cloning

swapped textures

The Problem with Source as guiding gradient





Source Image

Target with different texture

Without mixing gradient

After mixing gradient

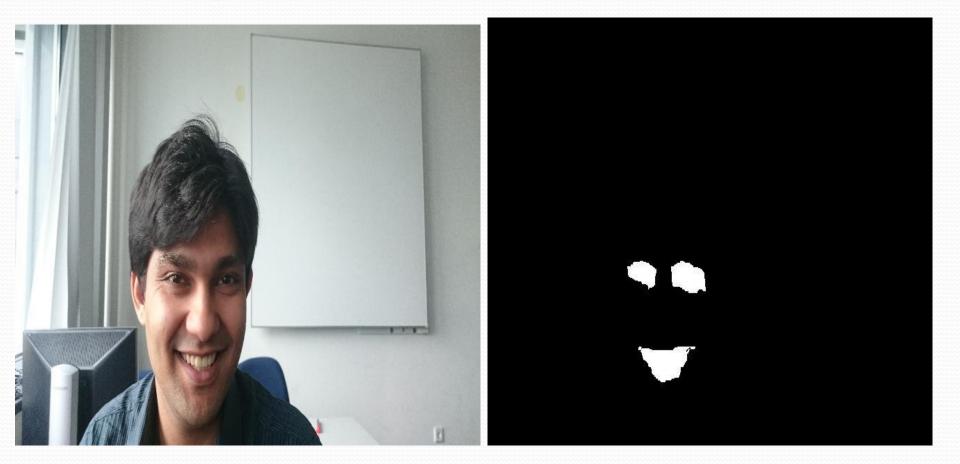
- Linear combination of source and destination gradient fields $\mathbf{v} = \nabla g + \nabla f$
- Non-conservative guidance fields

for all
$$\mathbf{x} \in \Omega$$
, $\mathbf{v}(\mathbf{x}) = \begin{cases} \nabla f^*(\mathbf{x}) & if |\nabla f^*(\mathbf{x})| > |\nabla g(\mathbf{x}) \\ \nabla g(\mathbf{x}) & otherwise \end{cases}$
$$v_{pq} = \begin{cases} f_p^* - f_q^* & if |f_p^* - f_q^*| > |g_p - g_q| \\ g_p - g_q & otherwise \end{cases}$$

