Combinatorial Optimization in Computer Vision Lecture: F. R. Schmidt and C. Domokos Computer Vision Group Institut für Informatik

Exercises: T. Möllenhoff and T. Windheuser

Technische Universität München

Winter Semester 2015/2016

Weekly Exercises 1

Room: 02.05.014

Tuesday, 27.10.2015, 14:15-15:45

Submission deadline: Tuesday, 27.10.2015, 11:15, Room 02.09.023

Distributive Lattices

(7 Points)

Exercise 1 (2 Points). Consider the set D_n of positive divisors of some natural number $n \geq 2$, partially ordered by the divisibility relation $a \leq b \Leftrightarrow a \mid b$.

- a) What are meet and join in this case? Show that D_n is a lattice.
- b) Draw the Hasse diagram of D_{36} .

Exercise 2 (2 Points). Let (Ω, \preceq) be a distributive lattice, i.e.,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z). \tag{1}$$

a) Show that if $x \leq y$, then

$$x \wedge y = x, \qquad x \vee y = y.$$

b) Verify that the second distributivity law,

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z),$$

follows from the first one (1).

Exercise 3 (1 Point). Show that the diamond and pentagon lattices sketched below on the set $\Omega = \{0, 1, x, y, z\}$ are both non-distributive.

Exercise 4 (2 Points). Let (Ω, \preceq) be a finite totally ordered set. Give a well-defined bijective mapping $\varphi : \Omega \to \mathcal{I}_{\Omega} \setminus \{\varnothing\}$ such that:

$$x \leq y \Leftrightarrow \varphi(x) \subset \varphi(y),$$

i.e., prove that there exists the following homomorphism:

$$(\mathcal{I}_{\Omega} \setminus \{\varnothing\}, \subset) \approx (\Omega, \preceq).$$

Submodular Functions

(8 Points)

Exercise 5 (4 Points). Let Ω be a finite set and let 2^{Ω} denote the power set of Ω . Prove the following statements:

a) The function $E: 2^{\Omega} \to \mathbb{R}$ defined by

$$E(A) = \sum_{i \in A} f(i),$$

is modular for any choice of $f: \Omega \to \mathbb{R}$.

b) Any modular function $E:2^{\Omega}\to\mathbb{R}$ can be written as

$$E(A) = E(\varnothing) + \sum_{i \in A} [E(\{i\}) - E(\varnothing)].$$

c) Let $\Omega \subset \mathbb{Z}^2$. The function $E: 2^{\Omega} \to \mathbb{R}$ given as

$$E(A) = \sum_{i \in A} \sum_{\substack{j \notin A, \\ |i-j|=1}} 1,$$

is a submodular function.

d) Show that $E_h: 2^{\Omega} \to \mathbb{R}$ given by

$$E_h(A) := h(|A|),$$

is submodular if $h: \mathbb{R} \to \mathbb{R}$ is a concave function.

Hint: If $h: \mathbb{R} \to \mathbb{R}$ is concave, we have $h(\frac{x+y}{2}) \ge \frac{h(x) + h(y)}{2}$.

Exercise 6 (4 Points). Let $\Omega = \{p, q\}$. A real-valued function on 2^{Ω} can be represented by $E : \{0, 1\} \times \{0, 1\} \to \mathbb{R}$. Let $E_1, E_2 : \{0, 1\} \times \{0, 1\} \to \mathbb{R}$ be two such functions, defined by the following table:

x_1	x_2	$E_1(x_1, x_2)$	$E_2(x_1, x_2)$
0	0	a	0
0	1	b	-1
1	0	c	-1
1	1	d	0

Here $a, b, c, d \in \mathbb{R}$ are constants.

- a) Write down the Lovász extensions $E_1^L, E_2^L : [0,1] \times [0,1] \to \mathbb{R}$ of E_1, E_2 .
- b) Write down the convex closure $E_2^-:[0,1]\times[0,1]\to\mathbb{R}$ of E_2 .
- c) Write down the multilinear extensions $\overline{E}_1, \overline{E}_2 : [0,1] \times [0,1] \to \mathbb{R}$ of E_1, E_2 .
- d) Is E_2 submodular? Under which circumstances is E_1 submodular?

Hint: It is useful to a make a distinction between the cases $x_1 < x_2$ and $x_1 \ge x_2$.

Programming

(4 Points)

Exercise 7 (0 Points). This exercise is only necessary, if you want to program on your own computer or laptop. Download, compile and install OpenGM (Version ≥ 2) on your machine. The code is available from

```
http://hci.iwr.uni-heidelberg.de/opengm2
```

and the manual can be downloaded from

http://hci.iwr.uni-heidelberg.de/opengm2/download/opengm-2.0.2-beta-manual.pdf

Make sure you compile with the external libraries MaxFlow, QPBO and TRWS.

Make sure you have installed *Doxygen* and *cmake* on your machine. On Ubuntu just type sudo apt-get install doxygen cmake.

Building is a little bit tricky. You need to call cmake first, then make externalLibs and then cmake again. On Linux you can do this by just typing these lines on your terminal:

```
wget http://hci.iwr.uni-heidelberg.de/opengm2/download/opengm-2.3.5.
    zip
unzip opengm-2.3.5.zip
mkdir opengm-master/build
cd opengm-master/build
cmake ..
make externalLibs
cmake -DCMAKE_INSTALL_PREFIX=~/usr -DWITH_HDF5:BOOL="1" -
    DWITH_MAXFLOW:BOOL="1" -DWITH_QPBO:BOOL="1" -DWITH_TRWS:BOOL="1"
    ..
make -j 4
make doc
mkdir ~/usr
make install
```

The include files for Open GM should now be in the folder ~/usr/include/opengm, the documentation should be located at ~/usr/doc/opengm/html and the compiled libraries in build/src/external.

Exercise 8 (4 Points). Install the *ImageMagick* C++ library called *Magick++*. The library is already installed on the machines in the lab. On Ubuntu you can do this by typing sudo apt-get install libmagick++-dev.

You can find information on Magick++ on the website

```
http://www.imagemagick.org/Magick++/
```

Most information you need and some easy examples are contained in the documentation of the Magick::Image class:

```
http://www.imagemagick.org/Magick++/Image.html
```

Write a program that does the following:

- 1. Read an image from a file.
- 2. Depending on the command-line arguments, perform one or more of the following operations:

Convert the image from color to grey scale.

Flip the x-axis of the image.

Swap color channels.

Display the image.

3. Save the image to a file.

The program should recognize the filenames and type of operation from the commandline arguments. For example, if the executable is called exercise9 the call

```
| ./exercise9 -flipx -swaprg -display input.png output.jpg
```

would load an PNG image from the file input.png, flip the x-axis of the image, swap the red and green color channel, display the image and then write the result into the file output.jpg.