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Gaussian Mixture Models (8 Points)
Exercise 1 (Probability, 2 Points). Prove the following identities:

a) ∫ ∞
−∞

exp

(
−t

2

2

)
dt =

√
2π.

b) ∫ ∞
−∞

t exp

(
−t

2

2

)
dt = 0.

Note: we define
∫∞
−∞ f(t) dt := lim

x→∞

∫ x
−x f(t) dt.

Solution.

a) [∫ ∞
−∞

exp

(
−t2

2σ2

)
dt

]2
=

∫ ∞
−∞

exp

(
−x2

2σ2

)
dx

∫ ∞
−∞

exp

(
−y2

2σ2

)
dy

=

∫ ∞
−∞

∫ ∞
−∞

exp

(
−(x2 + y2)

2σ2

)
dxdy

=

∫ 2π

0

∫ ∞
0

r exp

(
−r2

2σ2

)
drdθ

= 2π

∫ ∞
0

r exp

(
−r2

2σ2

)
dr

= 2π

∫ 0

−∞
exp (s) ds

(
s = − r2

2σ2
⇒ dr = −σ2ds.

)
= 2πσ2

b) ∫ ∞
−∞

t exp

(
− t2

2σ2

)
dt =

1

2

∫ 0

−∞
exp

(
− t2

2σ2

)
dt2 +

1

2

∫ ∞
0

exp

(
− t2

2σ2

)
dt2

= −σ2

[
exp

(
− t2

2σ2

)]0
−∞
− σ2

[
exp

(
− t2

2σ2

)]∞
0

= −σ2 − (−σ2) = 0.
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Exercise 2 (Probability, 2 Point). Show that the expected value of the univariate
Gaussian distribution

N (x | µ, σ2) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
,

is given by E[x] = µ.

Solution.
1√

2πσ2

∫ ∞
−∞

x exp

(
−(x− µ)2

2σ2

)
dx =

1√
2πσ2

∫ ∞
−∞

(t+ µ) exp

(
− t2

2σ2

)
dt

=
1√

2πσ2

(
µ

∫ ∞
−∞

exp

(
− t2

2σ2

)
dt+

∫ ∞
−∞

t exp

(
− t2

2σ2

)
dt

)
1a) + 1b)

=
1√

2πσ2
(µ
√

2πσ + 0) = µ.

Exercise 3 (EM, 4 Points). Use the general expectation maximization principle to
derive an algorithm for maximizing the likelihood of the Gaussian mixture model.
For that, we introduce latent binary variables znk which are 1 if the k-th component
generated the n-th data point, and zero otherwise. With these latent variables, the
likelihood takes the form:

p(X,Z | θ) =
N∏
n=1

K∏
k=1

πznk
k N (xn | µk,Σk)

znk , θ = {π, µ,Σ}.

a) E step: Using Bayes’ theorem, show that the posterior is given by:

p(Z | X, θold) ∝
N∏
n=1

K∏
k=1

[
πold
k N (xn | µold

k ,Σold
k )
]znk .

b) M step: Derive a closed form solution for the maximization problem:

θnew = argmax
θ

{∑
Z

p(Z | X, θold) ln p(X,Z | θ)

}
.

Solution.

a) Using Bayes’ theorem, we get:

p(zn | xn, θold) =
p(xn | θold, zn)p(zn | θold)

p(xn | θold)
. (1)

The individual terms are given as:

p(xn | θold, zn) =
K∏
k=1

N (xn | Σold
k , µold

k )znk ,

p(zn | θold) =
K∏
k=1

(
πold
k

)znk .

(2)

Since the data points xn are identically and independently distributed, combining
(2) into (1) yields the desired result.
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b)
Q(θ, θold) =

∑
Z

p(Z | X, θold) ln p(X,Z | θ)

= EZ
[
ln p(X,Z | θ) | X, θold]

= EZ

[
N∑
n=1

K∑
k=1

(ln πk + lnN (xn | µk,Σk))znk

∣∣∣X, θold

]

=
N∑
n=1

K∑
k=1

Ezn
[
znk|X, θold] (ln πk + lnN (xn | µk,Σk))

=
N∑
n=1

K∑
k=1

γnk(ln πk + lnN (xn | µk,Σk)).

