
Computer Vision Group  
Prof. Daniel Cremers

Rudolph Triebel, 
Vladislav Usenko, 
Caner Hazirbas

Preparation Meeting

Current Trends in  
Machine Learning



R. Triebel, V. Usenko, C. HazirbasCurrent Trends in Machine Learning  

What you will learn in the seminar 

• Get an overview on current trends in machine 
learning 

• Read and understand scientific publications 

• Write a scientific report 

• Prepare and give a talk
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Important Dates

• First Meeting: 8.10.2014 (today) 

•Fix assignment of papers and date 

• Choose your topic until 15.10.2014 (next week, 
first come first serve!) 

• Deadline for the report: 27.02.2015 

• Dates for the talks: 

•7.01.2015 

•14.01.2015 

•21.01.2015 

•28.01.2015
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Preparation

• Please do not work on your topic completely 
alone 

! Meet at least twice with your supervisor 

• Recommended schedule 

• 1 month before your talk: Meet your supervisor and 
discuss paper 

• 1 week before your talk: Meet your supervisor to 
discuss your slides  

• [optional] after the talk: Feedback of your supervisor 
regarding the talk 

• 1 week before 28.02.14: Submit a draft of your report
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Report and Talk

• Send PDF (not PPTX, not DOC) via email to your 
supervisor, Latex template available on the web-
page 

• Recommended length: 6-8 pages 

• Required:  Minimum 6, Maximum 10 pages 

• Language: English or German
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Hints for Your Talk

• 20 min. + 5–10 min. for discussion  

• Don’t put too much information on one slide 

•1-2 min. per slide ! 10-20 slides 

• Recommended structure 

•Introduction, Problem Motivation, Outline 

•Approach 

•Experimental results 

•Discussion 

•Summary of (scientific) contributions
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Evaluation Criteria 

• Gained expertise in the topic 

• Quality of your talk 

• Quality of the report 

• Active participation in the seminar is required (ask 
questions, comment talks)
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Regular Attendance Is Required

• Attendance at each appointment is necessary  

• In case of absence: Medical attest 
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Overview of available Topics
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Indoor Semantic Segmentation using 
Depth Information 
[Couprie et al., ICLR 2013]

• Multi-class segmentation of indoor scenes with 
RGB-D inputs 

• Multi-scale feature extraction (Convolutional 
Networks, Deep Learning)
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Deep Pose: Human Pose Estimation via  
Deep Neural Networks 

[Toshev and Szegedy, CVPR 2014][Google]

• Human pose estimation based on DNN 

• DNN based pose regression
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Joint Deep Learning for Pedestrian 
Detection 

[Ouyang and Wang, ICCV 2013]

■ Pedestrian Detection 
■ Deep Learning framework 

12



R. Triebel, V. Usenko, C. HazirbasCurrent Trends in Machine Learning  

Pose Estimation and Segmentation of 
People in 3D Movies 

[Alahari et al., ICCV 2013]

• Pixel-wise segmentation of multiple people 

• Pose estimation 

• Stereoscopic videos
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Weakly Supervised Multiclass Video 
Segmentation 

[Liu et al., CVPR 2014]

• Nearest neighbor-based label transfer scheme for 
weakly supervised video segmentation 

• Hashing for metric learning handles both metric 
and semantic similarity
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Unsupervised Spectral Dual Assignment 
Clustering of Human Actions in Context 

[Jones and Shao, CVPR 2014]

• Unsupervised human action clustering using 
contextual relations between actions and scenes 

• Dual Assignment k-Means (DAKM) 

• Spectral DAKM for realistic data
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Latent Structured Active Learning 
[Wenjie Luo, Schwing, Urtasun]

• Combine structured prediction problems with 
active learning 

• Use weakly supervised learning 

• Application to predict the 3D layout of rooms from 
single images
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Decision Jungles: Compact and Rich Models 
for Classification 

[Shotton et al.]

• Extension of Decision trees to DAGs 

• Learning features and structure using node 
merging 

• Results in less memory and better generalization
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An Efficient Approach for Assessing 
Hyperparameter Importance 

[Hutter el al.]

• Hyperparameters are crucial elements in most 
learning approaches 

• Propose an efficient marginalization technique for 
random forest predictions 

• Use that to quantify the importance of hyper 
parameters
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SOML: Sparse Online Metric Learning with 
Application to Image Retrieval 

[Gao et al.]

• Learn sparse distance 
functions from high-
dimensional data 

• More efficient than non-
sparse metric learning 

• Application to Image 
Retrieval
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Fast Allocation of Gaussian Process 
Experts 

[Nguyen and Bonilla]

• Non-parametric Bayesian regression using a 
mixture of GPs 

• Fast variational inference procedure for learning 
hyper parameters 

• Results on large-scale  
data set with 10   
training points

20
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Automatic Construction and Natural-Language 
Description of Nonparametric Regression Models 

[LLoyd et al.]

