Weekly Exercises 1

Room: 02.05.014
Tuesday, 27.10.2015, 14:15-15:45
Submission deadline: Tuesday, 27.10.2015, 11:15, Room 02.09.023

Distributive Lattices

Exercise 1 (2 Points). Consider the set D_{n} of positive divisors of some natural number $n \geq 2$, partially ordered by the divisibility relation $a \preceq b \Leftrightarrow a \mid b$.
a) What are meet and join in this case? Show that D_{n} is a lattice.
b) Draw the Hasse diagram of D_{36}.

Solution.

a) The meet $x \wedge y$ is the greatest common divisor (gcd), which is defined as the biggest positive integer that is both a divisor of x and y. The join $x \vee y$ is the least common multiple (lcm), which is the smallest positive integer that is divisible by both x and y.
First we note that every number $n=p_{1}^{i_{1}} p_{2}^{i_{2}} \ldots p_{k}^{i_{k}}$ has a unique prime factorization. We show that D_{n} along with gcd and lcm is a lattice by constructing a lattice isomorphism to $P=\left[i_{1}\right] \times \ldots \times\left[i_{k}\right]$, with meet being the component-wise \min and join the component-wise max. We use the notation $[n]=\{0,1, \ldots, n\}$. It is easy to verify that the latter is a lattice, i.e. fulfills the axioms of meet and join.
Since the prime factorization is unique, the function $\varphi: D_{n} \rightarrow P$, with

$$
\varphi(n)=\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{k}
\end{array}\right)^{\top},
$$

is well-defined and bijective. Clearly it holds (by definition of gcd and lcm) that

$$
\begin{aligned}
& a \mid b \Leftrightarrow \varphi(a) \preceq \varphi(b) \\
& \varphi(\operatorname{gcd}(a, b))=\min (\varphi(a), \varphi(b)) \\
& \varphi(\operatorname{lcm}(a, b))=\max (\varphi(a), \varphi(b))
\end{aligned}
$$

where \preceq denotes the component-wise conjunction of \leq on \mathbb{N}.
b)

Exercise $2(2$ Points). Let (Ω, \preceq) be a distributive lattice, i.e.,

$$
\begin{equation*}
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \tag{1}
\end{equation*}
$$

a) Show that if $x \preceq y$, then

$$
x \wedge y=x, \quad x \vee y=y
$$

b) Verify that the second distributivity law,

$$
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z),
$$

follows from the first one (1).

Solution.

a) $\underline{x \wedge y=x}$: We want to show that $x \wedge y=x$, i.e.,

$$
a \preceq x \Leftrightarrow a \preceq x \text { and } a \preceq y .
$$

The direction " \Leftarrow " is trivial. The direction " \Rightarrow " follows from transitivity of \preceq : $(a \preceq x$ and $x \preceq y) \Rightarrow a \preceq y$.
$x \vee y=y$: Here we want to prove:

$$
a \succeq y \Leftrightarrow a \succeq x \text { and } a \succeq y
$$

The proof is analogous to the previous one.
b) For showing distributivity, we first note that using a) it holds that

$$
\begin{align*}
& (x \vee y) \wedge x=x \tag{2}\\
& (x \wedge z) \vee x=x \tag{3}
\end{align*}
$$

since $x \preceq(x \vee y)$ and $(x \wedge z) \preceq x$. This follows from the definition of join respectively meet with specific choice of $a=x \vee y$ and $a=x \wedge y$ and using reflexivity of the partial order. Now:

$$
\begin{aligned}
(x \vee y) \wedge(x \vee z) & =[(x \vee y) \wedge x] \vee[(x \vee y) \wedge z] & & \text { Using (1). } \\
& =x \vee(x \wedge z) \vee(y \wedge z) & & \text { Using (2). } \\
& =x \vee(y \wedge z) . & & \text { Using (3). }
\end{aligned}
$$

Exercise 3 (1 Point). Show that the diamond and pentagon lattices sketched below on the set $\Omega=\{0,1, x, y, z\}$ are both non-distributive.