(3)

To see the last step in the calculation above:

Ezn [znk|X, θ] :=
∑
zn

znkp(zn | xn, θ) =

∑
zn
znkp(xn|θ, zn)p(zn|θ)

p(xn | θ)

=

∑
zn
znk
∏K

k′=1 [N (xn | µk′ ,Σk′)]
znk′ [πk′ ]

znk′∑
zn

∏K
j=1 [πjN (xn | µj,Σj)]

znj

=

∑
zn
znk
∏K

k′=1 [πk′N (xn | µk′ ,Σk′)]
znk′∑

zn

∏K
j=1 [πjN (xn | µj,Σj)]

znj

=
πkN (xn | µk,Σk)∑K
j=1 πjN (xn | µj,Σj)

=: γnk.

(4)
Following the lecture we have:

∂Q
∂πl

!
= 0⇒ πl =

∑N
n=1 γnl
N

. (5)

∂Q
∂Σl

!
= 0⇒ Σl =

∑N
n=1 γnl(xn − µl)(xn − µl)T∑N

n=1 γnl
. (6)

∂Q
∂µl

!
= 0⇒ µl =

∑N
n=1 γnlxn∑N
n=1 γnl

. (7)

Maximum Flow and Minimum Cut (7 Points)
Exercise 4 (Min-Cut, 3 Points). Show that for any x ∈ Bn, it holds

x1 +

[
n−1∑
i=1

xixi+1 − xixi+1

]
+ xn = 1.
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Solution. For n = 1 the proposition is correct as x1 + x1 = 1 for any x ∈ B. Note
that ab − ab + b = a for any a, b ∈ B. Now assume the proposition is correct for
n− 1, it holds

x1 + [
n−1∑
i=1

xixi+1 − xixi+1] + xn

=x1 + [
n−2∑
i=1

xixi+1 − xixi+1] + xn−1xn − xn−1xn + xn

=x1 + [
n−2∑
i=1

xixi+1 − xixi+1] + xn−1 = 1.

Exercise 5 (Graph Cut, 4 Points).

a) Let P = {1, . . . , 6} be a set of pixels with a neighbourhood as depicted below:

1 2 3

4 5 6

Let f1, . . . , f6 ∈ R be pixel weights and let cij ∈ R≥0, i ∈ {1, . . . , 6}, j ∈ N (i), be
weights for the length term. Consider the minimization problem:

min
x∈B6

6∑
i=1

fixi +
6∑
i=1

∑
j∈N (i)

cijxixj. (8)

Draw a network, such that the minimum s, t-cut of the network gives a solution
to Problem (8).

b) Now consider the general problem. Let P = {1, . . . , n}, n ∈ N, be a set of
pixels with a given neighbourhood structure N : {1, . . . , n} → P({1, . . . , n}).
Construct a network that gives a solution to the minimization problem

min
x∈Bn

n∑
i=1

fixi +
n∑
i=1

∑
j∈N (i)

cijxixj, (9)

where f1, . . . , fn ∈ R and cij ∈ R≥0, i ∈ {1, . . . , n}, j ∈ N (i), are given.

c) Let n = 6 and consider the same neighbourhood N as in Part a). Let f1 =
15, f2 = −5, f3 = 1, f4 = 2, f5 = −4, f6 = −10 and let cij = 1 for all i, j ∈ N (i).
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Compute the maximum flow of the network from Part a) using the Ford-Fulkerson
algorithm. Draw the flow at each iteration. How do you select the augmenting
path at each iteration to terminate as early as possible? What is the minimum
energy? What is the resulting segmentation?

Solution. b) Define the netwok (V,E, ĉ, s, t), where

V = P ∪ {s, t},
E = Es ∪ Et ∪ EN ,
Es = {(s, i)|i ∈ P},
Et = {(i, t)|i ∈ P},
EN = {(i, j)|i ∈ P, j ∈ N (i)},

∀i ∈ P : ĉ(s, i) = max{0,−fi},
∀i ∈ P : ĉ(i, t) = max{0, fi} and

∀i ∈ P : ∀j ∈ N (i) : ĉ(i, j) = cij.