Transparent objects

source

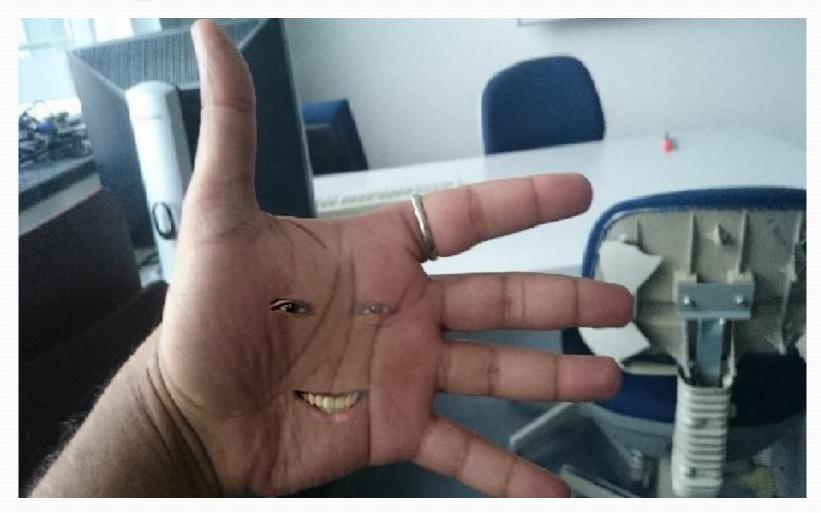
destination



Source Image- Gaurav

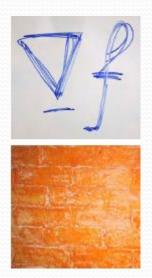
The Mask

Target- My Hand ©



Blended Output

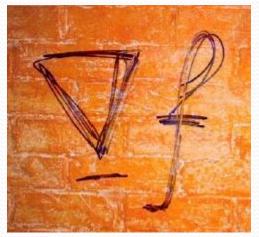
Inserting object with holes



Color-based cut-and-paste



Seamless cloning



Mixed seamless cloning

Functional Implementation

- ExtractingBoundryPixels() : Extract the Boundary Pixel from the Mask.
- **Calculate_boundBoxMinMax**() : Extract the Area of Interest in the Target Image.
- **SourceMaskImageMergeinTargetImage**(): Merging the desired portion of the source image to Target Image.
- Initialize():Copy the area outside the mask and on Boundry in the Output Image.
- **Evaluate_gradient**(): Compute the gradient of the source image masked region.
- **Poisson_gauss_seidel**(): Blending using Gauss Seidel method.
- **Poisson_sor_redblack**(): Blending using SOR method.
- **Poisson_cpu**() : CPU version of the Poisson implementation

Optimizing Techniques

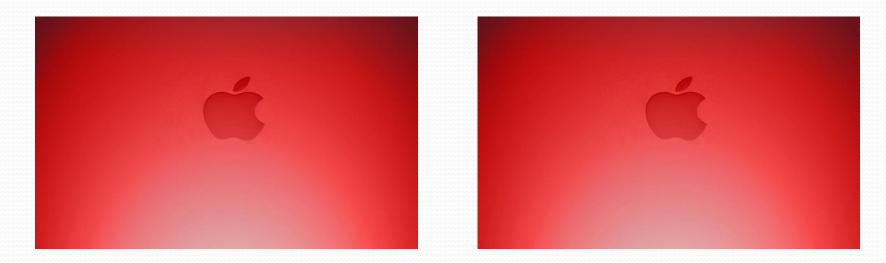
- Bounding box.
- Shared Memory.
- Registers/local variables
- Different Blocks(32x4,128x4,128x2,64x4).
- Switch case over If else.

Performance Comparison

• CPU vs GPU:

15000 iterations

- CPU run time 284707.79ms(approx 5 mins)
- GPU run time 865.193 ms (Gauss-Seidel)(approx 1 sec)

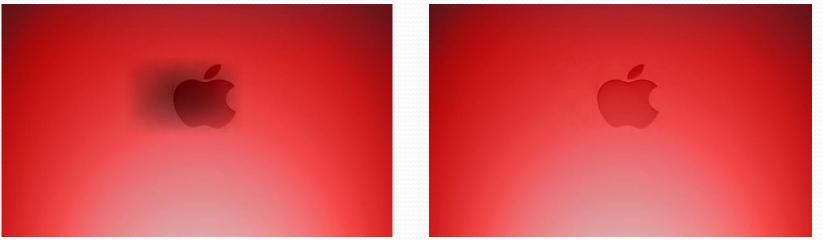


Performance Comparison

 Gauss-Seidel vs. Successive Over Relaxation Red-Black

For 7000 iterations

- Gauss-Seidel- 417.435ms
- SOR- 907.359 ms



Poisson Image Editing by Gaurav & Saion

Conclusion

- A Generic framework of guided interpolation
- A series of tools to edit in a seamless and effortless manner the contents of an image selection
- The modification can be:
 - Replacement by other images
 - Mixing with other images
 - Alternations of some aspects of the original image, such as texture, illumination or color

Live Demo

Related Work

- Poisson equation has been used extensively in computer vision
 - Rescale gradient field of High Dynamic Range (HDR) image
 - Solving Poisson equation with Neumann boundary
 - Edit image via a sparse set of edge elements
 - Solving a Laplace equation with Dirichlet boundary
 - Spot removing
 - Replace the brightness by harmonic interpolation (solving a Laplace equation)

References

- http://www.cs.jhu.edu/~misha/Fallo7/Papers/Perezo3.pdf
- <u>http://www.ctralie.com/Teaching/PoissonImageEditing/</u>
- <u>http://www.howardzzh.com/research/poissonImageEditing/</u>

Thank You For your Attention

Any Questions ??