
Combinatorial Optimization in Computer Vision Computer Vision Group
Lecture: F. R. Schmidt and C. Domokos Institut für Informatik
Exercises: T. Möllenhoff and T. Windheuser Technische Universität München
Winter Semester 2015/2016

Weekly Exercises 1
Room: 02.05.014

Tuesday, 27.10.2015, 14:15-15:45
Submission deadline: Tuesday, 27.10.2015, 11:15 , Room 02.09.023

Distributive Lattices (7 Points)
Exercise 1 (2 Points). Consider the set Dn of positive divisors of some natural
number n ≥ 2, partially ordered by the divisibility relation a � b⇔ a | b.

a) What are meet and join in this case? Show that Dn is a lattice.

b) Draw the Hasse diagram of D36.

Solution.

a) The meet x ∧ y is the greatest common divisor (gcd), which is defined as the
biggest positive integer that is both a divisor of x and y. The join x ∨ y is
the least common multiple (lcm), which is the smallest positive integer that is
divisible by both x and y.

First we note that every number n = pi11 p
i2
2 . . . pikk has a unique prime factoriza-

tion. We show that Dn along with gcd and lcm is a lattice by constructing a
lattice isomorphism to P = [i1]× . . .× [ik], with meet being the component-wise
min and join the component-wise max. We use the notation [n] = {0, 1, . . . , n}.
It is easy to verify that the latter is a lattice, i.e. fulfills the axioms of meet and
join.

Since the prime factorization is unique, the function ϕ : Dn → P , with

ϕ(n) =
(
i1 i2 . . . ik

)T
,

is well-defined and bijective. Clearly it holds (by definition of gcd and lcm) that

a | b ⇔ ϕ(a) � ϕ(b),

ϕ(gcd(a, b)) = min(ϕ(a), ϕ(b)),

ϕ(lcm(a, b)) = max(ϕ(a), ϕ(b)),

where � denotes the component-wise conjunction of ≤ on N.

1

b)

Exercise 2 (2 Points). Let (Ω,�) be a distributive lattice, i.e.,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). (1)

a) Show that if x � y, then

x ∧ y = x, x ∨ y = y.

b) Verify that the second distributivity law,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

follows from the first one (1).

Solution.

a) x ∧ y = x: We want to show that x ∧ y = x, i.e.,

a � x ⇔ a � x and a � y.

The direction “⇐” is trivial. The direction “⇒” follows from transitivity of �:
(a � x and x � y)⇒ a � y.
x ∨ y = y: Here we want to prove:

a � y ⇔ a � x and a � y.

The proof is analogous to the previous one.

b) For showing distributivity, we first note that using a) it holds that

(x ∨ y) ∧ x = x, (2)

(x ∧ z) ∨ x = x, (3)

since x � (x ∨ y) and (x ∧ z) � x. This follows from the definition of join
respectively meet with specific choice of a = x ∨ y and a = x ∧ y and using
reflexivity of the partial order. Now:

(x ∨ y) ∧ (x ∨ z) = [(x ∨ y) ∧ x] ∨ [(x ∨ y) ∧ z] Using (1).
= x ∨ (x ∧ z) ∨ (y ∧ z) Using (2).
= x ∨ (y ∧ z). Using (3).

2

1

x y z

0

1

x
y

z

0

Exercise 3 (1 Point). Show that the diamond and pentagon lattices sketched below
on the set Ω = {0, 1, x, y, z} are both non-distributive.

Solution.

• Diamond lattice:

x ∧ (y ∨ z) = x ∧ 1 = x 6= 0 = 0 ∨ 0 = (x ∧ y) ∨ (x ∧ z).

• Pentagon lattice:

x ∧ (y ∨ z) = x ∧ 1 = x 6= z = 0 ∨ z = (x ∧ y) ∨ (x ∧ z).

Exercise 4 (2 Points). Let (Ω,�) be a finite totally ordered set. Give a well-defined
bijective mapping ϕ : Ω→ IΩ \ {∅} such that:

x � y ⇔ ϕ(x) ⊂ ϕ(y),

i.e., prove that there exists the following homomorphism:

(IΩ \ {∅},⊂) ≈ (Ω,�).

