## Current Trends in Machine Learning

### **Preparation Meeting**

Rudolph Triebel, Vladislav Usenko, Caner Hazirbas

### What you will learn in the seminar

- Get an overview on current trends in machine learning
- Read and understand scientific publications
- Write a scientific report
- Prepare and give a talk

#### **Important Dates**

- First Meeting: 8.10.2014 (today)
  - Fix assignment of papers and date
- Choose your topic until 15.10.2014 (next week, first come first serve!)
- Deadline for the report: 27.02.2015
- Dates for the talks:
  - 7.01.2015
  - 14.01.2015
  - •21.01.2015
  - •28.01.2015



#### **Preparation**

- Please do not work on your topic completely alone
- → Meet at least twice with your supervisor
- Recommended schedule
  - 1 month before your talk: Meet your supervisor and discuss paper
  - 1 week before your talk: Meet your supervisor to discuss your slides
  - [optional] after the talk: Feedback of your supervisor regarding the talk
  - 1 week before 28.02.14: Submit a draft of your report

#### Report and Talk

- Send PDF (not PPTX, not DOC) via email to your supervisor, Latex template available on the webpage
- Recommended length: 6-8 pages
- Required: Minimum 6, Maximum 10 pages
- Language: English or German

#### **Hints for Your Talk**

- 20 min. + 5–10 min. for discussion
- Don't put too much information on one slide
  - 1-2 min. per slide → 10-20 slides
- Recommended structure
  - Introduction, Problem Motivation, Outline
  - Approach
  - Experimental results
  - Discussion
  - Summary of (scientific) contributions



#### **Evaluation Criteria**

- Gained expertise in the topic
- Quality of your talk
- Quality of the report
- Active participation in the seminar is required (ask questions, comment talks)

### Regular Attendance Is Required

- Attendance at each appointment is necessary
- In case of absence: Medical attest

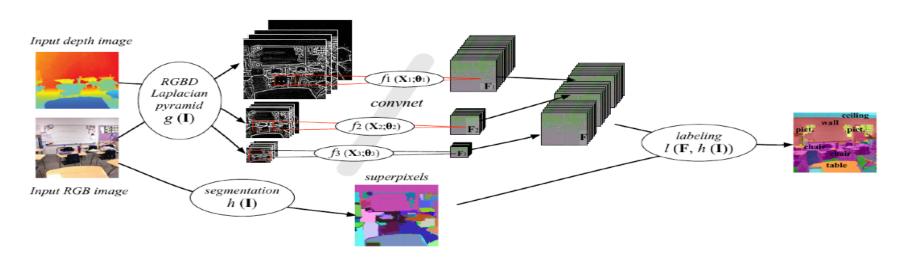
### **Overview of available Topics**



### Indoor Semantic Segmentation using Depth Information

[Couprie et al., ICLR 2013]

- Multi-class segmentation of indoor scenes with RGB-D inputs
- Multi-scale feature extraction (Convolutional Networks, Deep Learning)





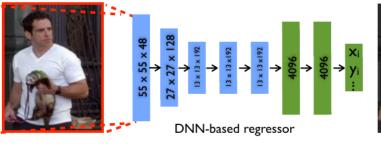
#### Deep Pose: Human Pose Estimation via Deep Neural Networks

[Toshev and Szegedy, CVPR 2014][Google]

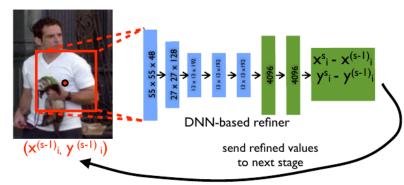
- Human pose estimation based on DNN
- DNN based pose regression



Initial stage Stage s









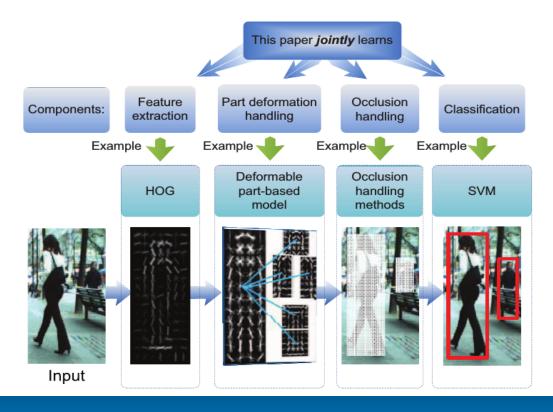
 $220 \times 220$ 



### Joint Deep Learning for Pedestrian **Detection**

[Ouyang and Wang, ICCV 2013]

- Pedestrian Detection
- Deep Learning framework





### Pose Estimation and Segmentation of People in 3D Movies

[Alahari et al., ICCV 2013]

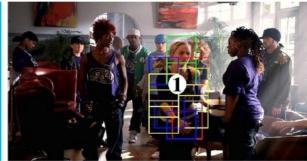
- Pixel-wise segmentation of multiple people
- Pose estimation
- Stereoscopic videos



