Variational Methods for Computer Vision: Exercise Sheet 4

Exercise: November 13, 2014

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex real valued function. A point $\tilde{x} \in \mathbb{R}^{n}$ is a local minimizer of f if there exists a neighboorhood $\mathcal{N}(\tilde{x})$ such that $f(\tilde{x}) \leq f(x), \forall x \in \mathcal{N}(\tilde{x})$. A stationary point of f is a point at which the gradient vanishes, hence a point x^{*} which satisfies the following equation:

$$
\nabla f\left(x^{*}\right)=0
$$

Prove the following statements:
(a) Every local minimizer of f is a global minimizer.
(b) Suppose f is additionally differentiable. Every stationary point of f is a global minimizer.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real valued function. The epigraph of f is the following set:

$$
\text { epi } f:=\left\{(u, a) \in \mathbb{R}^{n} \times \mathbb{R} \mid f(u) \leq a\right\}
$$

Prove that f is convex if and only if its epigraph is a convex set.
3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be real valued convex functions. Show whether or not the following functions are convex:
(a)

$$
h(x):=\alpha f(x)+\beta g(x), \text { where } \alpha, \beta>0 .
$$

(b)

$$
h(x):=\max (f(x), g(x))
$$

(c)

$$
h(x):=\min (f(x), g(x))
$$

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable convex functions. Find the condition on f that assures the function:

$$
h(x):=f(g(x))
$$

is convex by using the fact that function h is convex if and only if $h(x)^{\prime \prime} \geq 0$.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. In the lecture we encountered the following cost function for denoising images:

$$
\begin{equation*}
E_{\lambda}(u)=\frac{1}{2} \sum_{i=1}^{N}\left(f_{i}-u_{i}\right)^{2}+\frac{\lambda}{2} \sum_{i=1}^{N} \sum_{j \in \mathcal{N}(i)}\left(u_{i}-u_{j}\right)^{2} . \tag{1}
\end{equation*}
$$

where u is the seeked image, f is the input image and where $\mathcal{N}(i)$ denotes a neighborhood of pixel i. Minimize the above function by solving the linear system of equations which arises from the optimality condition, using the Gauss-Seidel method.
2. To test the denoising capabilities of your method, degrade the input image with Gaussian noise (MATLAB: help randn). Does your result depend on the initialization? Explain why/why not. Also explain how the solution depends on the parameter λ.

Matlab-Tutorials:

```
http://www.math.utah.edu/lab/ms/matlab/matlab.html
http://www.math.ufl.edu/help/matlab-tutorial/
http://www.glue.umd.edu/~nsw/ench250/matlab.htm
```