• Non-parametric (GP) formulation of functions that 
model high-level properties, e.g. smoothness 

• Compositional structure of the “language of models” 

• Results in an auto- 
mated way to  
describe data
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Computing the Stereo Matching Cost with 
a Convolutional Neural Network 

[Jure Zbotar, Yann LeCun]

• Estimate depth information for each pixel from 
stereo images 

• Train Convolutional Neural Network to predict how 
well image patches match 

• Refine disparity using semi-global matching and 
consistency checking

22

Left input image

Right input image

Output disparity map

1.7 m90 m 20 m

Figure 1: The input is a pair of images from the left and right camera. The two input images di↵er mostly
in horizontal locations of objects. Note that objects closer to the camera have larger disparities than objects
farther away. The output is a dense disparity map shown on the right, with warmer colors representing
larger values of disparity (and smaller values of depth).

• We achieve an error rate of 2.61% on the KITTI
stereo dataset, improving on the previous best
result of 2.83%.

2 Computing the matching

cost

A typical stereo algorithm begins by computing a
matching cost C(p, d) at each position p for all dis-
parities d under consideration. A simple example is
the sum of absolute di↵erences:

CAD(p, d) =
X

q2Np

|IL(q)� I

R(qd)| (1)

where IL(p) and I

R(p) are image intensities at posi-
tion p of the left and right image and Np is the set of
locations within a fixed rectangular window centered
at p. We use bold lowercase letters (p, q, and r)
to denote pairs of real numbers. Appending a lower-
case d has the following meaning: if p = (x, y) then
pd = (x� d, y).

Equation (1) can be interpreted as measuring the cost
associated with matching a patch from the left image,
centered at position p, with a patch from the right
image, centered at position pd. Since examples of
good and bad matches can be obtained from publicly
available datasets, e.g. KITTI (Geiger et al., 2013)

and Middlebury (Scharstein and Szeliski, 2002), we
can attempt to solve the matching problem by a su-
pervised learning approach. Inspired by the success-
ful applications of convolutional neural networks (Le-
Cun et al., 1998) to vision problems, we used them
to evaluate how well two small image patches match.

2.1 Creating the dataset

A training example comprises two patches, one from
the left and one from the right image:

< PL
9⇥9(p),PR

9⇥9(q) >

where PL
9⇥9(p) denotes a 9⇥9 patch from the left im-

age, centered at p = (x, y). For each location where
the true disparity d is known, we extract one nega-
tive and one positive example. A negative example
is obtained by setting the center of the right patch q

to
q = (x� d+ oneg, y)

where oneg is an o↵set corrupting the
match, chosen randomly from the set
{�Nhi, . . . ,�Nlo, Nlo, . . . , Nhi}. Similarly, a positive
example is derived by setting

q = (x� d+ opos, y)

where opos is chosen randomly from the set
{�Phi, . . . , Phi}. The reason for including opos, in-
stead of setting it to zero, has to do with the stereo
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Autonomous Active Recognition and Unfolding 
of Clothes using Random Decision Forests 

and Probabilistic Planning 
[Doumanoglou et al]

• Clothes recognition from depth images using 
Random Decision Forests 

• Unfolding an article of clothing by estimating and 
grasping key points identified using Hough Forests
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Autonomous Active Recognition and Unfolding of Clothes using
Random Decision Forests and Probabilistic Planning

Andreas Doumanoglou, Andreas Kargakos, Tae-Kyun Kim, Sotiris Malassiotis

Abstract— We present a novel approach to the problem of
autonomously recognizing and unfolding articles of clothing
using a dual manipulator. The problem consists of grasping an
article from a random point, recognizing it and then bringing
it into an unfolded state. We propose a data-driven method for
clothes recognition from depth images using Random Decision
Forests. We also propose a method for unfolding an article of
clothing after estimating and grasping two key-points, using
Hough forests. Both methods are implemented into a POMDP
framework allowing the robot to interact optimally with the
garments, taking into account uncertainty in the recognition
and point estimation process. This active recognition and
unfolding makes our system very robust to noisy observations.
Our methods were tested on regular-sized clothes using a dual-
arm manipulator and an Xtion depth sensor. We achieved 100%
accuracy in active recognition and 93.3% unfolding success rate,
while our system operates faster compared to the state of the
art.

I. INTRODUCTION

Robots doing the housework have recently attracted the
attention of scientists. Our interest is focused in the task of
folding clothes and particularly in the first part of the proce-
dure, which is the unfolding of an article of clothing. Starting
from a crumbled initial configuration, we want to recognize
the article and then bring it into an unfolded state so that
it is ready for folding. One of the key challenges in clothes
perception and manipulation is handling the variabilities in
geometry and appearance. These variabilities are due to the
large number of different configurations of a garment, self-
occlusions and the wide range of cloth textures and colors.

