## Variational Methods for Computer Vision: Exercise Sheet 1

Exercise: October 23, 2014

## Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $X$ be an arbitrary set. A metric on $X$ is a function

$$
d: X \times X \rightarrow \mathbb{R}
$$

satisfying for all $x, y, z \in X$ the following conditions:

- $d(x, y) \geq 0$, (non-negativity)
- $d(x, y)=0 \Leftrightarrow x=y, \quad$ (identity of indiscernibles)
- $d(x, y)=d(y, x)$,
- $d(x, y) \leq d(x, z)+d(z, y)$.
(symmetry)
(subadditivity / triangle inequality)
Verify whether or not the following functions are metrics:
(a) For $X=\mathbb{R}^{n}$, the Manhattan distance:

$$
d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

(b) For $X=\mathbb{R}^{n}$, the Mahalanobis distance:

$$
d(x, y)=\langle x-y, Q(x-y)\rangle^{\frac{1}{2}}
$$

where $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix.
(c) The Kullback-Leibler (KL) divergence between two probability distributions on $\mathbb{R}$ :

$$
d(x, y)=\mathrm{KL}(x \| y)=-\int_{\mathbb{R}} x(t) \ln \frac{y(t)}{x(t)} \mathrm{d} t
$$

2. Let $f, g, h \in L^{1}(\mathbb{R})$ be absolutely integrable functions. Consider the convolution of the functions $f$ and $g$ :

$$
(f * g)(x)=\int_{\mathbb{R}} f(y) g(x-y) \mathrm{d} y
$$

(a) Show that:

$$
(f * g) * h=f *(g * h) \quad \text { and } \quad f *(g+h)=f * g+f * h
$$

(b) Let $\mathcal{F}$ denote the Fourier transform operator:

$$
\mathcal{F}\{f\}:=\hat{f}(\nu)=\int_{\mathbb{R}} f(x) e^{-2 \pi i x \nu} \mathrm{~d} x
$$

Prove that the Fourier transform of the convolution of two functions is the same as the the pointwise multiplication of the respective Fourier transforms hence:

$$
\mathcal{F}\{f * g\}=\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}
$$

What implications does this have for computing the convolution?
(c) Additionally let $f$ and $g$ be continuously differentiable. Show that:

$$
\frac{d}{d x}(f * g)=\frac{d f}{d x} * g=\frac{d g}{d x} * f
$$

## Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Download the archive vmcv_ex01. zip and unzip it on your home folder. In there should be a file named coins.png.
2. Start Matlab and load the unzipped image using the following command:
```
f=double(imread('coins.png'));
```

Show the image using Matlab's command:

```
figure; imshow(uint8(f));
```

Also familiarize yourself with the following commands:

```
for, size, zeros, ones, matrix indexing
```

using Matlab's great documentation or the Tutorials listed below.
3. Compute the convolution of the image with a Gaussian kernel. In theory, the Gaussian distribution is nonzero everywhere, however in practice we restrict ourself to truncated kernels. Set the radius of the kernel to $r=\operatorname{ceil}(3 \times \sigma)$. The discrete convolution is given as:

$$
g(i, j)=(w * f)(i, j):=\sum_{m=-r}^{r} \sum_{n=-r}^{r} w(m, n) f(i-m, j-n)
$$

The discrete truncated Gaussian kernel can be written as follows:

$$
w(m, n) \propto \exp \left(-\frac{m^{2}+n^{2}}{2 \sigma^{2}}\right)
$$

In order to stay consistent with the continuous formulation of the Gaussian distribution make sure to normalize the kernel function such that the following holds:

$$
\sum_{m=-r}^{r} \sum_{n=-r}^{r} w(m, n)=1
$$

For simplicity ignore pixels where the convolution filter goes beyond the edge of the image.
4. Let $W$ and $H$ denote respectively the width and height of the input image $f$. Compute the the gradient $\nabla f=\left(\partial_{x}^{+} f, \partial_{y}^{+} f\right)^{\top}$ of the image using the discretization scheme of forward differences:

$$
\begin{aligned}
& \left(\partial_{x}^{+} f\right)_{i, j}= \begin{cases}f_{i+1, j}-f_{i, j} & \text { if } i<W \\
0 & i=W\end{cases} \\
& \left(\partial_{y}^{+} f\right)_{i, j}= \begin{cases}f_{i, j+1}-f_{i, j} & \text { if } j<H \\
0 & j=H\end{cases}
\end{aligned}
$$

Notice that the boundary values of the gradient are set to zero.
5. Try solving exercise 4 by avoiding using any for loops this time. Can you tell the difference?
6. Let $f_{\sigma}$ be the input image convolved with a Gaussian kernel of standard deviation $\sigma$. Compute the magnitude of the Gradient $\left|\nabla f_{\sigma}\right|$ for different values for $\sigma$. What do you observe?

## Matlab-Tutorials:

http://www.math.utah.edu/lab/ms/matlab/matlab.html
http://www.math.ufl.edu/help/matlab-tutorial/
http://www.glue.umd.edu/~nsw/ench250/matlab.htm