(a) Original frame (left)



(c) Unary cost for person 1



(e) Estimated pose for person 1





(b) Disparity

(d) Smoothness cost

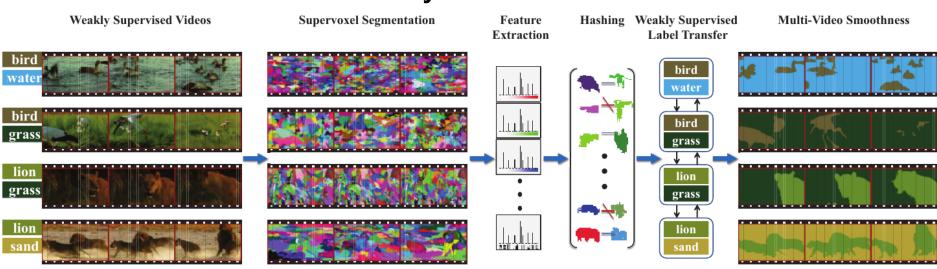
(f) Segmentation result



### Weakly Supervised Multiclass Video Segmentation

[Liu et al., CVPR 2014]

- Nearest neighbor-based label transfer scheme for weakly supervised video segmentation
- Hashing for metric learning handles both metric and semantic similarity





### **Unsupervised Spectral Dual Assignment Clustering of Human Actions in Context**

[Jones and Shao, CVPR 2014]

- Unsupervised human action clustering using contextual relations between actions and scenes
- Dual Assignment k-Means (DAKM)
- Spectral DAKM for realistic data



Diving Basketball, Tennis, Volleyball



Basketball, Golf, Juggling



Biking, Walking, Riding, Juggling



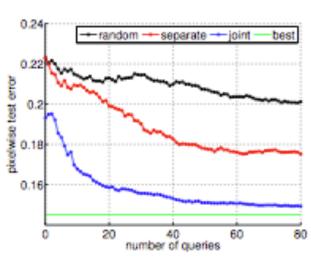
#### **Latent Structured Active Learning**

[Wenjie Luo, Schwing, Urtasun]

- Combine structured prediction problems with active learning
- Use weakly supervised learning
- Application to predict the 3D layout of rooms from single images

```
Algorithm 1 latent structured prediction

Input: data \mathcal{D}, initial weights w
repeat
repeat
//solve latent variable prediction problem
\min_d f_2 + f_3 \text{ s.t. } \forall (x,y) \ d_{(x,y)} \in \mathcal{D}_{(x,y)}
until convergence
//message passing update
\forall (x,y), i \in \mathbb{S} \quad \lambda_{(x,y),i} \leftarrow \nabla_{\lambda_{(x,y),i}} (f_1 + f_2) = 0
//gradient step with step size \eta
w \leftarrow w - \eta \nabla_w (f_1 + f_2)
until convergence
Output: weights w, beliefs d
```





### Decision Jungles: Compact and Rich Models for Classification

[Shotton et al.]

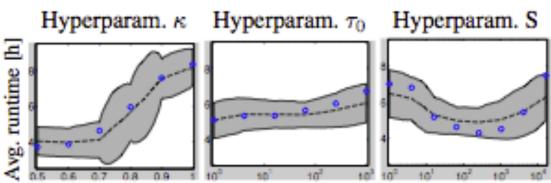
- Extension of Decision trees to DAGs
- Learning features and structure using node merging
- Results in less memory and better generalization



### An Efficient Approach for Assessing Hyperparameter Importance

[Hutter el al.]

- Hyperparameters are crucial elements in most learning approaches
- Propose an efficient marginalization technique for random forest predictions
- Use that to quantify the importance of hyper parameters





### SOML: Sparse Online Metric Learning with Application to Image Retrieval

[Gao et al.]

- Learn sparse distance functions from highdimensional data
- More efficient than nonsparse metric learning
- Application to Image Retrieval

```
Algorithm 1 SOML-TG-Sparse Online Metric Learning
via Truncated Gradient
Input: Training Triplets: (\mathbf{x}, \mathbf{x}_t^+, \mathbf{x}_t^-), t = 1, \dots, n.
Output: The weight vector w.

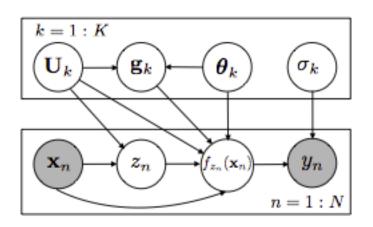
 Initialize w<sub>1</sub> = 0; α = ηλ

 2: repeat
          Receive a triplet instance (\mathbf{x}_t, \mathbf{x}_t^+, \mathbf{x}_t^-),
          Suffer loss \mathcal{L}((\mathbf{x}_t, \mathbf{x}_t^+, \mathbf{x}_t^-); \mathbf{w}_t) measured by (7)
          if \mathcal{L}((\mathbf{x}_t, \mathbf{x}_t^+, \mathbf{x}_t^-); \mathbf{w}_t) > 0 then
             \mathbf{v} = \mathbf{w}_t - \eta [\mathbf{x}_t \odot (\mathbf{x}_t^+ - \mathbf{x}_t^-)];
             for j=1 to m do
                  if \mathbf{v}_j \geq 0 then
                     \mathbf{w}_{t+1,j} = \max(0, \mathbf{v}_j - \alpha);
                     \mathbf{w}_{t+1,j} = \min(0, \mathbf{v}_j + \alpha);
11:
                  end if
13:
              end for
          end if
15: until CONVERGENCE
```