Research on clothes perception and manipulation started
in the middle 90s [1], presenting some first clothes recogni-
tion techniques with the help of a dual manipulator. Later,
research has been made in garment modelling and feature
extraction [2] [3], while only recently scientists were able to
completely fold an article of clothing starting from a crum-
pled initial configuration [4] [5] [2]. The main limitations in
the state-of-the-art are a) slow performance and b) difficulty
to generalize to a variety of shapes and materials. This
stems mainly from the model-driven approaches used and
associated simplifying assumptions made. To address these
limitations we propose a data-driven approach for clothes
recognition and unfolding. We first recognize the type of the
article from raw depth data using Random Forests. Based
on the recognition result, a pair of key-points are identified
such that the article will naturally unfold when held by these
two points (Fig. 1). Point estimation is based on Hough
Forests, a random forest framework with Hough voting. An
active manipulation (perception-action) approach based on
POMDPs is also proposed that accounts for uncertainty in

(a) Random Initial Configura-
tion, grasping lowest point

(b) Recognizing garment, then
grasping 1st estimated point

(c) Grasping 2nd estimated point (d) Final unfolded configuration

Fig. 1. Robot unfolding a shirt

the vision tasks and thus leads to superior performance. In
summary, our main contributions are:

• An active manipulation procedure for unfolding an
unknown item of clothing with a minimal number of
moves and only by means of gravity (previous ap-
proaches have to go through a flattening phase using
a table).

• Fast data-driven machine learning algorithms for robust
scale-invariant classification of the garment type and
key-points estimation from noisy depth data.

• A probabilistic perception-action framework for optimal
action policy accounting for uncertainty.

Compared to the state of the art, our system requires less
movements and therefore can operate faster. Furthermore,
to our knowledge, this is the first work that autonomously
unfolds regular-sized clothes. While most researchers work
on small or baby clothes for easier manipulation, regular-
sized clothes allow higher degree of deformation and pose
more challenges to the recognition and unfolding task.

II. RELATED WORK

The first attempts in clothes manipulation have been made
by Hamajima et al. [6] who tried to detect and grasp hemlines
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Learning Haptic Representation for 
Manipulating Deformable Food Objects 

[Mevlana Gemici, Ashutosh Saxena]

• Design actions that obtain haptic data with 
information about physical properties of the object 

• Extract features based on manipulators 
configuration, effort and dynamics 

• Discover Haptic Categories through Dirichlet Process
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Fig. 8: Belief update as more observations are obtained from
information gathering actions that are being performed on a tofu
object during robotic experiments (Section VII-E). Only two of the
subspaces are shown. Best viewed in color.

E. Belief Representation and Update

We represent a belief over an object’s properties as
a linear combination of haptic categories, Z, obtained
from the Diritchlet Process for all actions: b(y) =P

z2Z wz · N (y;µz,⌃z) , where the weight vector w, rep-
resents the mixture and {µz,⌃z} represents the parameters
of haptic category z. We integrate multiple observations for
a given object by updating the belief weights using a new
observation y+ in property space:

w+
z = (�wz)

m
(m+1) ·

"p
|⌃z|
�m

e(
p

[y+�µz ]⌃
�1
z [y+�µz ]T )

#
(2)

where m is the number observations used for determining
the previous belief b, � is the decay parameter for previous
observations (chosen to be 0.9) and w+ is the new mix-
ture weight vector after the update which we normalize to
maintain 1Tw+ = 1.

We show the belief update in Fig. 8 as actions Vertical
Pierce and Vertical Cut are performed on a tofu object
consecutively. The initial belief (column 1) has a uniform
weight for each class obtained in DP. This corresponds to
a prior probability obtained from previously seen examples.
Therefore, the belief update starts with this prior and not the
naive uniform distribution over the whole property space.
As observations are obtained in 2nd column and 3rd column
in order, the belief changes towards an object with very low
hardness, high brittleness and high plasticity which is correct
for tofu. Once the robot reaches the belief in column 3, it
can use this information for choosing the correct way to
manipulate this object. For example, it can move the object
with spatulas instead of its grippers, since an object with high
plasticity and brittleness may be deformed when grasped or
damage the grippers.

In the example above, the tofu category is not seen during
the training stage and therefore Z cannot include a haptic
category directly representing the tofu category. However,
because there are similar categories of food objects seen
during training such as cream cheese and peeled banana, it
is possible to obtain a good representation even for tofu as a
combination of haptic categories representing the properties
of these other food categories.

Fig. 9: Task-oriented actions used by our robot, involving use of
grippers, a knife, spatulas and forks, in different fashions. Eight
(out of ten) are shown, due to space constraints.

VII. EXPERIMENTS AND RESULTS

A. Experimental Setup
We test our perception and belief integration approach on

the task of preparing a simple meal. We have four subgoals
that we wish to accomplish: Cut food object, split object into
two pieces, flip-turn object, pick up and move object. All of
these subgoals require the robot to first perceive the physical
properties of object and then use appropriate tools to perform
task-oriented actions to reach the subgoals.

We design 10 additional task-oriented actions (see
Fig. 9)—designed to help reach specific subgoals in different
ways. For the subgoals of cutting and splitting, we created
three actions that use different tools (such as using a fork or
a gripper to stabilize the object while cutting) and different
strategies of execution such as cutting with a downward
motion versus cutting with a saw-like motion. For the other
subgoals, flipping and moving, we created two actions each
that either use spatulas or a gripper to accomplish the task.

