Variational Methods for Computer Vision: Solution Sheet 1

Part I: Theory

1. A metric expresses an intuitive notion of distance on an abstract set X.
(a) We verify all four conditions:

- Summands are all positive due to the absolute value $\Rightarrow d(x, y) \geq 0$.
- $x=y \Rightarrow d(x, y)=0$ follows directly by substitution. For the other direction we assume $d(x, y)=0$ which implies $\left|x_{i}-y_{i}\right|=0$ for all $1 \leq i \leq n$, which in turn implies $x_{i}=y_{i}$.
- Symmetry: Follows directly from symmetry of absolute value function.
- Subadditivity: Follows directly from the basic triangle inequality $(|x+y| \leq|x|+|y|)$:

$$
\left|x_{i}-z_{i}\right|=\left|x_{i}-y_{i}+y_{i}-z_{i}\right| \leq\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|
$$

\Rightarrow We have verified that the Manhattan (or Taxicab) distance is a metric. Note that the Manhattan distance is induced by the standard ℓ^{1} norm on $\mathbb{R}^{n}: d(x, y)=\|x-y\|_{1}$.
(b) Again we check the individual conditions:

- Follows from Q being positive definite. $\langle x, Q x\rangle \geq 0, \forall x \in \mathbb{R}^{n}$.
- $x=y \Rightarrow d(x, y)=0$ again follows directly. Assume $\langle x-y, Q(x-y)\rangle=0$ and $x \neq y$. Then we have $\langle z, Q z\rangle=0$ for some $z=x-y \neq 0$. This violates positive definiteness of Q.
- Symmetry: $d(x, y)=\langle x-y, Q(x-y)\rangle=\langle y-x, Q(y-x)\rangle=d(y, x)$
- For subadditivity, let us start with the following:

$$
\begin{aligned}
\|x+y\|_{Q}^{2} & :=\langle x+y, Q(x+y)\rangle=\left\langle Q^{\frac{1}{2}}(x+y), Q^{\frac{1}{2}}(x+y)\right\rangle \\
& =\left\|Q^{\frac{1}{2}} x\right\|^{2}+2\left\langle Q^{\frac{1}{2}} x, Q^{\frac{1}{2}} y\right\rangle+\left\|Q^{\frac{1}{2}} y\right\|^{2} \\
& \leq\left\|Q^{\frac{1}{2}} x\right\|^{2}+2\left\|Q^{\frac{1}{2}} x\right\|\left\|Q^{\frac{1}{2}} y\right\|+\left\|Q^{\frac{1}{2}} y\right\|^{2} \\
& =\left(\left\|Q^{\frac{1}{2}} x\right\|+\left\|Q^{\frac{1}{2}} y\right\|\right)^{2}=\left(\|x\|_{Q}+\|y\|_{Q}\right)^{2} .
\end{aligned}
$$

This implies $\|x+y\|_{Q} \leq\|x\|_{Q}+\|y\|_{Q}$. Now we have

$$
\begin{aligned}
d(x, y) & =\|x-y\|_{Q}=\|x-z+z-y\|_{Q} \\
& \leq\|x-z\|_{Q}+\|z-y\|_{Q}=d(x, z)+d(z, y)
\end{aligned}
$$

Note that it would also suffice to show that $\langle x, Q y\rangle=\langle x, y\rangle_{Q}$ defines a valid inner product on \mathbb{R}^{n} which in turn induces a norm $\|x\|_{Q}=\langle x, x\rangle_{Q}^{1 / 2}$ which in turn induces the Mahalanobis distance $d(x, y)=\|x-y\|_{Q}$.
The following relationships hold: Inner Product $\xrightarrow{\text { induces }}$ Norm $\xrightarrow{\text { induces }}$ Metric.
(c) The Kullback-Leibler divergence can be interpreted as a measure of dissimilarity between two probability distributions. It is however not symmetric, and we show that by constructing a counterexample. Let p_{1}, p_{2} be probability distributions with

$$
p_{1}(x)=\left\{\begin{array}{ll}
1 & \text { if }-0.5 \leq x \leq 0.5, \\
0 & \text { else },
\end{array} \quad \text { and } \quad p_{2}(x)= \begin{cases}0.5 & \text { if }-0.5 \leq x \leq 0 \\
1.5 & \text { if } 0 \leq x \leq 0.5 \\
0 & \text { else }\end{cases}\right.
$$

