Semiar: Selected Topics in Variational Image Processing

Orientational meeting

WS 2014/2015

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers Computer Vision Group Department of Computer Science Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Topics

updated 13.06.2014 0.1/29

What is happening here?

We briefly present 15 seminar topics.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

What is happening here?

- We briefly present 15 seminar topics.
- You register. We send out an email and ask you for your favourite topics.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

oout this semina

What is happening here?

- We briefly present 15 seminar topics.
- You register. We send out an email and ask you for your favourite topics.
- We'll send out an email who is presenting what and when.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this se

What is happening here?

- We briefly present 15 seminar topics.
- You register. We send out an email and ask you for your favourite topics.
- We'll send out an email who is presenting what and when.
- You study the provided literature and ask your supervisor for help if you get stuck.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

Jour triis

What is happening here?

- We briefly present 15 seminar topics.
- You register. We send out an email and ask you for your favourite topics.
- We'll send out an email who is presenting what and when.
- You study the provided literature and ask your supervisor for help if you get stuck.
- One week prior to your talk, you send your slides to your supervisor and meet for discussion.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

Dout this s

What is happening here?

- We briefly present 15 seminar topics.
- You register. We send out an email and ask you for your favourite topics.
- We'll send out an email who is presenting what and when.
- You study the provided literature and ask your supervisor for help if you get stuck.
- One week prior to your talk, you send your slides to your supervisor and meet for discussion.
- Starting from Oct. 29th the seminar will be every Wednesday at 2pm c.t. with two talks per meeting.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this semina

What is happening here?

- We briefly present 15 seminar topics.
- You register. We send out an email and ask you for your favourite topics.
- We'll send out an email who is presenting what and when.
- You study the provided literature and ask your supervisor for help if you get stuck.
- One week prior to your talk, you send your slides to your supervisor and meet for discussion.
- Starting from Oct. 29th the seminar will be every Wednesday at 2pm c.t. with two talks per meeting.
- Talks are 35min with 10min discussion afterwards.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this semina

What is happening here?

- We briefly present 15 seminar topics.
- You register. We send out an email and ask you for your favourite topics.
- We'll send out an email who is presenting what and when.
- You study the provided literature and ask your supervisor for help if you get stuck.
- One week prior to your talk, you send your slides to your supervisor and meet for discussion.
- Starting from Oct. 29th the seminar will be every Wednesday at 2pm c.t. with two talks per meeting.
- Talks are 35min with 10min discussion afterwards.
- The last seminar is the week before Christmas.
- You have to write a 5-7 page report about your topic which is due on Jan. 7th, 2015.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this semina

What you will learn in this seminar

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Topics

Goals

- Get an impression of recent advances in variational image processing in various applications.
- Learn how to study a recent research paper and get a deep understanding of one particular topic.
- · Write a scientific report.
- Practice giving scientific talks.

Requirements, or "is this something for me?"

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

bout this seminar

Topics

Necessary

- Good background and interest in mathematics.
- Working knowledge about basic linear algebra and multivariable calculus in finite dimensions.

Recommended

- Computer Vision fundamentals from any basic course.
- Having heard about variational methods.

Important Dates

- Semiar: Selected Topics in Variational Image Processing
- Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

- First meeting: Today (02.07.2014)
- Registration: starting from 04.07.
- We assign the topics and talks and will write you an email.
- Weekly presentations starting on Wednesday Oct. 29th, 14:15-16:00.
- Read and discuss your assigned topic with your supervisor early.
- Deliver and discuss your slides one week before your presentation.
- Hand in your report until Jan. 7th, 2015.

Preparation

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

bout this seminar

Topics

Please do not work on your topic completely alone!

- Meet your supervisor at least twice.
- We recommend: Discuss your topic with your supervisor one month before your talk.
- We require: Deliver and discuss your slides one week before your presentation.

About this seminar

- The report should contain an overview and the main contributions of your assignment.
- Length: 5-7 pages.
- Language: English or German.
- Write your report with Latex a template will be available on the course web page.
- Send a PDF via email to your supervisor.
- Hand in your report until Jan. 7th, 2015.

Presentation

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

bout this seminar

- 35min talk with 10min discussion afterwards.
- Don't put too much information on one slide 1-2 minutes per slide, i.e. not more than 35 slides!
- Language: English.
- You are free to choose the presentation software but need to export to PDF for discussion with your supervisor.