Solution. We first show that the map ϕ : Ω→ IΩ \ {∅} defined as

ϕ(x) = x�, x� := {y | y � x},

is bijective.

Surjectivity: Take a non-empty lower ideal A ∈ IΩ. Since Ω is finite, A has a
maximal element

z = max
x∈A

x.

We want to prove that A = z�.
A ⊂ z�:
Take x ∈ A. Since z ∈ A is the maximum, and due to the totality property of the
total order, we have x � z and thus x ∈ z�.
z� ⊂ A:
Take x ∈ z�. Then x � z, and since

z ∈ A⇒ [x ∈ A for all x � z],

we have x ∈ A.

3

Injectivity: Take two different x, y ∈ Ω. Without loss of generality assume x ≺ y,
x 6= y. Then y ∈ ϕ(y) = y� by reflexivity. Further, y /∈ ϕ(x) = x�, since y � x, so
ϕ(x) 6= ϕ(y).

“⇐”: Since x ∈ ϕ(x) ⊂ ϕ(y), we have x ∈ ϕ(y) and thus x � y.

“⇒”: We want to prove that ϕ(x) ⊂ ϕ(y). For a ∈ ϕ(x) it holds a � x � y and
thus a � y hence a ∈ ϕ(y).

Submodular Functions (8 Points)
Exercise 5 (4 Points). Let Ω be a finite set and let 2Ω denote the power set of Ω.
Prove the following statements:

a) The function E : 2Ω → R defined by

E(A) =
∑
i∈A

f(i),

is modular for any choice of f : Ω→ R.

b) Any modular function E : 2Ω → R can be written as

E(A) = E(∅) +
∑
i∈A

[
E({i})− E(∅)

]
.

c) Let Ω ⊂ Z2. The function E : 2Ω → R given as

E(A) =
∑
i∈A

∑
j /∈A,
|i−j|=1

1,

is a submodular function.

d) Show that Eh : 2Ω → R given by

Eh(A) := h(|A|),

is submodular if h : R→ R is a concave function.
Hint: If h : R→ R is concave, we have hx+y

2
) ≥ h(x)+h(y)

2
.

4

Solution.

a) Let S = A ∩ B,P = A \ B,Q = B \ A. Then P ∪ S = A, Q ∪ S = B and
A ∪B = P ∪Q ∪ S. Applying the definition yields:

E(A ∪B) + E(A ∩B) =
∑

i∈A∪B

f(i) +
∑

i∈A∩B

f(i)

=
∑
i∈P

f(i) +
∑
i∈Q

f(i) + 2
∑
i∈S

f(i)

=
∑
i∈A

f(i) +
∑
i∈B

f(i) = E(A) + E(B).

b) We prove the statement by induction.
Base case:
A = ∅. Then E(A) = E(∅).

√

Induction step:
We assume the statement holds for set A with n elements.

E(A ∪ {j}) = E(A) + E(j)− E(∅)

= E(∅) +
[∑
i∈A

E(i)− E(∅)
]

+ E(j)− E(∅) (Using induction hypothesis).

= E(∅) +
[∑
i∈A∪{j}

E(i)− E(∅)
]
.

c) We can rewrite then length term as:

E(A) =
∑

i∈Ω,j∈Ω,
|i−j|=1

E2(i ∈ A, j ∈ A),

for a pseudo-Boolean function E2 : B× B→ R. It is defined as:

E2(0, 0) = E2(1, 1) = E2(0, 1) = 0, E2(1, 0) = 1.

Since E2 is submodular (E2(0, 0) + E2(1, 1) ≤ E2(0, 1) + E2(1, 0)) and the sum
over submodular functions is a submodular function again, E is also submodular.

d)

F (A ∪ {i, j}) + F (A) = h(|A|+ 2) + h(|A|)
concavity
≤ 2h

(
2|A|+ 2

2

)
= F (A ∪ {i}) + F (A ∪ {j}).

Exercise 6 (4 Points). Let Ω = {p, q}. A real-valued function on 2Ω can be rep-
resented by E : {0, 1} × {0, 1} → R. Let E1, E2 : {0, 1} × {0, 1} → R be two such
functions, defined by the following table:

Here a, b, c, d ∈ R are constants.