It can be verified that these are indeed probability distributions. Then we have

$$
\begin{aligned}
& d\left(p_{1}, p_{2}\right)=0.5\left(\ln 2+\ln \frac{2}{3}\right) \approx 0.144 \\
& d\left(p_{2}, p_{1}\right)=0.5\left(0.5 \ln \frac{1}{2}+1.5 \ln \frac{3}{2}\right) \approx 0.131
\end{aligned}
$$

Furthermore the Kullback-Leibler divergence does not satisfy the triangle inequality. Note that it can be shown that it still satisfies

- $d(x, y) \geq 0$,
- $d(x, y)=0 \Leftrightarrow x=y$.

A function $d: X \times X \rightarrow \mathbb{R}$ which satisfies only these two conditions is sometimes called a premetric.
2. (a) Let us prove associativity of convolution first:

$$
\begin{aligned}
((f * g) * h)(u) & =\int_{\mathbb{R}}(f * g)(x) h(u-x) \mathrm{d} x \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(y) g(x-y) \mathrm{d} y\right) h(u-x) \mathrm{d} x \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} f(y) g(x-y) h(u-x) \mathrm{d} y \mathrm{~d} x \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} f(y) g(x-y) h(u-x) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g(x-y) h(u-x) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g((x+y)-y) h(u-(x+y)) \mathrm{d} x \mathrm{~d} y \quad \text { (Translation invariance) } \\
& =\int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g(x) h((u-y)-x) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y)(g * h)(u-y) \mathrm{d} y \\
& =(f *(g * h))(u)
\end{aligned}
$$

(b) For distributivity we have:

$$
\begin{aligned}
f *(g+h)(u) & =\int_{\mathbb{R}} f(x)(g+h)(u-x) \mathrm{d} x \\
& =\int_{\mathbb{R}} f(x) g(u-x)+f(x) h(u-x) \mathrm{d} x \\
& =\int_{\mathbb{R}} f(x) g(u-x) \mathrm{d} x+\int_{\mathbb{R}} f(x) h(u-x) \mathrm{d} x \\
& =(f * g+f * h)(u)
\end{aligned}
$$

(c) We start with the definition of the Fourier transform:

$$
\begin{aligned}
\mathcal{F}\{f * g\}(\nu) & =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(y) g(x-y) \mathrm{d} y\right) e^{-2 \pi i x \nu} \mathrm{~d} x \\
& =\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(x-y) e^{-2 \pi i x \nu} \mathrm{~d} x\right) \mathrm{d} y
\end{aligned}
$$

Introducing the substitution $z=x-y, \mathrm{~d} z=\mathrm{d} x$ we arrive at

$$
\begin{aligned}
\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(x-y) e^{-2 \pi i x \nu} \mathrm{~d} x\right) \mathrm{d} y & =\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(z) e^{-2 \pi i(z+y) \nu} \mathrm{d} z\right) \mathrm{d} y \\
& =\int_{\mathbb{R}} f(y) e^{-2 \pi i y \nu} \int_{\mathbb{R}} g(z) e^{-2 \pi i z \nu} \mathrm{~d} z \mathrm{~d} y \\
& =\underbrace{\int_{\mathbb{R}} f(y) e^{-2 \pi i y \nu} \mathrm{~d} y}_{=: \mathcal{F}\{f\}(\nu)} \underbrace{\int_{\mathbb{R}} g(z) e^{-2 \pi i z \nu} \mathrm{~d} z}_{=: \mathcal{F}\{g\}(\nu)}
\end{aligned}
$$

As the Fourier transform can be implemented to run in $\mathcal{O}(n \log n)$ time, convolutions can be computed efficiently by exploiting this property:

$$
f * g=\mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\} .
$$

(d) Let us consider the difference quotient

$$
\frac{(f * g)(x+t)-(f * g)(x)}{t}=\int_{\mathbb{R}} f(y) \frac{g(x+t-y)-g(x-y)}{t} \mathrm{~d} y
$$

For $t \rightarrow 0$ it follows that

$$
\frac{g(x+t-y)-g(x-y)}{t} \longrightarrow \frac{d g}{d x}
$$

which in turn yields

$$
\frac{d}{d x}(f * g)=f * \frac{d g}{d x}
$$

The remaining equality can be shown analogously using commutativity of convolution.