B. Manipulation Planning
In order to archive manipulation goals such as cutting

a food object, we wish to create strategies that balance
the exploration of object properties and the exploitation of
actions that can accomplish useful tasks. In this work, we
use a reward based method, similar to the Reinforcement
Learning setting (e.g., [17]), that integrates our approach
for belief representation introduced in the previous section.
For a given goal and a belief about the object, we wish to
determine the action that will produce the highest expected
immediate reward. Although it is possible to plan ahead with
larger or infinite horizons (see POMDPs [22], [25]), it is
beyond the scope of this work.

In order to determine the expected immediate reward
for an action-belief pair, we construct a reward function
defined over the property space for each action based on
the knowledge of our human experts. Although it is possible
to determine the reward functions through training, such as
Inverse Reinforcement Learning [38], this requires human
demonstration on the task we wish to accomplish. Instead, in
this work, for a given action, the reward for a given point in
the property space is determined from a distance-weighted
interpolation of rewards of neighbouring object categories
(determined by the experts).2 Then we generate Monte Carlo

2We leave out the details due to space concerns. Please refer to additional
material on our website for examples of reward functions.

Learning Haptic Representation for Manipulating Deformable Food Objects

Mevlana C. Gemici and Ashutosh Saxena
Department of Computer Science, Cornell University, USA.

Email: {mevlana,asaxena}@cs.cornell.edu

Abstract— Manipulation of complex deformable semi-solids
such as food objects is an important skill for personal robots to
have. In this work, our goal is to model and learn the physical
properties of such objects. We design actions involving use of
tools such as forks and knives that obtain haptic data containing
information about the physical properties of the object. We then
design appropriate features and use supervised learning to map
these features to certain physical properties (hardness, plasticity,
elasticity, tensile strength, brittleness, adhesiveness). Additionally,
we present a method to compactly represent the robot’s beliefs
about the object’s properties using a generative model, which
we use to plan appropriate manipulation actions. We extensively
evaluate our approach on a dataset including haptic data from
12 categories of food (including categories not seen before by
the robot) obtained in 941 experiments. Our robot prepared a
salad during 60 sequential robotic experiments where it made
a mistake in only 4 instances.

I. INTRODUCTION

One important class of objects that a personal robot would
need to learn about is deformable semi-solid materials such
as food. It is important for the robot to model and estimate
their physical properties to be able to manipulate them.
Approaches based on vision (e.g., [1]) are limited because
even the same types of food objects (e.g., two different
bananas), which have similar visual properties, could have
vastly varying material properties, depending on the condi-
tions that they are treated at (e.g., temperature or humidity),
their age (e.g., raw or ripe), or how they were processed (e.g.,
cooked). In many cases, these small differences can change
the correct way to manipulate these objects. In this paper, we
focus on using haptic data from the robot’s internal sensors
to perceive and manipulate food objects.

Although physical properties of objects are important
for manipulation planning, mathematically modeling these
properties in an explicit manner is very challenging for
many object categories and requires a lot of design effort
[2]. A feasible alternative is to learn representations from
haptic data where the agent maps its sensory inputs from its
actuators to physical properties of objects.

In this work, we propose a learning algorithm (see Fig. 2)
that takes as input haptic sensory signals of a robot obtained
while performing actions on the food objects. We then
extract useful features from these haptic signals and map
them to physical properties of the objects through supervised
learning. Using this mapping, we then perform unsupervised
learning and clustering based on Diritchlet Processes (DP)
to represent the physical properties compactly. Through this
representation, we integrate multiple observations about an
object’s properties obtained at different times into a compact

Fig. 1: We use haptic sensors of a personal robot to learn a data-
driven representation of the physical properties of food objects. We
use learning techniques to create manipulation strategies involving
actions that use household tools in order to prepare meals.

belief and infer reliable strategies to manipulate it through
appropriate task-oriented actions.

We extensively test our approach on a large dataset of
haptic information gathered in 941 experiments from 12
different categories of food (see Fig. 3), including categories
that are quite similar (e.g., different types of bread) and
challenging to differentiate. We show that actions have
different information gathering abilities and it is possible
to extract information from manipulation experiences of
the robot. Our experiments show that the robot can obtain
relevant information about the food items (both from seen
and unseen object categories) in a safe way and is able to
determine the correct way to manipulate those objects to
reach simple goals. Finally, we use our learned models and
manipulation strategies on the robot to build a simple meal.

II. RELATED WORK

Robot Manipulation of Objects. While previous works
on robot manipulation have focused on rigid objects (e.g.,
[3], [4]), there has been some recent work on manipulating
articulated objects (e.g., [5], [6]) and foldable objects (e.g.,
towels [7]). Many of these works use tactile sensing for
manipulation (e.g., [8]) but none of them consider the
perception of internal properties of objects when they are
critical for manipulation.



