Variational Methods for Computer Vision: Solution Sheet 1

Exercise: 23 October 2014

Part I: Theory

1. A metric expresses an intuitive notion of distance on an abstract set X.

(a) We verify all four conditions:

e Summands are all positive due to the absolute value = d(x,y) > 0.

e r =y = d(z,y) = 0 follows directly by substitution. For the other direction we
assume d(x,y) = 0 which implies |z; — y;| = 0 for all 1 < ¢ < n, which in turn
implies x; = y;.

e Symmetry: Follows directly from symmetry of absolute value function.

e Subadditivity: Follows directly from the basic triangle inequality (|z+y| < |z|+]|y|):

|zi — zi| = @i — yi +yi — 21| < @i —yil + |yi — 2.
= We have verified that the Manhattan (or Taxicab) distance is a metric. Note that the
Manhattan distance is induced by the standard ¢! norm on R"™: d(z,y) = ||z — y||1.
(b) Again we check the individual conditions:
e Follows from () being positive definite. (x, Qz) > 0, Vo € R".
e r =y = d(x,y) = 0 again follows directly. Assume (x —y,Q(x —y)) = 0 and

x # y. Then we have (z,Qz) = 0 for some z = x — y # 0. This violates positive
definiteness of ().

e Symmetry: d(z,y) = (x —y,Q(z —y)) = (y —z,Q(y — z)) = d(y, z)
e For subadditivity, let us start with the following:

NG

lo+yl? = (@ +y. Q@ +y)) = (Q4w +1). Q3 (@ +y))
= Q3x|? +2(Q%x, @by ) + @yl
< Q3 +2/|Q2 x| |Q3yll + | Qyl?
= (IQ7z] + 1Q2yl)? = (=l + llylle)*

This implies ||z + yl|q < ||z|lo + [|¥|l@. Now we have

dz,y) = |lr —yllg=llr — 2+ 2 -yl
<llz—zllg+ |z -yl = d(x,2) +d(z,y).

Note that it would also suffice to show that (z, Qy) = (z,y), defines a valid inner prod-

uct on R"™ which in turn induces a norm ||z|¢ = (z, :c>1Q/2 which in turn induces the
Mahalanobis distance d(z,y) = ||z — y||¢-

The following relationships hold: Inner Product AU Norm "U® Metric.

(c) The Kullback-Leibler divergence can be interpreted as a measure of dissimilarity between
two probability distributions. It is however not symmetric, and we show that by construct-
ing a counterexample. Let py, p2 be probability distributions with



1 if —0.5<2<0.5, .
and po(x) =415 if0<z<0.5,

0 else,
0 else.

05 if —05<z<0,
p1(z) :{

It can be verified that these are indeed probability distributions. Then we have

2
d(p1,p2) =0.5(In2 4+ In g) ~ 0.144,

1 3
d(p2,p1) = 0.5(0.51n 3 +1.5In 5) ~ 0.131.

Furthermore the Kullback-Leibler divergence does not satisfy the triangle inequality. Note
that it can be shown that it still satisfies

e d(z,y) >0,

e dlz,y) =0z =y.
A function d : X x X — IR which satisfies only these two conditions is sometimes called
a premetric.

2. (a) Let us prove associativity of convolution first:

((f*g)*h)(u)=/R(f*g)(x)h(u—w)dw

:/ </ f(y)g(ﬂf—y)dy> h(u — z)dx
//f Va(u — 2) dy da

/ fly Yh(u — ) dedy (Fubini’s theorem)
Iy

( x —y)h(u — z)dzdy
i (z+y) -

) /R 9(
Y) / g((x+y) —y)h(u — (x +y))derdy (Translation invariance)
) [ s@hia—y) =) dzdy

-/,
-,
-/,

- [

/f (g% h)(u —y) dy
* (g * h))(u).

(b) For distributivity we have:
[ g+ h)(u /f (g + 1) (u - z) da
/f (u—z)+ f(x)h(u —z)dz

/f u—x)dx—f—/Rf(a:)h(u—x)dx
— ([ g+ Fh)(u).

(c) We start with the definition of the Fourier transform:

Fir o) = [ ([ fgte - may) e a
- [ 1w ( /| g(x—y)emdx) dy.



Introducing the substitution z = z — y, dz = dx we arrive at

/}R f(y) < /R g(w—y)e%””dw) dy = / f(y) ( / 9(2)62’”(”””d2> dy
/f —27rzyy/ g(2)e 2" 42 dy
/ Fy)e ™ dy /R (2)e ™ dz.

=F{f}() =F{g}(¥)

As the Fourier transform can be implemented to run in O(n log n) time, convolutions can
be computed efficiently by exploiting this property:

frg=F HF{f} Fla}})
(d) Let us consider the difference quotient

(fxg)@+1t)—(f*g)(x gz +t—y) —glx—vy)
t /f t d

Y.

For t — 0 it follows that

gatt—y —glz-y dg7
t dx

which in turn yields
d dg
%(f *g) = f* dz

The remaining equality can be shown analogously using commutativity of convolution.



