
Combinatorial Optimization in Computer Vision Computer Vision Group
Lecture: F. R. Schmidt and C. Domokos Institut für Informatik
Exercises: T. Möllenhoff and T. Windheuser Technische Universität München
Winter Semester 2015/2016

Weekly Exercises 1
Room: 02.05.014

Tuesday, 27.10.2015, 14:15-15:45
Submission deadline: Tuesday, 27.10.2015, 11:15 , Room 02.09.023

Distributive Lattices (7 Points)
Exercise 1 (2 Points). Consider the set Dn of positive divisors of some natural
number n ≥ 2, partially ordered by the divisibility relation a � b⇔ a | b.
a) What are meet and join in this case? Show that Dn is a lattice.

b) Draw the Hasse diagram of D36.

Exercise 2 (2 Points). Let (Ω,�) be a distributive lattice, i.e.,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). (1)

a) Show that if x � y, then

x ∧ y = x, x ∨ y = y.

b) Verify that the second distributivity law,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

follows from the first one (1).

Exercise 3 (1 Point). Show that the diamond and pentagon lattices sketched below
on the set Ω = {0, 1, x, y, z} are both non-distributive.

1

x y z

0

1

x
y

z

0

Exercise 4 (2 Points). Let (Ω,�) be a finite totally ordered set. Give a well-defined
bijective mapping ϕ : Ω→ IΩ \ {∅} such that:

x � y ⇔ ϕ(x) ⊂ ϕ(y),

i.e., prove that there exists the following homomorphism:

(IΩ \ {∅},⊂) ≈ (Ω,�).

1



Submodular Functions (8 Points)
Exercise 5 (4 Points). Let Ω be a finite set and let 2Ω denote the power set of Ω.
Prove the following statements:

a) The function E : 2Ω → R defined by

E(A) =
∑
i∈A

f(i),

is modular for any choice of f : Ω→ R.

b) Any modular function E : 2Ω → R can be written as

E(A) = E(∅) +
∑
i∈A

[
E({i})− E(∅)

]
.

c) Let Ω ⊂ Z2. The function E : 2Ω → R given as

E(A) =
∑
i∈A

∑
j /∈A,
|i−j|=1

1,

is a submodular function.

d) Show that Eh : 2Ω → R given by

Eh(A) := h(|A|),

is submodular if h : R→ R is a concave function.
Hint: If h : R→ R is concave, we have h(x+y

2
) ≥ h(x)+h(y)

2
.

Exercise 6 (4 Points). Let Ω = {p, q}. A real-valued function on 2Ω can be rep-
resented by E : {0, 1} × {0, 1} → R. Let E1, E2 : {0, 1} × {0, 1} → R be two such
functions, defined by the following table:

x1 x2 E1(x1, x2) E2(x1, x2)
0 0 a 0
0 1 b -1
1 0 c -1
1 1 d 0

Here a, b, c, d ∈ R are constants.

a) Write down the Lovász extensions EL
1 , E

L
2 : [0, 1]× [0, 1]→ R of E1, E2.

b) Write down the convex closure E−2 : [0, 1]× [0, 1]→ R of E2.

c) Write down the multilinear extensions E1, E2 : [0, 1]× [0, 1]→ R of E1, E2.

d) Is E2 submodular? Under which circumstances is E1 submodular?

Hint: It is useful to a make a distinction between the cases x1 < x2 and x1 ≥ x2.

2



Programming (4 Points)
Exercise 7 (0 Points). This exercise is only necessary, if you want to program on
your own computer or laptop. Download, compile and install OpenGM (Version
≥ 2) on your machine. The code is available from

http://hci.iwr.uni-heidelberg.de/opengm2

and the manual can be downloaded from

http://hci.iwr.uni-heidelberg.de/opengm2/download/opengm-2.0.2-beta-manual.pdf

Make sure you compile with the external libraries MaxFlow, QPBO and TRWS.
Make sure you have installed Doxygen and cmake on your machine. On Ubuntu

just type sudo apt-get install doxygen cmake.
Building is a little bit tricky. You need to call cmake first, then make externalLibs

and then cmake again. On Linux you can do this by just typing these lines on your
terminal:

wget http ://hci.iwr.uni -heidelberg.de/opengm2/download/opengm -2.3.5.
zip

unzip opengm -2.3.5. zip
mkdir opengm -master/build
cd opengm -master/build
cmake ..
make externalLibs
cmake -DCMAKE_INSTALL_PREFIX =~/usr -DWITH_HDF5:BOOL="1" -

DWITH_MAXFLOW:BOOL="1" -DWITH_QPBO:BOOL="1" -DWITH_TRWS:BOOL="1"
..

make -j 4
make doc
mkdir ~/usr
make install

The include files for Open GM should now be in the folder ~/usr/include/opengm,
the documentation should be located at ~/usr/doc/opengm/html and the compiled
libraries in build/src/external.

Exercise 8 (4 Points). Install the ImageMagick C++ library called Magick++.
The library is already installed on the machines in the lab. On Ubuntu you can do
this by typing sudo apt-get install libmagick++-dev.

You can find information on Magick++ on the website

http://www.imagemagick.org/Magick++/

Most information you need and some easy examples are contained in the documen-
tation of the Magick::Image class:

http://www.imagemagick.org/Magick++/Image.html

Write a program that does the following:

3



1. Read an image from a file.

2. Depending on the command-line arguments, perform one or more of the fol-
lowing operations:

Convert the image from color to grey scale.

Flip the x-axis of the image.

Swap color channels.

Display the image.

3. Save the image to a file.

The program should recognize the filenames and type of operation from the command-
line arguments. For example, if the executable is called exercise9 the call

./ exercise9 -flipx -swaprg -display input.png output.jpg

would load an PNG image from the file input.png, flip the x-axis of the image,
swap the red and green color channel, display the image and then write the result
into the file output.jpg.

4