Solution.

- Diamond lattice:

$$
x \wedge(y \vee z)=x \wedge 1=x \neq 0=0 \vee 0=(x \wedge y) \vee(x \wedge z)
$$

- Pentagon lattice:

$$
x \wedge(y \vee z)=x \wedge 1=x \neq z=0 \vee z=(x \wedge y) \vee(x \wedge z)
$$

Exercise 4 (2 Points). Let (Ω, \preceq) be a finite totally ordered set. Give a well-defined bijective mapping $\varphi: \Omega \rightarrow \mathcal{I}_{\Omega} \backslash\{\varnothing\}$ such that:

$$
x \preceq y \Leftrightarrow \varphi(x) \subset \varphi(y),
$$

i.e., prove that there exists the following homomorphism:

$$
\left(\mathcal{I}_{\Omega} \backslash\{\varnothing\}, \subset\right) \approx(\Omega, \preceq)
$$

Solution. We first show that the map $\varphi: \Omega \rightarrow \mathcal{I}_{\Omega} \backslash\{\varnothing\}$ defined as

$$
\varphi(x)=x_{\preceq}, \quad x_{\preceq}:=\{y \mid y \preceq x\},
$$

is bijective.
Surjectivity: Take a non-empty lower ideal $A \in \mathcal{I}_{\Omega}$. Since Ω is finite, A has a maximal element

$$
z=\max _{x \in A} x
$$

We want to prove that $A=z_{\preceq}$.
$A \subset z_{\preceq}:$
Take $x \in A$. Since $z \in A$ is the maximum, and due to the totality property of the total order, we have $x \preceq z$ and thus $x \in z \preceq$.
$z_{2} \subset A$:
$\overline{\text { Take } x} \in z_{\preceq}$. Then $x \preceq z$, and since

$$
z \in A \Rightarrow[x \in A \text { for all } x \preceq z],
$$

we have $x \in A$.

Injectivity: Take two different $x, y \in \Omega$. Without loss of generality assume $x \prec y$, $x \neq y$. Then $y \in \varphi(y)=y_{\preceq}$ by reflexivity. Further, $y \notin \varphi(x)=x_{\preceq}$, since $y \succ x$, so $\varphi(x) \neq \varphi(y)$.
" $\Leftarrow ": ~$ Since $x \in \varphi(x) \subset \varphi(y)$, we have $x \in \varphi(y)$ and thus $x \preceq y$.
" \Rightarrow ": We want to prove that $\varphi(x) \subset \varphi(y)$. For $a \in \varphi(x)$ it holds $a \preceq x \preceq y$ and thus $a \preceq y$ hence $a \in \varphi(y)$.

Submodular Functions

Exercise 5 (4 Points). Let Ω be a finite set and let 2^{Ω} denote the power set of Ω. Prove the following statements:
a) The function $E: 2^{\Omega} \rightarrow \mathbb{R}$ defined by

$$
E(A)=\sum_{i \in A} f(i)
$$

is modular for any choice of $f: \Omega \rightarrow \mathbb{R}$.
b) Any modular function $E: 2^{\Omega} \rightarrow \mathbb{R}$ can be written as

$$
E(A)=E(\varnothing)+\sum_{i \in A}[E(\{i\})-E(\varnothing)]
$$

c) Let $\Omega \subset \mathbb{Z}^{2}$. The function $E: 2^{\Omega} \rightarrow \mathbb{R}$ given as

$$
E(A)=\sum_{i \in A} \sum_{\substack{j \neq A,|i-j|=1}} 1,
$$

is a submodular function.
d) Show that $E_{h}: 2^{\Omega} \rightarrow \mathbb{R}$ given by

$$
E_{h}(A):=h(|A|),
$$

is submodular if $h: \mathbb{R} \rightarrow \mathbb{R}$ is a concave function. Hint: If $h: \mathbb{R} \rightarrow \mathbb{R}$ is concave, we have $\left.h \frac{x+y}{2}\right) \geq \frac{h(x)+h(y)}{2}$.