Evaluation Criteria

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Topics

You will be evaluated based on the following criteria:

- Gained expertise in the topic.
- Quality of your talk.
- Quality of your report.
- Active participation in the seminar is expected (questions + comments after the talks).

Attendance of each seminar is mandatory!
In case of absence: medical certificate.

Lectures on related topics

Variational Methods for Computer Vision

- Structured introduction to variational methods.
- Learn variational modelling for several applications.

Recent advances in computer vision: Numerical Methods for Variational Image Analysis

- After the modeling one typically ends up with $\hat{u} = \arg\min_{u} E(u)$
- This lecture is about the theory and implementation of numerical optimization methods for actually solving the above problem.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Topics

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Topics

Overview of available topics

• Introduction to image processing and inverse problems.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

- Introduction to image processing and inverse problems.
- Recover unknown image u from observed image f with noise η .

$$f = Au + \eta$$

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

- Introduction to image processing and inverse problems.
- Recover unknown image u from observed image f with noise η .

$$f = Au + \eta$$

- Highly ill-posed problem → regularization!
- Formulation as an energy minimization problem:

$$\underset{u}{\operatorname{argmin}} \ \underbrace{\|Au - f\|^2}_{Dataterm} + \underbrace{J(u)}_{Regularize}$$

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

ppics

- Introduction to image processing and inverse problems.
- Recover unknown image u from observed image f with noise η .

$$f = Au + \eta$$

- Highly ill-posed problem → regularization!
- Formulation as an energy minimization problem:

$$\underset{u}{\operatorname{argmin}} \ \underbrace{\|Au - f\|^2}_{Dataterm} + \underbrace{J(u)}_{Regularizer}$$

 Total Variation (TV) is one of the most versatile regularizers with many interesting properties.

(a) Original image

(b) Degraded image

(c) Wiener filter

(d) TV-deblurring

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

A Convex Formulation of Continuous Multi-Label Problems

- Many optimization problems in computer vision are nonconvex and even NP-hard.
- Direct / naive minimization usually leads to poor local optima.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

A Convex Formulation of Continuous Multi-Label Problems

- Many optimization problems in computer vision are nonconvex and even NP-hard.
- Direct / naive minimization usually leads to poor local optima.
- Replace initial nonconvex problem by a equivalent higher dimensional convex problem:

$$\underset{u:\Omega\to\Gamma}{\operatorname{argmin}} E(u) \quad \Rightarrow \quad \underset{u:\Omega\times\Gamma\to[0,1]}{\operatorname{argmin}} \widehat{E}(u)$$

Possible application: Stereo matching.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

An Approach to Vectorial Total Variation based on Geometric Measure Theory

Most real world images have multiple channels.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

An Approach to Vectorial Total Variation based on Geometric Measure Theory

- Most real world images have multiple channels.
- How to properly generalize TV from scalar (grayscale) images to vectorial (color) images?

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

pics

An Approach to Vectorial Total Variation based on Geometric Measure Theory

- Most real world images have multiple channels.
- How to properly generalize TV from scalar (grayscale) images to vectorial (color) images?
- This paper considers a generalization which emerges naturally from geometric measure theory.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

pics

An Approach to Vectorial Total Variation based on Geometric **Measure Theory**

- Most real world images have multiple channels.
- How to properly generalize TV from scalar (grayscale) images to vectorial (color) images?
- This paper considers a generalization which emerges naturally from geometric measure theory.

Here color channels share a common edge direction.

Noisy Input

Naive

Proposed

Semiar: Selected **Topics in Variational** Image Processing

Michael Möller. Thomas Möllenhoff. Mohamed Souiai. Daniel Cremers

About this seminar

Spectral Total Variation Decomposition

$$\partial_t u(t) = -p(t)$$
 s.t. $p(t) \in \partial \left\| \sqrt{(\partial_x u(t))^2 + (\partial_y u(t))^2} \right\|_1$

Generalizing what the Fourier transform is for frequencies.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Bregman Iterations

$$\min_{u} \|Au - f\|^2 + J(u)$$

Correcting the loss of contrast of variational approaches.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Bregman Iterations

$$\min_{u} ||Au - f||^2 + J(u) - \langle p^k, u \rangle$$
 s.t. $p^k \in \partial J(u^k)$

Correcting the loss of contrast of variational approaches.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Exemplar-Based Image Inpainting

- The challenge is to remove large objects from digital images and fill in the hole in visually plausible way.
- Idea: Instead to propagating neighbouring pixel information use a non-local variational scheme and fill in using similar image patches.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Linear Diffusion based Image Compression with iPiano

 Image compression reduces in some sense the "redundant" data in an image. Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Linear Diffusion based Image Compression with iPiano

- Image compression reduces in some sense the "redundant" data in an image.
- Image inpainting can be used to restore "missing" data.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Linear Diffusion based Image Compression with iPiano

- Image compression reduces in some sense the "redundant" data in an image.
- Image inpainting can be used to restore "missing" data.
- Idea: remove pixels which are seen as redundant by the image inpainting algorithm.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Input Comp

Compressed

Restored

- Formulation as an energy minimization problem.
- Emphasis on the employed *optimization* method (iPiano).