R. Triebel, V. Usenko, C. HazirbasCurrent Trends in Machine Learning  

Dense 3D Semantic Mapping of Indoor 
Scenes from RGB-D Images 

[Alexander Hermans, Georgios Floros, Bastian Leibe]

• Consistent 3D semantic reconstruction of indoor scenes 

• Fast 2D semantic segmentation approach based on 
Randomized Decision Forests 

• 2D-3D label transfer based on Bayesian updates and 
dense pairwise 3D Conditional Random Fields.
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Dense 3D Semantic Mapping of Indoor Scenes from RGB-D Images

Alexander Hermans, Georgios Floros and Bastian Leibe

Abstract— Dense semantic segmentation of 3D point clouds
is a challenging task. Many approaches deal with 2D semantic
segmentation and can obtain impressive results. With the
availability of cheap RGB-D sensors the field of indoor semantic
segmentation has seen a lot of progress. Still it remains unclear
how to deal with 3D semantic segmentation in the best way.
We propose a novel 2D-3D label transfer based on Bayesian
updates and dense pairwise 3D Conditional Random Fields.
This approach allows us to use 2D semantic segmentations to
create a consistent 3D semantic reconstruction of indoor scenes.
To this end, we also propose a fast 2D semantic segmentation
approach based on Randomized Decision Forests. Furthermore,
we show that it is not needed to obtain a semantic segmentation
for every frame in a sequence in order to create accurate
semantic 3D reconstructions. We evaluate our approach on both
NYU Depth datasets and show that we can obtain a significant
speed-up compared to other methods.

I. INTRODUCTION
3D scene understanding is required in many robotics

applications. For scenarios such as autonomous navigation
or general object interaction, knowledge of the surrounding
scene is vital. While semantic segmentation can be an impor-
tant cue for scene understanding [1], [2], [3], computational
efficiency has not been a focus of research so far.

Motivated by mobile robotics scenarios, we want to create
a semantically annotated 3D reconstruction of a surrounding
scene, where every 3D point is assigned a semantic label.
Furthermore, we want to enforce spatial and temporal consis-
tency in such reconstructions. However, there is no clear-cut
method for the transfer of 2D labels into a globally consistent
semantic 3D reconstruction yet.

In this paper we address the task of dense semantic 3D
scene understanding of indoor scenes. We build a point cloud
reconstruction of the scene and assign a semantic label to
each 3D point. As an initial step, we perform an efficient
2D semantic segmentation of the RGB-D frames. Our main
contribution is a novel way to transfer the 2D image labels
into a 3D reconstruction based on Bayesian updates [4]
and dense pairwise Conditional Random Fields (CRFs) [5],
which allows us to enforce temporal and spatial constraints.

Semantic segmentation of 2D images recorded from in-
door scenes has been shown to be an especially challenging
task [6]. This is caused by the large variability of both object
and scene types, varying illumination and unconstrained
scene layouts. Current methods achieve good results, but they
typically need more than one minute per image [7], [8], [9].
As a first step towards a more efficient method, we propose
a semantic segmentation approach based on Randomized
Decision Forests (RDFs). Due to their parallel nature, RDFs

All authors are with Computer Vision Group, RWTH Aachen University.
Email: {hermans,floros,leibe}@vision.rwth-aachen.de
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Fig. 1: A high level overview of our approach. We classify RGB-D images
using a Randomized Decision Forest and refine the result using a dense
CRF. Based on a sequence we create a 3D point cloud reconstruction of a
scene. Using our novel 2D-3D label transfer approach we can assign a class
label to each 3D point, giving us a dense semantic reconstruction.

are well suited for efficient semantic segmentation. It has
previously been shown that they can obtain impressive results
[10]. However, the more expressive variants tend to suffer
from expensive feature computations [9]. We propose a set
of features for RDFs which keeps them efficient, without
loosing too much accuracy. When compared to fast semantic
segmentation methods our approach obtains state-of-the-art
results for both speed and classification accuracy.

Considering that in most typical scenarios the movement
between two consecutive frames is small, the question arises
whether it is necessary to segment every frame in a sequence.
An important insight we gain is that semantic segmentation
does indeed not need to be performed for every frame. We
analyze how our semantic segmentation approach, coupled
with the 2D-3D label transfer, behaves when processing only
a subset of the frames. Based on this, we show that it is not
critical that each part is real-time capable, but that it still
suffices if certain components of our approach run at far
lower frame rates.

This paper is structured as follows. The next section gives
an overview of related work. Section III describes the general
idea of our complete approach. Sections IV, V and VI then
describe the components of our approach in more detail.
Finally, Section VII discusses our experimental results.

II. RELATED WORK
Several 3D semantic segmentation approaches exist for

both outdoor [11], [12], [13] and indoor [3], [14], [2], [8]
scenes. Floros et al. [11] create a stereo 3D reconstruction
and enforce temporal consistency through an additional
potential in a CRF ranging over several frames in a se-
quence. Triebel et al. [12] label scene reconstructions in

Fig. 5: Qualitative results of our 3D reconstructions. (top row)) Semantic reconstructions (bottom row) Corresponding RGB reconstructions. For these
reconstructions a semantic segmentation was created for every frame and the 3D refinement was done every five frames, using three 3D dense CRF
iterations. All scenes are from the first NYU Depth dataset. Label colors are listed in Table II. Different viewpoints are shown in the supplementary video.
TABLE I: Timing results. The upper part of the table lists the time needed
to execute different components of our approach. Times are averaged over
the different scenes and a range is listed if the times differ due to the
different point cloud sizes. The lower part shows different frames rate of
different configurations. All timings are based on a Intel i7 3.4GHz CPU.