Solution.

a) Let $S=A \cap B, P=A \backslash B, Q=B \backslash A$. Then $P \cup S=A, Q \cup S=B$ and $A \cup B=P \cup Q \cup S$. Applying the definition yields:

$$
\begin{aligned}
E(A \cup B)+E(A \cap B) & =\sum_{i \in A \cup B} f(i)+\sum_{i \in A \cap B} f(i) \\
& =\sum_{i \in P} f(i)+\sum_{i \in Q} f(i)+2 \sum_{i \in S} f(i) \\
& =\sum_{i \in A} f(i)+\sum_{i \in B} f(i)=E(A)+E(B) .
\end{aligned}
$$

b) We prove the statement by induction.

Base case:
$A=\varnothing$. Then $E(A)=E(\varnothing) . \sqrt{ }$
Induction step:
We assume the statement holds for set A with n elements.

$$
\begin{aligned}
E(A \cup\{j\}) & =E(A)+E(j)-E(\varnothing) \\
& =E(\varnothing)+\left[\sum_{i \in A} E(i)-E(\varnothing)\right]+E(j)-E(\varnothing) \quad \text { (Using induction hypothesis). } \\
& =E(\varnothing)+\left[\sum_{i \in A \cup\{j\}} E(i)-E(\varnothing)\right]
\end{aligned}
$$

c) We can rewrite then length term as:

$$
E(A)=\sum_{\substack{i \in \Omega, j \in \Omega,|i-j|=1}} E_{2}(i \in A, j \in A),
$$

for a pseudo-Boolean function $E_{2}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{R}$. It is defined as:

$$
E_{2}(0,0)=E_{2}(1,1)=E_{2}(0,1)=0, \quad E_{2}(1,0)=1
$$

Since E_{2} is submodular $\left(E_{2}(0,0)+E_{2}(1,1) \leq E_{2}(0,1)+E_{2}(1,0)\right)$ and the sum over submodular functions is a submodular function again, E is also submodular.
d)

$$
\begin{aligned}
F(A \cup\{i, j\})+F(A) & =h(|A|+2)+h(|A|) \stackrel{\text { concavity }}{\leq} 2 h\left(\frac{2|A|+2}{2}\right) \\
& =F(A \cup\{i\})+F(A \cup\{j\}) .
\end{aligned}
$$

Exercise 6 (4 Points). Let $\Omega=\{p, q\}$. A real-valued function on 2^{Ω} can be represented by $E:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}$. Let $E_{1}, E_{2}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}$ be two such functions, defined by the following table:

Here $a, b, c, d \in \mathbb{R}$ are constants.

x_{1}	x_{2}	$E_{1}\left(x_{1}, x_{2}\right)$	$E_{2}\left(x_{1}, x_{2}\right)$
0	0	a	0
0	1	b	-1
1	0	c	-1
1	1	d	0

a) Write down the Lovász extensions $E_{1}^{L}, E_{2}^{L}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ of E_{1}, E_{2}.
b) Write down the convex closure $E_{2}^{-}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ of E_{2}.
c) Write down the multilinear extensions $\bar{E}_{1}, \bar{E}_{2}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ of E_{1}, E_{2}.
d) Is E_{2} submodular? Under which circumstances is E_{1} submodular?

