
Variational Methods for Computer Vision: Exercise Sheet 1

Exercise: October 23, 2014

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, how-
ever, writing it down will help you present your answer during the tutorials.

1. Let X be an arbitrary set. A metric on X is a function

d : X ×X → R

satisfying for all x, y, z ∈ X the following conditions:

• d(x, y) ≥ 0, (non-negativity)
• d(x, y) = 0 ⇔ x = y, (identity of indiscernibles)
• d(x, y) = d(y, x), (symmetry)
• d(x, y) ≤ d(x, z) + d(z, y). (subadditivity / triangle inequality)

Verify whether or not the following functions are metrics:

(a) For X = Rn, the Manhattan distance:

d(x, y) =

n∑
i=1

|xi − yi|.

(b) For X = Rn, the Mahalanobis distance:

d(x, y) = 〈x− y,Q(x− y)〉
1
2 ,

where Q ∈ Rn×n is a symmetric positive definite matrix.
(c) The Kullback-Leibler (KL) divergence between two probability distributions onR:

d(x, y) = KL(x‖y) = −
∫
R

x(t) ln
y(t)

x(t)
dt.

2. Let f, g, h ∈ L1(R) be absolutely integrable functions. Consider the convolution of the func-
tions f and g:

(f ∗ g)(x) =
∫
R

f(y) g(x− y) dy.

(a) Show that:

(f ∗ g) ∗ h = f ∗ (g ∗ h) and f ∗ (g + h) = f ∗ g + f ∗ h.

(b) Let F denote the Fourier transform operator:

F{f} := f̂(ν) =

∫
R

f(x)e−2πixν dx.

Prove that the Fourier transform of the convolution of two functions is the same as the the
pointwise multiplication of the respective Fourier transforms hence:

F{f ∗ g} = F{f} · F{g}.

What implications does this have for computing the convolution?



(c) Additionally let f and g be continuously differentiable. Show that:

d

dx
(f ∗ g) = df

dx
∗ g =

dg

dx
∗ f.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Download the archive vmcv ex01.zip and unzip it on your home folder. In there should be
a file named coins.png.

2. Start Matlab and load the unzipped image using the following command:

f=double(imread(’coins.png’));

Show the image using Matlab’s command:

figure; imshow(uint8(f));

Also familiarize yourself with the following commands:

for, size, zeros, ones, matrix indexing

using Matlab’s great documentation or the Tutorials listed below.

3. Compute the convolution of the image with a Gaussian kernel. In theory, the Gaussian distribu-
tion is nonzero everywhere, however in practice we restrict ourself to truncated kernels. Set the
radius of the kernel to r = ceil(3× σ). The discrete convolution is given as:

g(i, j) = (w ∗ f)(i, j) :=
r∑

m=−r

r∑
n=−r

w(m,n) f(i−m, j − n).

The discrete truncated Gaussian kernel can be written as follows:

w(m,n) ∝ exp

(
−m

2 + n2

2σ2

)
In order to stay consistent with the continuous formulation of the Gaussian distribution make
sure to normalize the kernel function such that the following holds:

r∑
m=−r

r∑
n=−r

w(m,n) = 1.

For simplicity ignore pixels where the convolution filter goes beyond the edge of the image.

4. Let W and H denote respectively the width and height of the input image f . Compute the
the gradient ∇f = (∂+x f, ∂

+
y f)

T of the image using the discretization scheme of forward
differences:

(∂+x f)i,j =

{
fi+1,j − fi,j if i < W
0 i =W.

(∂+y f)i,j =

{
fi,j+1 − fi,j if j < H
0 j = H.

Notice that the boundary values of the gradient are set to zero.



5. Try solving exercise 4 by avoiding using any for loops this time. Can you tell the difference?

6. Let fσ be the input image convolved with a Gaussian kernel of standard deviation σ. Compute
the magnitude of the Gradient |∇fσ| for different values for σ. What do you observe?

Matlab-Tutorials:
http://www.math.utah.edu/lab/ms/matlab/matlab.html
http://www.math.ufl.edu/help/matlab-tutorial/
http://www.glue.umd.edu/˜nsw/ench250/matlab.htm