Component Consumed time (ms)
General Preprocessing ⇠110
Gradient calculation ⇠70
Visual Odometry ⇠25
Point cloud fusion 70 - 120
RDF evaluation ⇠200
2D CRF 3 or 12 Iter. ⇠360 ⇠960
3D CRF 1, 2 or 3 Iter. 400 - 1800 500 - 2200 600 - 2500
3D CRF 4 or 5 Iter. 600 - 3000 650 - 3700
Setup Frame rate (Hz)
Single-image baseline ⇠0.75
(1,1,5) 1 3D CRF Iter. 0.8 - 1.0
(3,3,15) 1 3D CRF Iter. 2.2 - 2.5
(6,6,30) 1 3D CRF Iter. 3.9 - 4.6

accuracy of 67.24%, which improves the baseline of 65.33%
by almost 2%. Qualitative results for three scenes using this
configuration can be seen in Fig. 5. While the numerical
improvement seems rather small, it should be noted that the
results were obtained purely based on spatial and temporal
consistency.

The results are relatively stable regarding the number of
executed refinement steps. In fact, for a higher number of 3D
dense CRF iterations, it is better to execute the 3D refinement
less often. We believe this is due to the fact that the class
distributions will collapse if the CRF is applied too often,
which in turn does not work well with the Bayesian updates.

C. Runtime Analysis
Table I shows the runtime of several components in our

approach. The upper part gives a detailed time for different
steps in our pipeline. The general preprocessing includes
color conversions, normal, and basic feature computations.
Together with the gradient calculation, the RDF evaluation,
and a 2D CRF this makes up the basic 2D segmentation.
The 3D reconstruction consists of the VO and the point
cloud fusion. The point cloud fusion tends to vary based

on the number of points in a scene, as we loop over all
points to find corresponding pixels. The 3D refinement step
consists of a 3D dense CRF and two Bayesian updates. The
latter do not contribute to the actual runtime significantly.
The lower part of Table I show the frame rates for the
different configurations. The single-image baseline, which
uses 12 dense CRF iterations, runs at ⇠0.75Hz. Our full 3D
reconstruction approach, running the 3D refinement every
5

th frame with 1 3D CRF iteration, runs slightly faster while
obtaining better results and creating a reconstruction of the
scene.

Motivated by the fact that we do not need to run the 3D
refinement every frame to improve results, we investigated
how the results are affected if we only run the 3D recon-
struction and 2D semantic segmentation for a subset of the
frames as well. Starting out from the configuration where the
3D refinement is executed every 5 frames, we ran several
experiments where we increased the number of completely
skipped frames as seen in Fig. 4. On the x-axis we plot
the different configurations. The first number specifies after
how many new frames the 3D reconstruction is executed,
the second after how many the 2D semantic segmentation
and the last after how many frames the 3D refinement is
done. For the 3D dense CRF we only update points that
accumulated new predictions in the previous 10 frames that
we actually evaluated. This means the window size is twice
the number of the skipped frames. As it can be seen, results
decrease at first, but then seem to be stable. The accuracy
when only generating semantic segmentations for each 6

th

frame is very similar to that of the single-image baseline.
However, the speed improves by a factor of more than five,
improving the frame rate of ⇠0.75Hz to a frame rate around
4Hz (see the lower part of Table I). Lower subsampling
rates also result in a significantly higher frame rate. To the
best of our knowledge, no other methods create semantic 3D
reconstructions of indoor scenes at such speed.

Our code can further be optimized and currently does not
exploit parallelism to its full potential. The three processes



R. Triebel, V. Usenko, C. HazirbasCurrent Trends in Machine Learning  

Learning Visual Feature Descriptors for 
Dynamic Lighting Conditions 

[Nicholas Carlevaris-Bianco, Ryan Eustice]

• Use Machine Learning to find descriptors that can be 
used for long-term outdoor deployments 

• Track feature points in time-lapse videos to acquire 
training data  

• Convolutional multi-layer perceptron used as descriptor

26

(a) Segway Robot (b) Sample Session Trajectory

Fig. 9: North Campus Long-Term dataset. A Segway robotic platform
(a) was used to collect imagery in University of Michigan’s North
Campus. In total, 27 sessions (b) were captured over the course
of 15 months including a wide variety of lighting conditions and
other challenges including seasonal changes, dynamic objects, and
construction.

Fig. 10: Average matching results over 500 locations in the North
Campus dataset.

(a) Sample Image Registration

(b) Sample Matching Patches

Fig. 11: Sample matching pair that was successfully registered by the
CMLP descriptor, but not SIFT, SURF, nor DAISY.

this data includes viewpoint variance and additional challenges
caused by moving objects, seasonal changes, and even con-
struction projects. Given known robot pose, the dataset is
split up into 500 locations with an average of 37 images per
location.

At each location we match all pairs of images. As before,
when matching features we perform nearest neighbor matching
based on Euclidean distance and employ the second-nearest-
neighbor test with a threshold of 0.7. Outliers are rejected
by fitting an Essential matrix using random sample consensus
[41].