5

x1 x2 E1(x1, x2) E2(x1, x2)
0 0 a 0
0 1 b -1
1 0 c -1
1 1 d 0

a) Write down the Lovász extensions EL
1 , E

L
2 : [0, 1]× [0, 1]→ R of E1, E2.

b) Write down the convex closure E−2 : [0, 1]× [0, 1]→ R of E2.

c) Write down the multilinear extensions E1, E2 : [0, 1]× [0, 1]→ R of E1, E2.

d) Is E2 submodular? Under which circumstances is E1 submodular?

Hint: It is useful to a make a distinction between the cases x1 < x2 and x1 ≥ x2.

Solution. a)

EL
1 (x1, x2) =

{
x1d + (x2 − x1)b + (1− x2)a if x1 < x2

x2d + (x1 − x2)c + (1− x1)a otherwise

EL
2 (x1, x2) =

{
−(x2 − x1) if x1 < x2

−(x1 − x2) otherwise
= −|x1 − x2|

(4)

b) E−2 (x1, x2) = −1 + |1− x1 − x2|.

c)
E1(x1, x2) = ax1x2 + bx1x2 + cx1x2 + dx1x2

E2(x1, x2) = −x1x2 − x1x2

(5)

d) By definition E1 is submodular iff

E1(0, 0) + E1(1, 1) ≤ E1(0, 1) + E1(1, 0). (6)

I.e. E1 is submodular iff a+ d ≤ b+ c. If follows that E2 is not submodular (but
supermodular).

6

Programming (4 Points)
Exercise 7 (0 Points). This exercise is only necessary, if you want to program on
your own computer or laptop. Download, compile and install OpenGM (Version
≥ 2) on your machine. The code is available from

http://hci.iwr.uni-heidelberg.de/opengm2

and the manual can be downloaded from

http://hci.iwr.uni-heidelberg.de/opengm2/download/opengm-2.0.2-beta-manual.pdf

Make sure you compile with the external libraries MaxFlow, QPBO and TRWS.
Make sure you have installed Doxygen and cmake on your machine. On Ubuntu

just type sudo apt-get install doxygen cmake.
Building is a little bit tricky. You need to call cmake first, then make externalLibs

and then cmake again. On Linux you can do this by just typing these lines on your
terminal:

wget http ://hci.iwr.uni -heidelberg.de/opengm2/download/opengm -2.3.5.
zip

unzip opengm -2.3.5. zip
mkdir opengm -master/build
cd opengm -master/build
cmake ..
make externalLibs
cmake -DCMAKE_INSTALL_PREFIX =~/usr -DWITH_HDF5:BOOL="1" -

DWITH_MAXFLOW:BOOL="1" -DWITH_QPBO:BOOL="1" -DWITH_TRWS:BOOL="1"
..

make -j 4
make doc
mkdir ~/usr
make install

The include files for Open GM should now be in the folder ~/usr/include/opengm,
the documentation should be located at ~/usr/doc/opengm/html and the compiled
libraries in build/src/external.

Exercise 8 (4 Points). Install the ImageMagick C++ library called Magick++.
The library is already installed on the machines in the lab. On Ubuntu you can do
this by typing sudo apt-get install libmagick++-dev.

You can find information on Magick++ on the website

http://www.imagemagick.org/Magick++/

Most information you need and some easy examples are contained in the documen-
tation of the Magick::Image class:

http://www.imagemagick.org/Magick++/Image.html

Write a program that does the following:

7

1. Read an image from a file.

2. Depending on the command-line arguments, perform one or more of the fol-
lowing operations:

Convert the image from color to grey scale.

Flip the x-axis of the image.

Swap color channels.

Display the image.

3. Save the image to a file.

The program should recognize the filenames and type of operation from the command-
line arguments. For example, if the executable is called exercise9 the call

./ exercise9 -flipx -swaprg -display input.png output.jpg

would load an PNG image from the file input.png, flip the x-axis of the image,
swap the red and green color channel, display the image and then write the result
into the file output.jpg.

8