We can convert the minimum s, t-cut S, T of this network into a minimizer x∗ ∈ Bn
of Minimization Problem (9) by setting

x∗i =

{
0 if i ∈ S and
1 otherwise.
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Programming (15 Points)
Exercise 6 (5 Points). Train two Gaussian mixture models which model the prob-
ability of a pixel belonging to the foreground respectively the background, using the
VLFeat1 library. Your program should take the following parameters as a command
line argument:

• The filename of the input image.

• Coordinates of a bounding box (x1, y1, x2, y2), roughly indicating the fore-
ground region.

• Number of components K in the Gaussian mixture model.

It should perform the following tasks:

1) Read the input image.

2) Train two Gaussian mixtures models pF (x) and pB(x) with K components each,
which model the probability distribution of a pixel i belonging to the foreground
and respectively the background. The points for the foreground GMM correspond
to the RGB values of the pixels inside the rectangle (x1, y1, x2, y2), and the points
for the background GMM correspond to the RGB values outside the rectangle.

3) Using the two GMMs, compute the dataterm at each pixel, which is the dif-
ference between the log-likelihood of a pixel belonging to the foreground or the
background, i.e.

fi = − log
pF (xi)

pB(xi)
= log(pB(xi))− log(pF (xi)).

Compute a global minimizer x̂ ∈ Bn of the modular energy:

x̂ = argmin
x∈Bn

n∑
i=1

fixi,

and visualize the result. Try out different values of K (start with K = 5) and
images. A possible output on banana3.bmp for (x1, y1, x2, y2) = (160, 280, 510, 350)
and K = 5 is shown below:

Hint: You can use the file gmm.cpp in 03_supp.zip as a starting point for your
program. 03_supp.zip can be downloaded from the lecture homepage.

1http://www.vlfeat.org/api/gmm.html
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Exercise 7 (5 Points). The goal of this exercise is to use OpenGM to minimize the
following submodular energy:

E(x) =
n∑
i=1

fixi +
n∑
i=1

∑
j∈N (i)

cijxixj, (10)

where x ∈ Bn, fi denotes the dataterm from the previous exercise, N is the 8-
neighbourhood as derscribed in the lecture and cij = λπ

8
is constant scaled by

parameter λ ∈ R.
Extend your program from Exercise 6. The extended exercise should do the

following extra things:

• Build a graphical model with OpenGM that represents energy E from Equa-
tion (10). Note that you need to transform E into a slightly different form. In
OpenGM you would specify the energy in the following form:

E(x) =
n∑
i=1

fi(xi) +
n∑
i=1

∑
j∈N (i):i<j

cij(xi, xj),

where x ∈ Bn, fi : B→ R are functions with one argument and cij : B×B→ R
are functions with two arguments.

• Find the minimizer of E with the help of the inference algorithms build into
OpenGM.

• Display the segmentation result.

You can use the file imagesegmentation.cpp in 03_supp.zip as a starting point for
your program. imagesegmentation.cpp includes example code for everything you
need to accomplish the exercise.

Experiment with different values for parameter λ. How does the segmenta-
tion change? Additionally you can try the image dependent length term cij =

λ exp(−‖I(i)−I(j)‖
2

2σ2 ), where I(i), I(j) ∈ R3 are the RGB values at pixels i, j. Choose
the standard deviation σ ∈ R carefully.

Exercise 8 (5 Points). In Exercise 6 the user-specified rectangle served as a rough
initial guess of the foreground region. The idea of this exercise is to use the seg-
mentation result from Exercise 7 as a better guess for the foreground region when
computing the Gaussian mixture model.

Write a program which performs the two previous exercises, estimating the Gaus-
sian mixture model and computing the segmentation, in an alternating Expectation
Maximization fashion. The E-step corresponds to the estimation of the GMM and
the M-step is the segmentation algorithm.

Hint: Keep the means, covariances and responsibilities from the previous outer
iteration as an initialization to warm-start the GMM optimization algorithm. Use
the command vl_set_initializion(gmm, VlGMMCustom); to achieve that.
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