In Fig. 10 we show the percentage of image pairs suc-
cessfully matched as a function of the minimum number of
inliers. Here, we see that again CMLP, MLP, and DAISY
provide the best results, matching around 30% of possible
pairs at the lowest threshold. SIFT and SURF are significantly
less successful. An example image pair that was successfully
registered using the CMLP descriptor, but not SIFT, SURF,
nor DAISY is shown in Fig. 11.

C. Computation Time

Finally, we provide the computation time of the learned
features in Table I. The learned descriptors were developed
using Theano and therefore can be computed using the CPU
or GPU. For SIFT and SURF we evaluated with OpenCV’s
CPU version and timing information is provided only as a
rough comparison—well optimized GPU versions of both are
readily available.

TABLE I: Mean Feature Extraction Time

CPU GPU
MLP 0.68 ms/feature 0.07 ms/feature

CMLP 1.34 ms/feature 0.27 ms/feature
SIFT 0.64 ms/feature —

SURF 0.20 ms/feature —
DAISY 0.65 ms/feature —

VI. DISCUSSION AND FUTURE WORK

Selecting the model parameters for the feature descriptors
presents a large number of design choices. This includes the
number of layers, the type and dimension of each layer, the
activation function, the type of pooling, etc. We feel that
the two models used in this work are reasonable and good
representatives of two points in the configuration space. How-
ever, many of the other model variations considered during
development produced very similar results—a more thorough
evaluation of the model choices with respect to performance
and complexity would be beneficial.

Additionally, we would like to more thoroughly evaluate
some of the other algorithm design choices, including the
effect of output dimension and the effect of the smooth
similarity measure and its time constant.

Beyond lighting invariance, we believe that a similar train-
ing scheme could be used in many applications to learn domain
specific features. Specifically, we plan to apply the method to
underwater imagery in future work.

Learning Visual Feature Descriptors for Dynamic Lighting Conditions

Nicholas Carlevaris-Bianco and Ryan M. Eustice

Abstract—In many robotic applications, especially long-term
outdoor deployments, the success or failure of feature-based
image registration is largely determined by changes in lighting.
This paper reports on a method to learn visual feature point
descriptors that are more robust to changes in scene lighting
than standard hand-designed features. We demonstrate that,
by tracking feature points in time-lapse videos, one can easily
generate training data that captures how the visual appearance of
interest points changes with lighting over time. This training data
is used to learn feature descriptors that map the image patches
associated with feature points to a lower-dimensional feature
space where Euclidean distance provides good discrimination
between matching and non-matching image patches. Results
showing that the learned descriptors increase the ability to
register images under varying lighting conditions are presented
for a challenging indoor-outdoor dataset spanning 27 mapping
sessions over a period of 15 months, containing a wide variety
of lighting changes.

I. INTRODUCTION

Standard hand-designed visual features such as scale invari-
ant feature transform (SIFT) [1] and speeded up robust features
(SURF) [2] detect key-points in an image and then describe
the local visual appearance of these key-points as a vector.
Image registration can then be performed by matching the key-
points between images by comparing the L2 distance between
the descriptors. In order for matching to be successful, the
key-point detector and descriptors must be at least partially
robust to common image variations such as scale, rotation,
view-point, and lighting changes. Invariance with respect to
scale and rotation are usually accounted for at the feature de-
tection stage, where key-points will be detected at a canonical
scale and orientation. The description stage then focuses on
representing the appearance of the local region around the key-
point such that the descriptor is discriminative while being
robust to view-point and illumination changes.

In this paper we focus on increasing the illumination robust-
ness of feature point description to lighting changes. Hand-
designed descriptors such as SIFT and SURF have limited
lighting invariance—often allowing for affine transformations
in image intensity by considering the gradient of intensity,
and through other mechanisms such as mean subtraction and
normalization. However, in general, the change in appearance
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Fig. 1: Sample images from 3 of the 500 locations in the North
Campus dataset used for testing. Imagery was collected in 27 sessions
over the course of 15 months with lighting conditions ranging from
early morning to just after dusk. The success or failure of feature-
based image registration in this dataset is largely determined by the
similarity of lighting conditions.

caused by lighting affects the image intensity in a complex,
nonlinear way.

In many robotic applications, the success or failure of
feature-based image registration is largely determined by
changes in lighting. This is especially true for medium to
long-term outdoor applications, where the scene structure
has not changed dramatically, but images separated by even
a few hours may be unmatchable due to cyclical changes
in lighting. This phenomenon is illustrated in Fig. 1, which
shows example imagery from three different locations in our
experimental dataset. In this dataset, only a small fraction of
the possible matches are successfully registered using standard
features, largely because of cyclical changes in lighting.

In this work, we seek to learn a feature descriptor that is
more robust to changes in local image appearance caused
by lighting (Fig. 2). To observe how the local appearance
of image patches changes under dynamic lighting condi-
tions, we first track key-points and their associated image
patches through time-lapse video using a representative train-
ing dataset. We then train a feature descriptor using matching
and non-matching pairs of image patches sampled from these
patch tracks. A contrastive cost function is used so that
matching patches are mapped close together (in terms of
Euclidean distance in feature space) while separating non-
matching patches. The resulting descriptor is more robust to
the types of lighting variation observed in the training data.