Hint: It is useful to a make a distinction between the cases $x_{1}<x_{2}$ and $x_{1} \geq x_{2}$.
Solution. a)

$$
\begin{align*}
& E_{1}^{L}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{lc}
x_{1} d+\left(x_{2}-x_{1}\right) b+\left(1-x_{2}\right) a & \text { if } x_{1}<x_{2} \\
x_{2} d+\left(x_{1}-x_{2}\right) c+\left(1-x_{1}\right) a & \text { otherwise }
\end{array}\right. \\
& E_{2}^{L}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{ll}
-\left(x_{2}-x_{1}\right) & \text { if } x_{1}<x_{2} \\
-\left(x_{1}-x_{2}\right) & \text { otherwise }
\end{array}=-\left|x_{1}-x_{2}\right|\right. \tag{4}
\end{align*}
$$

b) $E_{2}^{-}\left(x_{1}, x_{2}\right)=-1+\left|1-x_{1}-x_{2}\right|$.
c)

$$
\begin{align*}
& \overline{E_{1}}\left(x_{1}, x_{2}\right)=a \overline{x_{1} x_{2}}+b \overline{x_{1}} x_{2}+c x_{1} \overline{x_{2}}+d x_{1} x_{2} \\
& \overline{E_{2}}\left(x_{1}, x_{2}\right)=-\overline{x_{1}} x_{2}-x_{1} \overline{x_{2}} \tag{5}
\end{align*}
$$

d) By definition E_{1} is submodular iff

$$
\begin{equation*}
E_{1}(0,0)+E_{1}(1,1) \leq E_{1}(0,1)+E_{1}(1,0) \tag{6}
\end{equation*}
$$

I.e. E_{1} is submodular iff $a+d \leq b+c$. If follows that E_{2} is not submodular (but supermodular).

Programming

Exercise 7 (0 Points). This exercise is only necessary, if you want to program on your own computer or laptop. Download, compile and install OpenGM (Version ≥ 2) on your machine. The code is available from

```
http://hci.iwr.uni-heidelberg.de/opengm2
```

and the manual can be downloaded from
http://hci.iwr.uni-heidelberg.de/opengm2/download/opengm-2.0.2-beta-manual.pdf
Make sure you compile with the external libraries MaxFlow, QPBO and TRWS.
Make sure you have installed Doxygen and cmake on your machine. On Ubuntu just type sudo apt-get install doxygen cmake.

Building is a little bit tricky. You need to call cmake first, then make externalLibs and then cmake again. On Linux you can do this by just typing these lines on your terminal:

```
wget http://hci.iwr.uni-heidelberg.de/opengm2/download/opengm-2.3.5.
    zip
unzip opengm-2.3.5.zip
mkdir opengm-master/build
cd opengm-master/build
cmake ..
make externalLibs
cmake -DCMAKE_INSTALL_PREFIX=~/usr -DWITH_HDF5:BOOL="1" -
    DWITH_MAXFLOW:BOOL="1" -DWITH_QPBO:BOOL="1" -DWITH_TRWS:BOOL="1"
make -j 4
make doc
mkdir ~/usr
make install
```

The include files for Open GM should now be in the folder ~/usr/include/opengm, the documentation should be located at $\sim / u s r / d o c / o p e n g m / h t m l ~ a n d ~ t h e ~ c o m p i l e d ~$ libraries in build/src/external.

Exercise 8 (4 Points). Install the ImageMagick C++ library called Magick++. The library is already installed on the machines in the lab. On Ubuntu you can do this by typing sudo apt-get install libmagick++-dev.

You can find information on Magick++ on the website
http://www.imagemagick.org/Magick++/
Most information you need and some easy examples are contained in the documentation of the Magick: : Image class:
http://www.imagemagick.org/Magick++/Image.html

Write a program that does the following:

1. Read an image from a file.
2. Depending on the command-line arguments, perform one or more of the following operations:

Convert the image from color to grey scale.
Flip the x -axis of the image.
Swap color channels.
Display the image.
3. Save the image to a file.

The program should recognize the filenames and type of operation from the commandline arguments. For example, if the executable is called exercise9 the call
||./exercise9 -flipx -swaprg -display input.png output.jpg
would load an PNG image from the file input.png, flip the x -axis of the image, swap the red and green color channel, display the image and then write the result into the file output.jpg.