### Fast Allocation of Gaussian Process Experts

[Nguyen and Bonilla]

- Non-parametric Bayesian regression using a mixture of GPs
- Fast variational inference procedure for learning hyper parameters
- Results on large-scale data set with 10<sup>5</sup> training points



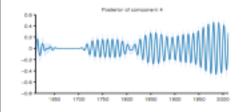
### Automatic Construction and Natural-Language Description of Nonparametric Regression Models

[LLoyd et al.]

- Non-parametric (GP) formulation of functions that model high-level properties, e.g. smoothness
- Compositional structure of the "language of models"
- Results in an automated way to describe data

This component is approximately periodic with a period of 10.8 years. Across periods the shape of this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function within each period is very smooth and resembles a sinusoid. This component applies until 1643 and from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82% from 0.18 to 0.15.



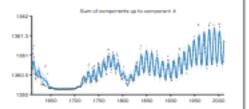


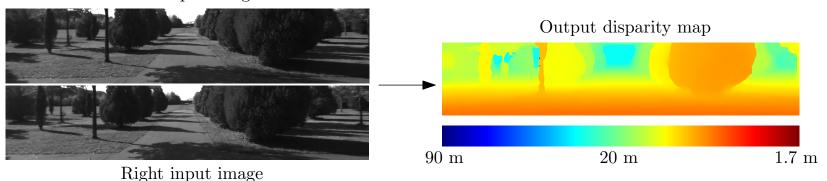
Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of components with data (right)

### Computing the Stereo Matching Cost with a Convolutional Neural Network

[Jure Zbotar, Yann LeCun]

- Estimate depth information for each pixel from stereo images
- Train Convolutional Neural Network to predict how well image patches match
- Refine disparity using semi-global matching and consistency checking

Left input image







# Autonomous Active Recognition and Unfolding of Clothes using Random Decision Forests and Probabilistic Planning

[Doumanoglou et al]

- Clothes recognition from depth images using Random Decision Forests
- Unfolding an article of clothing by estimating and grasping key points identified using Hough Forests









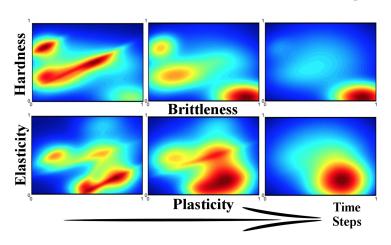




### Learning Haptic Representation for Manipulating Deformable Food Objects

[Mevlana Gemici, Ashutosh Saxena]

- Design actions that obtain haptic data with information about physical properties of the object
- Extract features based on manipulators configuration, effort and dynamics
- Discover Haptic Categories through Dirichlet Process







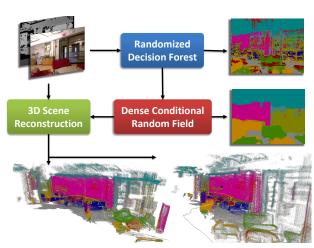


### Dense 3D Semantic Mapping of Indoor Scenes from RGB-D Images

[Alexander Hermans, Georgios Floros, Bastian Leibe]

- Consistent 3D semantic reconstruction of indoor scenes
- Fast 2D semantic segmentation approach based on Randomized Decision Forests
- 2D-3D label transfer based on Bayesian updates and dense pairwise 3D Conditional Random Fields.



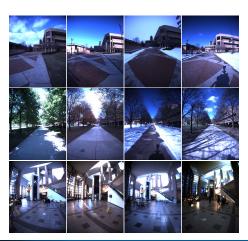


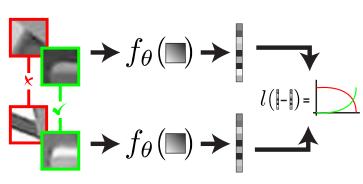


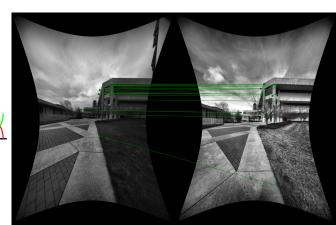
### Learning Visual Feature Descriptors for Dynamic Lighting Conditions

[Nicholas Carlevaris-Bianco, Ryan Eustice]

- Use Machine Learning to find descriptors that can be used for long-term outdoor deployments
- Track feature points in time-lapse videos to acquire training data
- Convolutional multi-layer perceptron used as descriptor









### **Enjoy the seminar!**