Image Demosaicking

- Cameras only record one color per pixel.
- Sensors have a certain pattern of colors.
- Interpolating missing colors: Demosaicking
- $\min_{u} ||P_{I}u f||^{2} + J(u)$

Semiar: Selected **Topics in Variational** Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, **Daniel Cremers**

About this seminar

Dithering by Differences of Convex Functions

- Dithering aims to create the illusion of a continuous image given only a limited set of colors.
- Applications in printing and non-photorealistic / artistic rendering.

Input (8 bit)

Dithered (1 bit)

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

nice

Dithering by Differences of Convex Functions

- Dithering aims to create the illusion of a continuous image given only a limited set of colors.
- Applications in printing and non-photorealistic / artistic rendering.

Dithered (1 bit)

Physically motivated model based on electrostatic principles.

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

ppice

Dithering by Differences of Convex Functions

- Dithering aims to create the illusion of a continuous image given only a limited set of colors.
- Applications in printing and non-photorealistic / artistic rendering.

Dithered (1 bit)

- Physically motivated model based on electrostatic principles.
- Energy minimization problem, emphasis on employed optimization method ("DC Programming").

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

oics

Variational Optical Flow

- Given two consecutive images, one looks for a motion field which maps corresponding pixels to one another.
- The overall problem can be formulated in a variational framework via an optimization problem:

$$\min_{v} \int_{\Omega} |I_0(x) - I_1(x + v(x))|^2 + J(v)$$

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Topics

Variational Super Resolution

- Given a set of low resolution images, construct a high resolution image.
- Exploit redundancy of the input frames and solve an optimization problem of the form:

$$\min_{u} \sum_{i} \|DBW_{i}u - f_{i}\|_{2}^{2} + J(u)$$

16 input images

Super-resolution $\xi = 3$

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Topics

updated 13.06.20140.23/29

Hyperspectral Unmixing

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

onice

Hyperspectral Unmixing

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

opics

Pan-Sharpening

Image fusion with local and nonlocal priors:

$$\min_{u} \frac{1}{2} \left\| \sum_{i} \alpha_{i} u_{i} - f \right\|^{2} + \frac{\mu}{2} \sum_{i} \left\| (\downarrow k) * u_{i} - g_{i} \right\|^{2} + J(u)$$

High res. gray scale f + low res. color g = high res. color u

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Topics

Globally Optimal Two Phase Segmentation

- We wish to dissect an input image in two spatially consistent segments.
- Encode the segmentation as a binary valued function $u(x) \in \{0, 1\}$ and solve the following optimization problem:

$$\min_{u} J(u) + \int_{\Omega} u(x) \rho(x) dx$$

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

Multilabel Segmentation

- We wish to find multiple consistent regions of an input image based on user input, color or texture.
- Formulate this combinatorial problem as a variational problem in the following way:

$$\min_{u} \sum_{i}^{n} \int_{\Omega} u_{i}(x) \rho_{i}(x) dx + J(u)$$

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

updated 13.06.20140.27/29

Singular Vectors of Variational Regularizations

Disclaimer: This is a very theoretical topic!

Well known: singular value decomposition of matrices.

$$K^T K u = \alpha u$$

define
$$\lambda = 1/\alpha$$
, $J(u) = \frac{1}{2}||u||^2$. Generalization

$$\lambda K^T K u \in \partial J(u)$$

What happens for other J, e.g. J(u) = TV(u)?

- Is there an orthonormal basis of singular vectors?
- · What properties do singular vectors have?

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

opies

Any questions?

These slides will be available online at https://vision.in.tum.de/teaching/ws2014/vms2014 Password: imageprocessing

Semiar: Selected Topics in Variational Image Processing

Michael Möller, Thomas Möllenhoff, Mohamed Souiai, Daniel Cremers

About this seminar

- -