
Variational Methods for Computer Vision: Exercise Sheet 5

Exercise: November 20, 2014

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, how-
ever, writing it down will help you present your answer during the tutorials.

1. Let u ∈ C2(Ω;R) be a real valued function and Ω ⊂ R. And let

E(u) =

∫
Ω
L(u(x), u′, u′′) dx

be a real valued Gâteaux differentiable functional which depends on:

u(x), u′ =
d

dx
u(x), and u′′ =

d2

dx2u(x).

Calculate the Gâteaux derivative of E(u):

dE(u)

du

∣∣∣∣
h

for any differentiable direction h.

2. Let u ∈ C1(R3;R) be a real valued function. And let

E(u) =

∫
Ω
L(u(x),∇u(x)) dx

be a real valued Gâteaux differentiable functional. Calculate the Gâteaux derivative of E(u).

3. Let u ∈ C1(Ω;R) be a real valued function with Ω ⊂ R2. Derive the Euler-Lagrange Equation
of the following energies:

(a) The total variation of the function u

E1(u) =

∫
Ω
|∇u(x)| dx.

(b) The anisotropic total variation

E2(u) =

∫
Ω

√
∇u(x)TD(x)∇u(x) dx,

where D(x) ∈ R2×2 is a real valued matrix.
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Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Finish all exercises from the previous sheet.

2. In the lecture you encountered the continuous counterpart of the denoising energy from the
previous exercise sheet

λ

2

∫
Ω

(u− f)2 dx +
1

2

∫
Ω
|∇u(x)|2 dx,

where Ω ⊂ R2 represents the image domain, u : Ω→ R denotes the optimization variable and
f : Ω→ R stands for the input image. The corresponding Euler-Lagrange equation is given as

λ(u− f)−∆u = 0. (1)

In the finite-dimensional setting, consider the images as vectors u ∈ RN , f ∈ RN .

(a) Discretize the continuous gradient operator as ∇ = (∂+
x ∂+

y )T ∈ R2N×N using forward
differences with Neumann boundary conditions, representing it as a sparse matrix (help
spdiags, help speye).

(b) Solve the linear system arising from (1) using the backslash command (help \). Note
that the divergence is the negative adjoint of the gradient, thus ∆ = div∇ = −∇T∇.

3. The Rudin-Osher-Fatemi (ROF) functional1 was one of the first models for image denoising
based on energy minimization. The ROF model posesses the nice property of removing noise
in the image while preserving discontinuities. It can be formulated as follows:

EROF(u) :=
λ

2

∫
Ω

(u− f)2 dx +

∫
Ω
|∇u(x)| dx,

where again Ω ⊂ R2 represents the image domain, u : Ω → R denotes the optimization
variable and f : Ω → R stands for the input image. Hence the ROF model is a weighted sum
of the total variation energy and a data similarity measure also called data term.

(a) In the theoretical exercises we calculated the Euler-Lagrange equation of the total variation
of a function u which is a part of the ROF model. Write down the complete optimality
condition for the ROF model.

(b) Obtain an optimal u∗ = arg min EROF(u) by applying the gradient descent scheme shown
in the lecture, and take care of the nondifferentiability of | · | at 0. Explain the edge
preserving properties by looking at the gradient descent equation of EROF.

Matlab-Tutorials:
http://www.math.utah.edu/lab/ms/matlab/matlab.html
http://www.math.ufl.edu/help/matlab-tutorial/
http://www.glue.umd.edu/˜nsw/ench250/matlab.htm

1L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D., 1992.
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