Fig. 2: Illustration of the learning method. Pairs of image patches
labeled either as matching (green) or non-matching (red) are supplied
as input to a feature descriptor function, fθ( · ), parameterized by
θ, that maps the input patch to a feature vector. A contrastive cost
function, l( · ), based on the Euclidean distance between the feature
vectors, encourages matching feature vectors to be close together
in feature space while encouraging non-matching features to be far
apart. By learning parameters θ that minimize this cost function,
we produce a mapping to a feature space where Euclidean distance
captures the similarity and differences amongst the training pairs. By
training with data that includes variation due to changes in lighting,
the feature descriptor learns to be robust to lighting variation.

The remainder of this paper is outlined as follows: In
Section II, we discuss existing work related to the proposed
method. The descriptor learning method is described in Sec-
tion III. Section IV contains details of the training process,
including the collection of training data. Experimental results
are provided in Section V. Finally a discussion and concluding
remarks are provided in Sections VI and VII.

II. RELATED WORK

Given the limitations of existing visual feature descriptors,
several proposed methods address the difficulties in matching
images collected under varying lighting conditions at a sys-
tems level. In a mapping and navigation context, both Konolige
and Bowman [3] and Churchill and Newman [4] add new
example views or visual “experiences” when the current view
cannot be registered against previous views. This addresses the
problem of changing lighting by capturing several examples of
how a location might look under different lighting conditions.
Similarly, in Johns and Yang [5, 6], locations are modeled
with a collection of features observed at different points in
time. These works are mostly orthogonal to the proposed
method, and would benefit from features that are more robust
to lighting change, because better features reduce the number
of samples needed to model a location.

Several recent works have investigated whole image place
recognition under changing appearance conditions, including
[6–9]. In Lategahn et al. [8], a set of standard descriptor
“building blocks” is defined. Place recognition performance is
then optimized by searching the space of possible descriptors
constructed from these building blocks. Neubert et al. [7]
attempt to predict how a location will look at a different point
in time by learning a mapping between appearance codewords.
They then perform place recognition between the current
image and the predicted image. The formulation, however,
focus on changes between two distinct states (e.g., summer
and winter) and not continual changes such as those caused by
lighting. In Milford et al. [9], whole image place recognition is

performed over extreme changes in lighting from day to night
by aggressively down-sampling and contrast normalizing the
images before comparison.

In this work, we focus on geometric registration through
point correspondence as opposed to whole image place recog-
nition. For some applications, like loop-closure detection in
metric mapping, even if one can recognize places under a
high degree of lighting variation, it may not be useful if one
cannot extract a metric estimate of the motion between the
camera views [10]. It is worth noting that the feature descrip-
tors learned using our proposed method could be used in a
bag-of-words model [11, 12] for place recognition, however,
evaluating if this would improve the robustness with respect
to lighting remains future work.

Many methods have been proposed that leverage machine
learning to improve the performance of feature descriptors
[10, 13–18]. In Babenko et al. [13], feature matching is
cast as a binary classification problem where one attempts to
determine if two image patches do or do not match. Boosting
is then used with a set of simple hand-designed features to
learn a classifier appropriate for a specific domain. In Hua
et al. [14], Winder and Brown [15], Winder et al. [16], and
Brown et al. [17], the parameters of fixed descriptor pipelines
(often a variant of the DAISY descriptor [19]) are optimized
to improve descriptor performance. Similarly, in Stavens and
Thrun [20], the parameters of standard descriptors, including
SIFT, are optimized for specific domains. Ranganathan et al.
[10] use the fine vocabulary method of [21] to learn a
probability distribution over visual words in an attempt to
capture which visual words can be produced by the same
scene feature under various lighting conditions. Standard place
recognition and feature matching are then reformulated to
account for the learned distribution. Both Philbin et al. [22]
and Shakhnarovich [23] learn an embedding on top of SIFT
features. This is similar to the proposed method except that
we learn an embedding directly from the raw pixel input as
opposed to on top of a hand-designed feature descriptor. The
recent work by Trzcinski et al. [18], which uses boosting
to learn a binary descriptor, is most similar to our proposed
method in that it learns a descriptor directly from raw pixel
data in a supervised setting. However, our proposed method
differs in its learning method, descriptor model, and also in
its focus on robustness to changes in lighting.

To learn an illumination robust feature descriptor we employ
a training scheme referred to as a “Siamese” network [24–
28], with the goal of minimizing a contrastive cost function
[25, 26, 28] that encourages a nonlinear mapping to a lower-
dimensional space where matching features are close together
and non-matching features are far apart in Euclidean distance.
This goal is often referred to as embedding learning, manifold
learning, or distance metric learning.

Siamese networks have been employed in a wide range
of applications including signature verification in Bromley
et al. [24], face recognition in Chopra et al. [25], and object
recognition in Hadsell et al. [26] and Mobahi et al. [27]. An
especially compelling result was presented in Taylor et al.
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